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 Model averaging and muddled multimodel inferences
 Brian S. Cade'

 U.S. Geological Survey, 2150 Centre Avenue. Building C, Fort Collins, Colorado 80526 USA

 Abstract. Three flawed practices associated with model averaging coefficients for
 predictor variables in regression models commonly occur when making multimodel inferences
 in analyses of ecological data. Model-averaged regression coefficients based on Akaike
 information criterion (AIC) weights have been recommended for addressing model
 uncertainty but they are not valid, interprétable estimates of partial effects for individual
 predictors when there is multicollinearity among the predictor variables. Multicollinearity
 implies that the scaling of units in the denominators of the regression coefficients may change
 across models such that neither the parameters nor their estimates have common scales,
 therefore averaging them makes no sense. The associated sums of AIC model weights
 recommended to assess relative importance of individual predictors are really a measure of
 relative importance of models, with little information about contributions by individual
 predictors compared to other measures of relative importance based on effects size or variance
 reduction. Sometimes the model-averaged regression coefficients for predictor variables are
 incorrectly used to make model-averaged predictions of the response variable when the models
 are not linear in the parameters. I demonstrate the issues with the first two practices using the
 college grade point average example extensively analyzed by Burnham and Anderson. I show
 how partial standard deviations of the predictor variables can be used to detect changing
 scales of their estimates with multicollinearity. Standardizing estimates based on partial
 standard deviations for their variables can be used to make the scaling of the estimates
 commensurate across models, a necessary but not sufficient condition for model averaging of
 the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of
 individual parameters are additional requisite conditions. The standardized estimates or
 equivalently the t statistics on unstandardized estimates also can be used to provide more
 informative measures of relative importance than sums of AIC weights. Finally, I illustrate
 how seriously compromised statistical interpretations and predictions can be for all three of
 these flawed practices by critiquing their use in a recent species distribution modeling
 technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus)
 distribution in Colorado, USA. These model averaging issues are common in other ecological
 literature and ought to be discontinued if we are to make effective scientific contributions to
 ecological knowledge and conservation of natural resources.

 Key words: generalized linear models; Greater Sage-Grouse; model averaging; multicollinearity;
 multimodel inference; partial effects; partial standard deviations; regression coefficients; relative importance
 of predictors; species distribution models; zero-truncated Poisson regression.

 Introduction

 Considering multiple statistical models and incorpo
 rating model uncertainty into analyses has gained
 considerable traction in biological and ecological
 literature since the seminal work of Burnham and

 Anderson (1998, 2002). There is a growing recognition
 that we should not put too much analytical faith in any
 single model given the presence of reasonable competing
 models (the multiple working hypotheses of Chamberlin
 [1890]). The approach to incorporating estimates from
 multiple candidate models into multimodel inferences
 advocated by Burnham and Anderson (1998, 2002) is to

 Manuscript received 28 August 2014; revised 25 February
 2015; accepted 3 March 2015. Corresponding Editor: B. D.
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 summarize the information by model averaging, weight
 ing model estimates with Akaike information criterion
 (AIC) weights. This approach is easily accomplished for
 most regression models and there have been numerous
 reviews discussing this approach (e.g., Johnson and
 Omland 2004, Hobbs and Hilborn 2006, Burnham et al.

 2011, Grueber et al. 2011). However, these reviews and
 syntheses fail to mention that one form of model
 averaging advocated by Burnham and Anderson (2002,
 2004), for individual regression coefficients (parameter
 estimates for predictor variables), can be seriously
 flawed whenever there is multicollinearity among the
 predictor variables in the candidate models, rendering
 this procedure of limited practical utility.

 Multicollinearity among predictor variables (defined
 as any linear relationship among them) is a common
 condition for observational studies (Graham 2003,
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 Dormann et al. 2013) and, thus, this issue is pervasive
 whenever model-averaged regression coefficients have
 been used for model interpretations or predictions. I will
 demonstrate that multicollinearity among the predictor
 variables implies that the scaling of the units for the
 regression coefficients for a given predictor variable {X,)
 may not be constant among candidate models with
 different combinations of predictors. Thus, regression
 coefficients as a measure of the change in the response
 per unit change in the predictor variable (Ay/AT,)
 cannot legitimately be averaged because a unit change in
 the predictor variable does not necessarily mean the
 same thing across all candidate models. I will demon
 strate the nature of this issue using an example data set
 extensively analyzed by Burnham and Anderson
 (2002:224-238) and suggest the genesis of a possible
 solution based on standardization by partial standard
 deviations of predictors. Two related procedures will
 also be addressed: determining relative importance of
 predictors from accumulated AIC model weights, and
 computing model-averaged predictions of the response
 variable from model-averaged regression coefficients in
 nonlinear models. Finally, I will discuss an example of
 the flawed use of model-averaged regression coefficients
 and related procedures in an analysis for a species
 distribution model developed for Greater Sage-Grouse
 (Centrocercus urophasianus\ see Plate 1) in Colorado
 (Rice et al. 2013) to demonstrate that these are not
 minor, esoteric statistical issues but major issues that can
 have profound impacts on ecological interpretations and
 the utility of statistical relationships.

 While I use Rice et al. (2013) as a recent and
 particularly transparent ecological example of the perils
 of model averaging regression coefficients, many other
 publications have similar flaws. The extent to which this
 flawed model averaging occurs in recent ecological
 literature is indicated by a list of publications provided
 in Appendix A (not intended to be an exhaustive list)
 that used model-averaged regression coefficients. The
 unfortunate consequence of using these approaches is
 that we are often left with a poorer understanding of
 important statistical relationships that might strongly
 impact our ecological understanding and conservation
 decisions while unreasonably feeling satisfied that model
 uncertainty has been addressed. All literature published
 using any of these procedures associated with model
 averaging regression coefficients has unreliable statisti
 cal results. It is impossible to know whether the faulty
 model averaging practices had minor or major conse
 quences for interpretations of modeled relationships
 without examining the individual model results and
 data.

 Model Averaging

 The model averaging approach to incorporate
 model uncertainty into inferences formulated by
 Burnham and Anderson (1998, 2002) relies on
 weighting various model estimates with AIC weights

 obtained across a set of candidate models. The issues I

 discuss here apply equally to the large-sample AIC =
 —21ogL(0 I gj, data) + 2K and the small-sample adjusted
 version AICc = AIC + (2K (K + 1 ))/(« — K — 1), where
 gj is the y'th model in a set of candidate models, n is
 sample size, and K is the number of parameters
 estimated in model gj (Burnham and Anderson 2002,
 Lukacs et al. 2010). I am considering typical regression
 applications including least squares mean regression (0
 = E[y I X] = Xß + e), quantile regression (0 = Qy(x | X) =
 Xß(x)), generalized linear models (0 = £[y | X] =
 /r'(Xß), where h is a link function), and their mixed
 effects counterparts; where y is an n X 1 vector of
 responses, X is an n X p matrix of predictor variables, ß
 is a p X 1 matrix of parameters (p < K and p may
 include an intercept term), and e is an n X 1 vector of
 errors with variance a2 when required by the model
 form. Estimates of the K parameters are maximum
 likelihood (L) estimates. Differences in AIC (or AICc)
 between models are the currency for this multimodel
 inference approach, where AAIC, = AIC, — min AIC,
 and the AIC weights Wj = (exp(-0.5AAICy))/
 (Ym=\ exp(—0.5AAIC,-)). Note that while I have fol
 lowed the convention of scaling the AAIC,
 differences from the model with the minimum AIC,
 it is possible to scale them from any model desired that
 aids interpretations, e.g., a null model with just an
 intercept term.

