Navigating slide decks in .html format:

Date Topic(s) Slides Source Background info
30 March Course overview
html Rmd
1 April Required software
R / RStudio
R Markdown
GitHub
html Rmd R software
RStudio
Intro to R Markdown
Video intro to GitHub
3 April Ecological data & distributions
Detections
Counts
Survival
html Rmd Understanding data
Statistical distributions
Distribution relationships
6 April Linear models
Non-linear approximations
Regression, ANOVA, ANCOVA
html Rmd Farraway (2015) Chap 2
8 April Linear models
Models in matrix form
Least squares
Identifiability
html Rmd Farraway (2015) Chap 2
10 April Inference
Variance partitioning
F-tests for nested models
Confidence intervals
html Rmd Farraway (2015) Chap 3
Farraway (2015) Chap 4
Wasserstein et al. (2019)
13 April Model diagnostics
Assumptions about errors
Leverage
Outliers
html Rmd Farraway (2015) Chap 6
15 April Problems with model errors
Generalized least squares
Weighted least squares
Robust regression
html Rmd Farraway (2015) Chap 8
17 April Data transformations
Box-Cox
Powers/roots
Logarithms
html Rmd Farraway (2015) Chap 9
O’Hara & Kotze (2010)
Xiao et al. (2011)
20 April Design matrices
Models in matrix form
Regression
ANOVA / ANCOVA
html Rmd Venables (2018)
22 April Review session
All topics to date

24 April Maximum likelihood estimation
Relationship to probability
Estimation
Characteristics of MLE
html Rmd Faraway (2016) Appendix A
27 April Model selection
Bias-Variance trade-offs
In-sample selection
AIC
html Rmd Burnham & Anderson (2002)
Hobbs & Hilborn (2006)
29 April Model selection
Out-of-sample selection
Cross-validation
Multi-model inference
html Rmd Aho et al (2014)
Banner & Higgs (2017)
Burnham & Anderson (2002)
Cade (2015)
Hooten & Hobbs (2015)
Link & Barber (2006)
1 May Mixed effects models
Fixed vs Random effects
Shrinkage
Costs/benefits
html Rmd Freeman’s visualization
Harrison et al (2018)
Zuur et al (2009) Chap 5
4 May Mixed effects models
Inference
Diagnostics
Model selection
html Rmd Gurka (2006)
Harrison et al (2018)
6 May Guest lecture:
Dr. Staci Amburgey
Using quantitative ecology for
species conservation in the
face of anthropogenic change

html Amburgey et al (2017)
Amburgey et al (2019)
Amburgey et al (2020)
8 May Introduction to GLMs
Data distributions
Link functions
Linear predictors
html Rmd Nelder & Wedderburn (1972)
Faraway (2016) Chap 8
11 May Modeling binary data
Logistic regression
Model selection
Diagnostics

Project plan due
html Rmd Faraway (2016) Chap 2
13 May Overdispersion in binary data
Variance inflation
Beta-binomial modes
Quasi-likelihood
html Rmd Faraway (2016) Chap 2 & 3
15 May Modeling count data
Poisson regression
Leverage and influence
Diagnostics
html Rmd Faraway (2016) Chap 5
St-Pierre et al. (2017)
18 May Overdispersion in count data
Variance inflation
Quasi-likelihood
Negative-binomial distribution
html Rmd Faraway (2016) Chap 5
Ver Hoef & Boveng (2007)
20 May Zero-truncated & zero-inflated models
Zero truncation
Zero inflation
Hurdle models
Mixture models
html Rmd Faraway (2016) Chap 5
Zuur et al (2009) Chap 11
Blasco-Moreno (2019)
22 May Working with GLMMs
Computing likelihoods
Diagnostics
Goodness-of-fit
html Rmd Faraway (2016) Chap 13
Zuur et al (2009) Chap 13
Bolker et al (2009)
25 May Memorial Day - No class

27 May Review of materials

29 May Course synthesis
What did we learn?
Where do we go from here?
html Rmd
1 June Presentations of class projects
html
3 June Presentations of class projects
html
5 June Presentations of class projects
html