 Two related forms of model-averaged parameter
 estimates can be obtained using the AIC weights. The
 first involves averaging across the estimated response
 parameter 0, derived from a function of the entire
 regression model, all its estimated parameters, and some
 data, where the model-averaged parameter estimates
 across gj models are

 R

 XS0
 j=i

 i.e., the weighted-average of the estimates is the model
 averaged estimate. This appears to be a reasonable
 approach for incorporating model uncertainty into
 estimated parameters that are derived from an entire
 model and that have the same units and interpretations
 across all models, e.g., the predicted mean response 0, =
 Ej [y I X,gj\ in a regression model, since AIC and the
 derived weights apply to an entire model.

 The second form of model averaging used for
 constructing averages across estimates of parameters
 for individual predictor variables within models, i.e.,
 regression coefficients that are partial rates of change, is

 Y^j=lwM8j)hj
 P i= J n (2) w+(i)

 where ß,, denotes the estimate for the ith of p parameters

 in model gj, U(gj) is an indicator function taking the
 value 1 if predictor Xt is in model g, (0 otherwise), and
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 w+(ï) is the sum of AIC weights for all models in the set
 where the parameter for ;'th predictor variable is
 estimated (Burnham and Anderson 2002, 2004, Lukacs
 et al. 2010). The purpose of this model averaging is to
 address the uncertainty associated with estimates for
 individual predictor variables that change when they are
 combined with other predictors in different models. This
 model averaging of parameter estimates for predictor
 variables also has been modified to a sort of shrinkage
 estimate by averaging across all models in the candidate
 set for all predictors, where estimates are forced to zero
 for parameters not explicitly included in a particular
 model (Burnham and Anderson 2002, Lukacs et al.
 2010).

 Similar multicollinearity issues apply to either form of
 model averaging regression coefficients. The model
 averaging of regression coefficients ends up being done
 across estimates (ß,- = Ay/AXi) without common
 denominators and is nonsensical because a unit change
 in the predictor variable (AX,) is not the same across all
 models. This issue was noted previously by Candolo et
 al. (2003) for AIC model averaging. Draper (1999)
 similarly criticized Bayesian model averaging of regres
 sion parameter estimates. I will elaborate on the roots of
 this issue and the genesis of a solution in the next
 section.

 One justification sometimes offered for ignoring that
 the individual regression coefficients have units and
 interpretations that are not identical across the R
 candidate models when using AIC model-averaged
 estimates is that they provide a sort of shrinkage
 estimate (Burnham and Anderson 2002, Lukacs et al.
 2010, Giudice et al. 2012). The focus is really on
 estimates for the full set of predictor variables in the
 model and the degree that they shrink towards zero,
 similar to justifications provided by Hoeting et al. (1999)
 for Bayesian model averaging of individual coefficients.
 Shrinkage estimators allow more uncertain estimates of
 parameters for the full set of predictors that are less
 strongly related to the response to shrink towards zero,
 thereby reducing model complexity and providing better
 predictions to new samples (Copas 1983, Tibshirani
 1996", Harrell 2001). Regularization procedures for
 shrinkage estimates incorporate a penalty term on the
 estimation function (e.g., penalized likelihood methods)
 that will force estimates for weakly supported predictors
 towards zero. But AIC model-averaged estimates for
 regression coefficients are not obtained by the simulta
 neous estimation of all parameters and their shrinkage
 such that the estimates and their standard errors

 correctly reflect the conditional nature of their partial
 effects associated with multicollinearity. Given the
 availability of valid statistical procedures for obtaining
 shrinkage estimates, there is little reason to rely on AIC
 model-averaged regression coefficients to provide some
 thing similar to shrinkage estimates (Burnham and
 Anderson 2002, Lukacs et al. 2010, Giudice et al. 2012),
 especially given that these model-averaged estimates

 have no defined units in the presence of multicollinear
 ity.

 Multicollinearity and Model-Averaged

 Regression Coefficients

 The parameter estimates for a given predictor variable
 can have different units and interpretations among the R
 candidate models as they are rates of change in the
 responses (e.g., E[ >']) given a unit change in the predictor
 conditional on what other predictors are in the model.
 These parameter estimates as rates of change are not
 guaranteed to have the same scaling of units or
 interpretations across models with different combina
 tions of predictor variables unless all of them are
 uncorrelated with each other, an unlikely situation
 outside of a well-controlled, balanced, randomized
 experiment. It is common to see parameter estimates
 for a predictor that change in sign or order of magnitude
 depending on what other predictors and covariance
 structure are in the candidate models (e.g., Neter et al.
 1996:291). That this is due to changing multicollinearity
 is easily demonstrated by algebraic manipulation of an
 individual regression coefficient in a multiple regression
 model.

 ine i"risen-waugn tneorem tr-risen ana waugn

 as generalized by Lovell (1963) tells us that parameters
 and estimates for any single predictor variable in a
 multiple linear regression model can be obtained by
 partialing out the effects of all other predictors by linear
 projections and then estimating a simple regression
 model. So the linear mean regression model £"[y | X] = Xß
 + £ can be partitioned into £[y | X] = Xiß, + Xcßc + £>
 where X, is an « X 1 matrix for an individual predictor,
 ßi is the 1 X 1 parameter vector for this predictor, Xc is
 an n X ( p — 1 ) matrix of the additional predictors, and ßc
 is the (p - 1) X 1 vector of parameters for the additional
 predictors, and y and e are dimensioned as before for the
 full model. Extending notation to incorporate estimation
 across y = I to r candidate models with potentially
 different numbers and combination of predictors in Xq
 and their parameters ßCy, the parameter ßi (or its
 estimate) for the single predictor X, can be expressed
 in several equivalent forms

 ßy = (XJMqMç/X,)-1 X| MfJ;Mc,y

 = Cov(MqX|,y)/Var(MC;Xi)

 = (x;x1)-,x;y-(x;x1)-' x;xQpQ (3)

 where Mg is the residualizing linear projection matrix
 I - XQ (Xq'Xq) 1 Xc/ for the additional predictor
 variables in the /th model, I is the n X n identity
 matrix, and Cov and Var denote the covariance and
 variance functions, respectively. Note that Mç/Xi are
 residuals denoting the part of X! not linearly related to

 XC;. Anytime the linear relation between Xi and XC; is
 not constant across the j = 1 to r models, the estimates

 ßi; and parameters ßi; will be based on changing
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 Table 1. Correlation matrix of the first-year college grade point average (GPA) example (n = 20)
 from Burnham and Anderson (2002:225-238) with four predictors; Scholastic Aptitude Test
 (SAT) math score, SAT verbal score, high school math GPA, and high school (HS) English
 GPA.

 GPA  SAT math  SAT verbal  HS math  HS English
 Predictor  (y)  m  (X2)  (*3)  (*•)

 GPA (v)  1.000  0.850  0.653  0.695  0.606

 SAT math (JT,)  1.000  0.456  0.559  0.663

 SAT verbal (X2)  1.000  0.434  0.417

 HS math (X3)  1.000  0.272

 HS English (X4)  1.000

 GPA  SAT math  SAT verbal  HS math  HS English
 Predictor  (y)  m  (X2)  (*3)  (*•)

 GPA (v)  1.000  0.850  0.653  0.695  0.606

 SAT math (JT,)  1.000  0.456  0.559  0.663

 SAT verbal (X3)  1.000  0.434  0.417

 HS math (X3)  1.000  0.272

 HS English (X4)  1.000

 denominators, (X^Mc/Mq-XO-1 or Va^McyXj) in Eq.
 3, precluding sensible averaging of them because the
 unit scales are not the same. Eq. 3 also indicates that
 the only time these estimates are guaranteed to have
 the same denominator is when there is no linear

 relation between Xi and Xq. The bottom equality of
 Eq. 3 implies that the parameter or its estimate is
 equivalent to the simple regression on X1; i.e.,
 (Xi'Xi)_1Xi'y, when there is no multicollinearity, so
 there is no model uncertainty in the regression
 coefficients to estimate regardless of what other
 predictors are included in Xq. Although I have
 demonstrated this issue with the linear mean regression
 model because the algebraic manipulation is straight
 forward, similar principles apply to other forms of
 linear models.

 To demonstrate impacts on estimates and model
 averaged estimates for predictor variables due to
 changes in the scaling of predictors under different
 model covariance structures, I will use the college grade
 point average (GPA) example data analyzed by Burn
 ham and Anderson (2002:225-238). Statistical code is
 provided in Supplement 1. The response variable in their
 least squares regression model, first year college GPA
 (y), is positively correlated with four predictor variables;
 math score on the Scholastic Aptitude Test (SAT) (A)),
 verbal score on the SAT (X2), high school math GPA
 (A3), and high school English GPA (A4). These
 predictors have low to moderate positive correlations
 with each other (Table 1). Estimates for each predictor
 variable in the 8 of 15 candidate models that included

 the variable and their model-averaged estimates are
 provided in Tables 2-5, and correspond to values
 provided by Burnham and Anderson (2002:229-230,
 Table 5.14). It is apparent from the discussion of their
 analyses of these data and related simulations that
 Burnham and Anderson (2002:225-238) recognized that
 most of the variation in parameters and estimates for
 predictors among the 15 possible candidate models was
 due to multicollinearity, even though multicollinearity
 was low as indicated by variance inflation factors (VIF)
 that only ranged 1.08-2.49 across the candidate models.
 What they failed to address was that the numerical
 differences in these parameters and estimates were
 thoroughly confounded with changes in their scaling,

 i.e., the denominators [Var(Mç/Xi)] were not constant
 across the j — 15 models. Their AIC model averaging of
 regression coefficients acts as if they are just numbers
 without any units attached to them.

 An easy way to visualize the change in scaling of the
 estimates is to view them as partial regression plots
 (Neter et al. 1996:361-368), which are equivalent to
 plotting Mq;y vs. MC;X|. The estimate for the partial
 effect (P,) of X| then is the rate of change in the part of
 the response not linearly related to the other predictors
 (Mc,y) for a unit change in the part of X! not linearly
 related to the other predictors (Mc/X^- The scale of
 MC/X j will be compressed compared to the scale of the
 original X, depending on the degree of multicollinearity
 with the other p - 1 predictor variables and, thus, a unit

 change is not the same quantity for X| and MqX|.
 Partial regression plots for A| (SAT math score) in the

 college GPA example for two models, model 15 that
 included all four predictors and model 11 that included
 X2 and X3, indicate that the residualized predictor X\ has
 less variability under model 15 than model 11 (Fig. 1).
 The change in scaling of any given predictor
 (Var(Mc/Xi), which are partial variances) under different
 model covariance structures can be computed directly by
 matrix algebra or more conveniently by calculating
 partial standard deviations (Bring 1994), where the
 partial standard deviation for the /th of p predictors in

 model j is given by s* = s,VIF,ya5([/2 - 1 \/[n - p])0'5, ,s, is
 the sample standard deviation of the /th predictor X, and

 VIF,-, is the variance inflation factor for the /th predictor

 in model j. The variance inflation factor VIF,y =
 1/(1 -*?-!.,■), where R2p_\ • is the coefficient of determi
 nation of the regression of the /th predictor in model j on

 the remaining p - 1 predictors in model j. The inverse of

 the variance inflation factor, VIFjj', then is the propor
 tion of the variance in the /th predictor of model j that is

 not linearly related to the remaining p — 1 predictors. The
 variance inflation factor equals one when there is no
 correlation among predictors and, thus, the partial
 standard deviation of predictor X^ equals the standard
 deviation of A, when it is the single predictor in model
 Variance inflation factors are readily computed for
 individual continuous predictors in linear or generalized
 linear models and also have been generalized to
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 Table 2. Parameter estimates ßiy (where j is model number) in the eight models that included T|, mathematics score on the SAT,
 in the college grade point average example (n = 20) of Burnham and Anderson (2002:229, Table 5.14).

 odel j  Predictors used

 Unstandardized estimates

 Wj  VIF,/1
 Partial SD

 Xy

 Standardized estimates

 ßly  SE(ßly | gj)  ß.*  SE(ß£|g,)
 Ii  Xh X2, X3  0.002185  0.0004553  0.454  0.6314  139.6188  0.305049  0.0635716
 5  X\ , x2  0.002606  0.0004432  0.269  0.7921  151.9735  0.395981  0.0673588
 6  X\, x3  0.002510  0.0004992  0.103  0.6874  141.5742 .  0.355294  0.0706686
 15  xu x2, x3, x4  0.002010  0.0005844  0.066  0.4022  114.8592  0.230886  0.0671286
 12  xu x2, x4  0.002586  0.0005631  0.044  0.5213  126.8592  0.328084  0.0714370
 13  X,, x3, x4  0.002129  0.0006533  0.028  0.4055  1 11.8821  0.238237  0.0730926
 1  X,  0.003178  0.0004652  0.027  1.0000  166.2004  0.528232  0.0773137
 8  xux4  0.002987  0.0006357  0.006  0.5603  127.8154  0.381811  0.0812455

 lit  0.002368  0.0005350  0.997J  0.335535  0.0851482

 odel j  Predictors used

 Unstandardized estimates

 Wj  VIF,/1
 Partial SD

 Xy

 Standardized estimates

 Pi,  SE(Pi7 | gj)  P.*  SE(P£|g,)
 11  Xh X2, x3  0.002185  0.0004553  0.454  0.6314  139.6188  0.305049  0.0635716
 5  X\ , x2  0.002606  0.0004432  0.269  0.7921  151.9735  0.395981  0.0673588
 6  X\, x3  0.002510  0.0004992  0.103  0.6874  141.5742 .  0.355294  0.0706686
 15  xu x2, x3, x4  0.002010  0.0005844  0.066  0.4022  114.8592  0.230886  0.0671286
 12  xu x2, x4  0.002586  0.0005631  0.044  0.5213  126.8592  0.328084  0.0714370
 13  X,, x3, x4  0.002129  0.0006533  0.028  0.4055  1 11.8821  0.238237  0.0730926
 1  Xt  0.003178  0.0004652  0.027  1.0000  166.2004  0.528232  0.0773137
 8  X\, x4  0.002987  0.0006357  0.006  0.5603  127.8154  0.381811  0.0812455

 Pit  0.002368  0.0005350  0.997}  0.335535  0.0851482

 Notes: The models, predictors used, unstandardized estimates and their standard errors, Akaike information criterion (AIC)
 weights Wj, and model-averaged estimates, ß,and SE(ß,)), correspond to those in Table 5.14 of Burnham and Anderson (2002).
 Also provided are the inverse of the variance inflation factors VIF,/', partial standard deviations of Xy, parameter estimates ß*y
 standardized by their partial standard deviations and their standard errors, and the model-averaged standardized parameter
 estimate and its standard error. The variable gj is the y'th model in a set of candidate models,

 t SE in this row are SE(ß,).
 Î The parameter in this cell is w+(l), the sum of AIC weights for all models in the set where the parameter for the i = 1 predictor

 variable was estimated.

 categorical predictors and >2 continuous predictors (Fox
 and Monette 1992).

 Inverses of the variance inflation factors and partial
 standard deviations for all four predictors in the college
 GPA models are provided in Tables 2-5. The partial
 standard deviations for Xt for the models shown in Fig.
 1 are 114.9 SAT math scores for model 15 and 139.6

 SAT math scores for model 11, and the standard
 deviation of X\ is 166.2 (Table 2). Thus, equivalent
 rates of change in X\ in both models would imply a
 parameter ßul in model 11 that is 82.3% (114.9/139.6)
 of the parameter ß, 15 in model 15 simply because of the
 scaling changes due to multicollinearity. There is
 considerably more variation in the partial standard
 deviations of X^ among models (Table 2) than for any of
 the other three predictors (Tables 3-5), especially for

 models with greater AICc weights that contribute most
 to the model-averaged estimates. Thus, averaging across
 estimates ß)y for X\ is likely to be much more misleading
 because of changes in the scaling of units than is
 averaging estimates for the other predictors. The real
 variation in rates of change in y for a given predictor X|
 (slopes) across models that have different combinations
 of multicollinear predictors are thoroughly confounded
 with the fixed scaling changes in the different models
 [Var(McyXi) is not constant]. It is impossible to interpret
 the model-averaged regression coefficients (Tables 2-5)
 in terms of a Ay/AX, because we do not know what units
 should apply to the denominator because it no longer
 refers to any specific covariance structure among the
 predictor variables. Because all the simulations in
 Burnham and Anderson (2002) for this and similar

 Table 3. Parameter estimates ß2; in the eight models that included X2, verbal score on the SAT, in the college grade point average
 example (n = 20) of Burnham and Anderson (2002:229, Table 5.14).

 odel j  Predictors used

 Unstandardized estimates

 Wj  VIFjy"1

 Partial SD

 *2y

 Standardized estimates

 fey  SE(fey|gy)  %  SECfejk,)
 11  *1, *2, *3  0.001312  0.0005252  0.454  0.7453  121.0400  0.158844  0.0635716
 5  X,, *2  0.001574  0.0005555  0.269  0.7921  121.2645  0.190888  0.0673588
 14  *2, *3, X4  0.001423  0.0007113  0.002  0.7151  118.5605  0.168662  0.0843321
 15  AT2, X3, X4  0.001252  0.0005515  0.066  0.7094  121.7154  0.152412  0.0671286
 12  xu x2, x4  0.001568  0.0005811  0.044  0.7687  122.9238  0.192778  0.0714370
 7  X2, X2  0.002032  0.0007627  <0.001  0.8115  122.7352  0.249355  0.0936057
 9  X2,X4  0.002273  0.0008280  <0.001  0.8263  123.8504  0.281459  0.1025484
 2  x2  0.003063  0.0008367  <0.001  1.0000  132.6165  0.406203  0.1109608

 fet  0.001405  0.0005558  0.835J  0.170502  0.0674792

 odel j  Predictors used

 Unstandardized estimates

 Wj  VIF2y"'

 Partial SD

 Xy

 Standardized estimates

 fey  SE(fe, 1 gj)  PI  SE(P*| gj)

 11  *1, X2, X3  0.001312  0.0005252  0.454  0.7453  121.0400  0.158844  0.0635716
 5  Xu X2  0.001574  0.0005555  0.269  0.7921  121.2645  0.190888  0.0673588
 14  X2, Xx X4  0.001423  0.0007113  0.002  0.7151  118.5605  0.168662  0.0843321
 15  Xu X2, X3, X4  0.001252  0.0005515  0.066  0.7094  121.7154  0.152412  0.0671286
 12  X,, jsr2, x»  0.001568  0.0005811  0.044  0.7687  122.9238  0.192778  0.0714370
 7  X2, x2  0.002032  0.0007627  <0.001  0.8115  122.7352  0.249355  0.0936057
 9  X2,X4  0.002273  0.0008280  <0.001  0.8263  123.8504  0.281459  0.1025484
 2  x2  0.003063  0.0008367  <0.001  1.0000  132.6165  0.406203  0.1109608

 fet  0.001405  0.0005558  0.835J  0.170502  0.0674792

 Notes: The models^predictors used, unstandardized estimates ß2j and 'heir standard errors, AIC weights wj, and model-averaged
 estimates, ß2 and SE(ß2), correspond to those in Table 5.14 of Burnham and Anderson (2002). Also provided are the inverse of the

 variance inflation factors VIF22~', partial standard deviations of X2j, parameter estimates ß2j standardized by their partial standard
 deviations and their standard errors, and the model-averaged standardized parameter estimate and its standard error,

 f SE in this row are SE(ß2).
 j The parameter in this cell is w+(2), the sum of AIC weights for all models in the set where the parameter for the i = 2 predictor

 variable was estimated.
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 Table 4. Parameter estimates ß3/ in the eight models that included X3, high school math grade point average, in the college grade
 point average example (n = 20) of Burnham and Anderson (2002:230, Table 5.14),

 odel j  Predictors used

 Unstandardized estimates

 Wj  VIF,/1
 Partial SD

 Xy

 Standardized estimates

 ßy  SE(ß3/-1 gj)  SE( ß3* 1 «/J

 11  Xu X2, X3  0.1799  0.0877  0.454  0.6468  0.725052  0.130415  0.0635716
 7  z2,x3  0.3694  0.1186  <0.001  0.8115  0.789211  0.291512  0.0936057
 6  A",, A-3  0.2331  0.0973  0.103  0.6874  0.726397  0.169328  0.0706686
 15  a-,, x2, x},x4  0.1894  0.0919  0.066  0.6183  0.730707  0.138425  0.0671286
 3  X3  0.5066  0.1236  <0.001  1.0000  0.852750  0.431974  0.1054146
 13  Xi, x3, x4  0.2474  0.0990  0.028  0.6701  0.737961  0.182578  0.0730926
 14  x2, x2, x4  0.3405  0.1045  0.002  0.8014  0.807047  0.274774  0.0843321
 10  x3,x4  0.4171  0.1054  0.001  0.9259  0.843055  0.351652  0.0888936

 fct  0.1930  0.0932  0.654J  0.140389  0.0679552

 Unstandardized estimates . . „_v Standardized estimates
 Partial SD

 Model j  Predictors used  h  SE(P3/-1 gj)  Wj  vif3,-'  Xy  SE(P||s>)
 11  Xu X2, X3  0.1799  0.0877  0.454  0.6468  0.725052  0.130415  0.0635716
 7  x2,x3  0.3694  0.1186  <0.001  0.8115  0.789211  0.291512  0.0936057
 6  Xu X3  0.2331  0.0973  0.103  0.6874  0.726397  0.169328  0.0706686
 15  Xu X2, X3,X4  0.1894  0.0919  0.066  0.6183  0.730707  0.138425  0.0671286
 3  x3  0.5066  0.1236  <0.001  1.0000  0.852750  0.431974  0.1054146
 13  xu x3, x4  0.2474  0.0990  0.028  0.6701  0.737961  0.182578  0.0730926
 14  x2, x3, x4  0.3405  0.1045  0.002  0.8014  0.807047  0.274774  0.0843321
 10  x3,x4  0.4171  0.1054  0.001  0.9259  0.843055  0.351652  0.0888936

 M  0.1930  0.0932  0.6541  0.140389  0.0679552

 Notes: The modelsvpredictors used, unstandardized estimates ß3, and their standard errors, AIC weights wh and model-averaged
 estimates, ß3 and SE(ß3), correspond to those in Table 5.14 of Burnham and Anderson (2002). Also provided are the inverse of the

 variance inflation factors VIFj,-1, partial standard deviations of X3j, parameter estimates ß3; standardized by their partial standard
 deviations and their standard errors, and the model-averaged standardized parameter estimate and its standard error,

 t SE in this row are SE(ß3).
 % The parameter in this cell is h>+(3), the sum of AIC weights for all models in the set where the parameter for the / = 3 predictor

 variable was estimated.

 regression examples rely on averaging across coefficient
 estimates with different units because the denominators

 differ, the statistical performance suggested by distribu
 tions of their simulated model-averaged estimates is of
 questionable merit. Similar concerns apply to simula
 tions done by Freckleton (2011) for evaluating the bias
 of model-averaged coefficients with increasing multi
 collinearity among predictors. Performance evaluations
 by Lukacs et al. (2010) used simulations for completely
 uncorrelated predictors but these are not relevant to the
 more common situation of multicollinear predictors.
 Indeed, Lukacs et al. (2010) mentioned in their
 discussion that it is problematic to extend model
 averaging to multicollinear predictors.

 One possible way forward for model averaging
 regression coefficients in the presence of changing
 multicollinearity among models is to equate the scaling
 of parameter estimates for predictors by standardizing

 estimates such that Var(MCyX!) is constant across the j
 candidate models prior to model averaging them. We
 can easily standardize them to Var(MCyXi) = 1.0 across
 the j models by computing the partial standard
 deviations associated with the covariance structure of

 the predictors included in the models because s*? =
 Var(MC;X|). This is identical to the standardization
 approach recommended by Bring (1994) for comparing
 different predictors within a single model. In the linear
 model this can be accomplished by either transforming

 the predictors prior to obtaining estimates, X* =Xij/s*j,
 or more conveniently by transforming the estimates

 after the models are estimated, ß!; = ßy-s,*. The first
 method should be used for generalized linear models
 with nonlinear link functions (e.g., logistic and Poisson
 regression). These standardized estimates now provide a
 rate of change per one partial standard deviation of the
 predictor given the covariance with whatever other

 Table 5. Parameter estimates ß4/ in the eight models that included X4, high school English grade point average, in the college
 grade point average example (n = 20) of Burnham and Anderson (2002:230, Table 5.14).

 Model j  Predictors used

 Unstandardized estimates

 Wj
 7. Uh >

 Partial SD

 X4j

 Standardized estimates

 &4j  SE( ß4/1 gj)  ß|  SE(ß*|g;)
 15  A'l, 4l2, A3, A4  0.0876  0.1765  0.066  0.5198  0.380340  0.033304  0.0671286
 12  Xi, X2, X4  0.0112  0.1893  0.044  0.5438  0.377397  0.004206  0.0714370
 13  X,, X2, X4  0.1756  0.1932  0.028  0.5462  0.378230  0.066426  0.0730926
 8  X,, X4  0.0989  0.2182  0.006  0.5603  0.372302  0.036831  0.0812456
 14  X2, Xi, x4  0.4533  0.1824  0.002  0.8160  0.462327  0.209586  0.0843321
 10  Xi, A4  0.5790  0.1857  0.001  0.9259  0.478607  0.277123  0.0888936
 9  x2,x4  0.5195  0.2207  <0.001  0.8263  0.452110  0.234859  0.1025484
 4  x4  0.7790  0.2407  <0.001  1.0000  0.484110  0.377103  0.1165274

 fct  0.0902  0.1989  0.147t  0.034757  0.0760897

 Model j  Predictors used

 Unstandardized estimates

 Wj  <  ' 1

 Partial SD

 X4j

 Standardized estimates

 Pij  SE( P4/1 gj)  p;  SE(P*|g;)
 15  X \, A2, A3, A4  0.0876  0.1765  0.066  0.5198  0.380340  0.033304  0.0671286
 12  Xi, X2, X4  0.0112  0.1893  0.044  0.5438  0.377397  0.004206  0.0714370
 13  X,, X2, X4  0.1756  0.1932  0.028  0.5462  0.378230  0.066426  0.0730926
 8  XhX4  0.0989  0.2182  0.006  0.5603  0.372302  0.036831  0.0812456
 14  x2, x3, X4  0.4533  0.1824  0.002  0.8160  0.462327  0.209586  0.0843321
 10  Xi, x4  0.5790  0.1857  0.001  0.9259  0.478607  0.277123  0.0888936
 9  x2,x4  0.5195  0.2207  <0.001  0.8263  0.452110  0.234859  0.1025484
 4  X4  0.7790  0.2407  <0.001  1.0000  0.484110  0.377103  0.1165274

 Pit  0.0902  0.1989  0.1471  0.034757  0.0760897

 Notes: The models,^predictors used, unstandardized estimates ß4j and their standard errors, AIC weights Wj, and model-averaged
 estimates, ß4 and SE(ß4), correspond to those in Table 5.14 of Burnham and Anderson (2002). Also provided are the inverse of the

 variance inflation factors VIF4j_i, partial standard deviations of parameter estimates ß4j standardized by their partial standard
 deviations and their standard errors, and the model-averaged standardized parameter estimate and its standard error,

 t SE in this row are SE(ß4).
 I The parameter in this cell is w>+(4), the sum of AIC weights for all models in the set where the parameter for the /' = 4 predictor

 variable was estimated.
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 2 and variance computations in Burnham and Anderson
 (2002: 180), where standardized estimates are substitut
 ed for the usual unstandardized estimates (Supplement
 1). The model-averaged standardized estimates indicated
 there was one-third of a unit change in college GPA
 (0.3355) for SAT math scores, one-half (0.1705) that
 much change for SAT verbal scores, less than one-half
 that (0.1404) much change for high school math GPA,
 and one-tenth (0.0348) that much change with high
 school English GPA when expressed as partial standard
 deviations of the corresponding predictors. The coeffi
 cient of variation of the model-averaged standardized
 estimate for SAT math scores was 12% greater than the
 model-averaged unstandardized estimate (Table 2),
 whereas the coefficients of variation of model-averaged
 standardized and unstandardized estimates for the other

 three predictors (Tables 3-5) were nearly identical
 (ratios of 0.993-1.002). This is consistent with the
 greater variation in partial standard deviations of SAT
 math scores among models compared to the variation in
 partial standard deviations for the other three predic
 tors

 Fig. 1. Partial regression plots (« = 20) for estimated
 parameters ßij (where j is model number) for Xt in models 15
 (top) and 11 (bottom) for the college grade point average (GPA)
 example of Burnham and Anderson (2002). Note that the
 partial standard deviation for residualized X\ in model 11 (with
 X2 and X3) is greater than for the residualized X, in model 15
 (with X2, A"3, and Xt). The response (y) is first year college GPA,
 Xi is Scholastic Aptitude test (SAT) math score, X2 is SAT
 verbal score, X3 is high school math GPA, and X4 is high school
 English GPA. Line slopes are reported on the line.

 variables were included in the model. It often is useful

 for numerical stability or ease of interpretation to also
 center predictor variables to have mean = 0 so that the
 regression intercept corresponds to the mean of X. This
 also can be done when standardizing by partial standard
 deviations, but is not required to deal with the changing
 scales associated with multicollinearity among predictor
 variables.

 1 provide standardized estimates for the college GPA
 example by model and their model-averaged estimates
 and standard errors (Tables 2-5) obtained by using Eq.

 We also can standardize estimates so that Var(Mç/Xi)
 = Sfj2 for partial standard deviations of the predictor
 variables associated with a model having a specific
 covariance structure, providing model-averaged stan
 dardized estimates with units scaled to that covariance

 structure. A logical covariance structure to use is the one
 associated with all predictor variables in the full model,
 which is model 15 for the college GPA example (Tables
 2-5). These standardized estimates are
 This yields model-averaged estimates of (i, = 0.0029
 [SE(ß,) = 0.00074], (V = 0.0014 [SE(jl2) = 0.00055],J3 =
 0.1921 [SE(iV) = 0.09299], and ß4 = 0.0914 [SE(ß4) =
 0.20006]. Only the model-averaged standardized estimate
 for predictor X\ (SAT math scores) differed substantially
 (23% greater slope estimate and 38% greater standard
 error) from the model-averaged unstandardized estimates
 (Tables 2-5) given by Burnham and Anderson (2002,
 Table 5.14). Again, this is consistent with the greater
 impacts of changing multicollinearity on partial standard
 deviations of SAT math scores compared to the other
 predictors. More importantly there are well defined units
 associated with the model-averaged standardized esti
 mates that don't exist for the model-averaged unstan
 dardized estimates. Here they are rates associated with a
 one unit change in the part of the predictor that is not
 linearly related to the other three predictors.

 It is important to emphasize that equating scales
 (common denominators) of regression coefficient esti
 mates is a necessary condition for model averaging to be
 sensible but other conditions need to be met too. The

 distribution of the standardized estimates should be

 unimodal so that an average of them coupled with its
 standard deviation is an informative description of the
 distribution of the individual model estimates. Individ

 ual regression coefficients also must provide interprét
 able rates of change in the response y in the context of
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 the candidate model structure. This precludes sensible
 model averaging of individual regression coefficients in
 most models with interactions or polynomial structures
 for the predictors that require the simultaneous inter
 pretation of two or more regression coefficients. These
 two additional conditions were satisfied for the college
 grade point average example but will often not be met in
 many ecological analyses.

 AIC Weights and Relative Importance of Predictors

 The sum of AIC (or AICc) model weights, wr across
 candidate models often used with the model-averaged
 regression coefficients provides a relatively uninforma
 tive assessment of the relative importance of predictors.
 The AIC model weights apply to an entire model and
 not any individual predictor variables within that model
 and, thus, have minimal information content about
 contributions of individual predictor variables to pre
 dicted responses, the objective function minimized in
 model estimation, or predictor effect size. Ratios of AIC
 weights for the y'th model compared to the model with
 highest weight, w,/max(vr,), are equivalent to the inverse
 of evidence ratios (Burnham and Anderson 2002:77-79).
 These ratios are logically interpreted as relative impor
 tance of models, indicating the proportionate reduction
 in likelihoods between the best model (relative impor
 tance of 1.0) and the y'th model when adjusted for
 number of parameters. The poor performance of the
 sum of AIC weights as a measure of relative importance
 for individual predictors found by Murray and Conner
 (2009) and Galipaud et al. (2014) can be directly traced
 to their property of indicating relative importance of
 models. Simulations by Doherty et al. (2012) found
 variable importance approached 1.0 for all predictors
 with increasing sample size regardless of whether or not
 they were related to the true modeled relationship. This
 also is a logical consequence of the sum of AIC weights
 being a measure of relative importance of models rather
 than of individual predictors. Having balanced subsets
 of candidate models with and without a given predictor
 (Burnham and Anderson 2002, Doherty et al. 2012) has
 no relevance to this fundamental issue. The simulations

 conducted by Burnham and Anderson (2002:227)
 suggest that at best the sum of AIC weights as a
 measure of relative importance may indicate the
 proportion of times a given predictor would be selected
 in repeated random sampling, i.e., how many times it
 occurs in models but no information about its relative

 contributions in any model.
 Relative importance is a slippery concept with many

 interpretations, but an interpretation based on propor
 tion of times a predictor is selected for a model is of
 limited utility. More useful interpretations for predictor
 variables within a given regression model typically are
 related to contributions to reducing the objective
 function used in statistical estimation and expected
 change in the response variable given a unit change in
 the predictor (Bring 1994). In essence, the relative

 importance of individual predictors across models
 should involve the relative importance within models,
 e.g., how much it contributes to the likelihood that is
 maximized or the equivalent minimization of the
 objective function relative to the other predictors in
 that model. Kruskal and Majors (1989) and MacNally
 (2000) provide some overview of the issues related to
 relative importance of individual predictors.

 There are existing procedures to compute relative
 importance of individual predictors within a model
 based on ratios of parameter estimates for standardized
 predictors (based on partial standard deviations) or
 equivalently the ratio of t statistics (estimate divided by
 its standard error) for unstandardized predictors (Bring
 1994); variance decomposition (Grömping 2007); and
 more involved hierarchical partitioning approaches to
 variance decomposition (Chevan and Sutherland 1991,
 Christensen 1992). The ratio of absolute values of
 standardized predictors based on setting partial stan
 dard deviations equal to one or the equivalent ratio of
 absolute values of t statistics for unstandardized

 predictors within individual candidate models can
 readily be incorporated into a model averaging scheme,
 where these ratios are weighted by the AIC model
 weights identical to Eq. 2 for parameter estimates
 (Supplement 1). These ratios within a model are scaled
 relative to a maximum of 1.0 for the strongest predictor
 within a model and then those ratios are substituted for

 the parameter estimates in Eq. 2 to obtain model
 averaged estimates. Alternatively, one could just take
 the ratios of the absolute value of the model-averaged
 standardized estimates for predictors.

 Model-averaged estimates of relative importance for
 the four predictors in the college GPA example made by
 either using ratios of absolute values of t statistics, |/,y|,
 for models with unstandardized estimates or equivalent

 ly ^ratios of absolute values of standardized estimates,
 |ß,y |, provided relative importance values of 1.00 for Tj
 (SAT math score), 0.52 for X2 (SAT verbal score), 0.47
 for X3 (high school math GPA), and 0.14 for X4 (high
 school English GPA). Simply taking the ratios of
 absolute values of model-averaged standardized esti
 mates from Tables 2-5 provided model-averaged relative
 importance values of 1.00 for X\, 0.51 for X2, 0.42 for
 X3, and 0.10 for X4. Both of these measures of relative
 importance related to effect sizes and variance reduction
 indicated that X2 had half the effect, X3 had slightly less
 than half the effect, and X4 had around 10% of the effect

 compared to the most important predictor Xt. Relative
 importance found by summing AICc weights (Tables 2
 5) ranked the predictors similarly to the previous
 procedures; 1.00 for Xh 0.83 for X2, 0.65 for X3, and
 0.15 for X4 (Burnham and Anderson 2002:227). These
 values indicated far greater relative importance for X2
 and X3 based solely on weights of models in which they
 occurred, even though the estimates were small and
 contributed little to maximizing the likelihoods in those
 models. The former measures of relative importance
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 based on standardized effects size and variance reduc
 tion are more useful than the latter measure based on

 proportion of times a variable is included in models and
 more consistent with an intuitive interpretation of what
 is meant by relative importance.

 Model-Averaged Regression Coefficients
 and Predictions

 Model-averaged estimates of parameters for the re
 sponse of a regression model cannot be correctly obtained
 from model-averaged estimates of parameters for the
 predictors in the regression model if the model is not linear

 in the predictors, i.e., E\y \ X] = ß0 + ß,X| + + ... +
 ßjJG only if E\y \ X] = Xß. This computational conve
 nience for models that are linear in the parameters for the
 predictors may be the only real value of the simple model
 averaged regression coefficients. But predicted responses
 based on the average of the R set of regression coefficients
 for predictors (incorrect) will not be the same as the
 average of the predicted responses for the R candidate
 models (correct) for nonlinear models, including general
 ized linear models with nonlinear link functions, e.g.,
 logistic regression as used in species occupancy modeling.
 This is a logical consequence of Jensen's inequality (Jensen
 1906). The magnitude of the differences between the
 correct and incorrect model-averaged predictions will
 depend on the magnitude of the predicted responses,
 magnitude and variation of parameter estimates across
 models and their interaction with AIC weights, and
 nonlinear model forms actually being used.

 Example Issues in a Sage-Grouse Distribution Model

 I illustrate the severity of these issues of model
 averaging and flawed interpretations with a recent species
 distribution modeling approach by Rice et al. (2013).
 Species distribution models as large-scale extensions of
 habitat or resource selection models are widely used as a
 tool to aid conservation and land-use planning decisions
 (Elith and Leathwick 2009, Franklin 2009, 2013). Rice et
 al. (2013) proposed a novel approach for species
 distribution modeling that estimates large-scale (1-km2
 unit of resolution) changes in the number of locations of
 radio-marked animals as a function of landscape cover
 types across multiple studies in a large geographic extent
 of a species range. Their example application was for
 Greater Sage-Grouse (Centrocercus urophasianus) in
 northwestern Colorado, a species of conservation concern
 because of historical declines in populations and range
 contraction (Schroeder et al. 2004), coupled with
 increasing human development and activities that are
 potential stressors (Knick and Connelly 2011). The Rice
 et al. (2103) approach to species distribution modeling
 was based on using zero-truncated Poisson regressions on
 telemetry location information collected on individual
 Greater Sage-Grouse. The statistical units for analysis
 were mapped 1 -km2 grid cells across the range of Greater
 Sage-Grouse in northwestern Colorado; counts (>1) of
 telemetry locations for individual grouse were the

 response variable ( v-); and the proportions of area of
 selected land cover types within the 1 -km2 grid cells were
 the potential predictor variables (X). Identifications of
 individual telemetered Sage-Grouse were incorporated in
 the model as random-effects on the intercept. Hundreds
 to thousands of candidate models based on combinations

 of up to 12 predictor variables were estimated for
 breeding, summer, or ^winter season models. Model
 averaged predictions, Ä[y|X], were based on model
 averaged parameter estimates, ß,, using AICc model
 weights, and relative importance of predictors in the three
 seasonal models were also based on accumulating AICc
 model weights across the multiple models (2049 for
 breeding, 257 for summer, and 513 for winter season
 models).

 Multicollinearity and model-averaged regression
 coefficients for predictors

 The issues with model-averaged parameter estimates
 are particularly transparent in the Rice et al. (2013)
 analyses because the 12 candidate predictor variables
 used (the small proportion of urban cover type was
 excluded) were proportions of different cover types in
 fixed areas ( 1 -km2 mapped grid cells) and, thus, form a
 multi-part composition (Aitchison 1986) with compo
 nents that sum to a constant quantity (1.0 in this case).
 These compositional predictors have an inherent nega
 tive covariance structure (Aitchison 1986, Aitchison and
 Egozcue 2005). Because of this strong multicollinearity
 among predictors, the model-averaged estimates for
 predictors across the R candidate models (Rice et al.
 2013; Tables 3, 5, and 6) are unreliable for interpreting
 partial effects associated with the cover types. The
 impact of the negative covariance structure is readily
 apparent in the model-averaged estimates; e.g., for the
 breeding season model (Rice et al. 2013; Table 3) they
 ranged from —5.45 to -1.20 per unit standard deviation
 of proportions for cover types that are not Sage-Grouse
 breeding habitat and ranged from 0.31 to 2.14 per unit
 standard deviation for proportions of cover types that
 are Sage-Grouse breeding habitat. Although Rice et al.
 (2013) standardized their predictors using sample
 standard deviations of the cover type proportions, this
 standardization does not eliminate the scaling issues
 with multicollinear predictors similar to standardization
 by partial standard deviations, nor does it eliminate the
 negative covariance structure and interpretation issues
 for compositional predictors. A linear combination of
 the habitat subset (e.g., proportions of sagebrush, salt
 desert shrub, shrubland, mountain shrub, grassland,
 agriculture, riparian, pinyon juniper) of cover types
 must be inversely related with a linear combination of
 the non-habitat subset (e.g., proportions of alpine,
 forest, bareground, forest shrub) simply based on the
 compositional structure of these proportions of fixed
 areas. It is mathematically impossible to have Sage
 Grouse counts increase with one subset without them

 having a corresponding decrease with the complemen
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 Plate 1. Male Greater Sage-Grouse (Centrocercus urophasianus) on a lek in open sagebrush steppe typically used as breeding
 habitat. Photo credit: Tatjana Gettelman.

 tary subset. Thus, we might expect the magnitude of the
 parameter estimates obtained for candidate models that
 only included cover types from the habitat subset to be
 much greater than when candidate models included
 cover types from both the habitat and non-habitat
 subsets of predictors. This would occur because the
 redundant subset of predictors are inversely related, and
 ultimately would result in attenuation of model-aver
 aged parameter estimates, potentially confounding the
 effects of important covariates. An example simulation
 of compositional predictors for zero-truncated count
 regression models similar to the Rice et al. (2013) data
 for breeding Sage-Grouse that demonstrates these
 properties is included in Appendix B and Supplement 2.

 Even my suggested approach of standardizing
 predictors by their partial standard deviations was
 not effective at dealing with the multicollinearity
 induced by compositional predictors. The redundant
 subsets of linear combinations of predictor variables
 forces even the standardized estimates to have a

 multimodal distribution of individual estimates across

 models with different combinations of predictors such
 that their average is uninformative (Table B2).
 Furthermore, because the compositional predictors
 are inherently ratios of a part to the sum of the parts,
 it is not obvious that interpretations of individual
 regression coefficients for a single part (individual
 predictor) are sensible in the additive model. Indeed,
 this has been the motivation for the development of
 specialized transformations for compositional predic
 tors based on the log ratio transformation (Aitchison
 1986, Aitchison and Egozcue 2005) such as the
 isometric log ratio (Hron et al. 2012). This log ratio
 transformation approach creates orthonormalized pre
 dictors that are log-contrasts between parts of the
 composition that correctly allow estimated increases in
 mean counts of Sage-Grouse locations with increasing
 proportions of habitat cover types and the corre
 sponding decreasing proportions of the complementa
 ry non-habitat cover types. Dealing with zero
 proportions can be problematic with the log ratio
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 approach but is not insurmountable (Aitchison and
 Egozcue 2005).

 AIC weights and relative importance of predictors

 We do not know which cover types were more
 strongly related to the predicted distribution of Sage
 Grouse based on Rice et al. (2013) use of AICc weights
 to compute relative importance. For example, they
 found that sagebrush and mountain shrub cover types
 had a relative importance of 1.0 for their breeding
 season model but for sagebrush this simply reflects the
 fact that they forced it into all candidate models. The
 implication here is that mountain shrub and sagebrush
 had equivalent relative importance simply because they
 both occurred in all models with great AIC weight.
 Riparian (0.74), other shrublands (0.86), and grassland
 (0.86) had lower relative importance based on their sum
 of AlCc weights. However, if Rice et al. (2013) had used
 an alternative measure of relative importance reflecting
 effects size such as ratios of t statistics for unstandard

 ized predictors or ratios of standardized predictors
 (based on partial standard deviations), then it still
 would have been possible to provide useful measures of
 relative importance for all the predictors even when all
 models were forced to include the sagebrush predictor.
 Some indication of what alternative measures of relative

 importance might indicate for predictors in the breeding
 season model (Rice et al. 2013, Table 3) can be obtained
 by looking at ratios of the model-averaged estimates
 divided by their standard errors (/ statistics), suggesting
 that sagebrush (t = 0.80) had lower relative importance
 compared to riparian (t = 1.28), other shrublands (t =
 1.30), grassland (t= 1.34), or mountain shrub (t= 1.47).
 A definitive answer requires new analyses with estimates
 that better address the multicollinearity of the compo
 sitional predictors.

 Model-averaged regression coefficients and model
 averaged predictions

 The model-averaged estimates for predictors in Rice
 et al. (2013, Tables 3, 5, and 6) should not have been
 used for computing model-averaged predictions of mean
 counts, Ê[y |X], because the count model used by Rice et
 al. (2013) was not linear in the parameters for the
 predictors. The zero-truncated Poisson regression model
 used was E[y | X] = exp(Xß)/(l - exp(-exp(Xß))), where
 exp(Xß) is the mean A, of a Poisson distribution as a
 nonlinear function of the predictors. Even if a model is a
 linear combination of parameters in the logarithmic
 scale, it still would be incorrect to make predictions in
 the logarithmic scale based on the average of the R set of
 parameter estimates for the predictors and then back
 transform (exponentiate) those averaged predictions to
 the count scale. The predictions are for mean counts and
 means are not equivariant to nonlinear transformations
 like the logarithmic, i.e., exp[mean(log(count,))] 7^
 mean[exp(log(count,))]. Correctly making model-aver
 aged predictions, Ê[y|X], for the R candidate model sets

 in this case requires averaging across R sets of
 predictions as in Eq. 1. The actual difference between
 the correct and incorrect model-averaged predictions
 may be small in some instances, but why estimate them
 incorrectly given the chance that they might deviate
 greatly from correct estimates? Appendix B and
 Supplement 2 provide an example when the correct
 and incorrect model-averaged predictions are similar
 and when they differ.

 Rice et al. (2013) compounded their mistake in
 estimating model-averaged estimates of mean counts of
 telemetry locations by using them to make predictions
 for the probability of any count >1, i.e., probability of
 occupancy. They apparently made these predictions by
 using the relationship between predicted means from a
 zero-truncated Poisson distribution and predicted means
 from a conventional Poisson distribution, which allowed
 for computing probabilities of counts >1 (W. Thog
 martin, personal communication). This transformation
 makes the predictions extremely sensitive to unverifiable
 assumptions about the proportion of zeros associated
 with means of the Poisson distribution for areas with

 very low to no Sage-Grouse use (mean counts of
 locations <2). Rates of change in the predicted
 probabilities of occupancy also are greatest in those
 regions of low to no Sage-Grouse use, which are
 inherently extrapolations outside of the majority of the
 predictor sample space because samples only occurred
 where there were >1 grouse locations (Appendix B: Fig.
 Bl).

 Conclusion

 The issue of model uncertainty in regression coeffi
 cients is inherently an issue of multicollinearity. There is
 no model uncertainty in parameters for predictor
 variables when they are all uncorrelated as they have
 the same value regardless of which combinations are
 included in a model. Any variation in estimates among
 models with uncorrelated predictors (e.g., as in Lukacs
 et al. 2010) is just usual sampling variation not model
 uncertainty. Uncorrelated predictor variables are un
 likely in most observational studies, although they might
 be obtained by transformations, e.g., with orthonor
 malizing log ratios for compositional variables or by
 principal components. Because multicollinearity implies
 there is different scaling of units for the regression
 coefficients of a given predictor across candidate models
 with different combinations of predictors, some method
 for removing the scaling differences across models is
 required for averaging to provide sensible summaries for
 multimodel inference. The use of partial standard
 deviations for predictors is one viable method for
 standardization that will work for some predictor
 covariance structures as demonstrated with the college
 GPA example of Burnham and Anderson (2002). Other
 useful standardization approaches may exist and more
 investigation is required to establish the statistical
 performance of these model-averaged standardized
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 estimates before they are recommended for routine use.
 The choice of an appropriate covariance structure
 among predictor variables to be used for standardizing
 will be critical. The simple averaging of regression
 coefficients recommended by Burnham and Anderson
 (2002, 2004) that ignores the multicollinear covariance
 structures should be discontinued immediately. Multi
 collinearity, of course, is a source of related issues (e.g.,
 increased sampling variability of estimates) in individual
 regression models as summarized in Graham (2003) and
 Dormann et al. (2013).

 The use of estimates for predictors that are standard
 ized by their partial standard deviations (or the
 equivalent t statistics of unstandardized estimates)
 directly translates into estimates of relative importance
 that incorporate information on relative effect sizes and
 variance reduction within models that can be averaged
 across all candidate models. While certainly not the only
 possible measure of relative importance, this measure is
 likely to be far more useful to most analysts than the
 sum of AIC weights measure of relative importance that
 does not address the contributions of individual

 predictors within any of the candidate models. Further
 more, it is a measure of relative importance that is useful
 regardless of any constraints imposed on how many
 models include specific subsets of predictors.

 There are many models, perhaps the majority, where
 standardization will not eliminate interpretation issues
 for model-averaged regression coefficients. The complex
 negative covariance structure associated with composi
 tional predictors as in the Rice et al. (2013) analyses
 resulted in a multimodal distribution of standardized

 estimates such that their average was of low information
 content. Averaging individual estimates when simulta
 neous interpretation of multiple estimates is required to
 make sensible interpretation of the effects of a predictor
 variable also will not be useful, e.g., models that have
 various combinations of polynomial terms for predictors
 (Blums et al. 2005) or interactions among predictors. A
 desire to address model uncertainty is commendable, but
 some aspects of interpreting multiple candidate models
 cannot be effectively reduced to simplistic statistical
 summaries such as averages. For many covariate
 structures the effect of model uncertainty on parameter
 estimates for the predictor variables may only be
 interpreted sensibly by looking at the individual
 estimates across the multiple candidate models. Alter
 natively, model averaging the predicted responses (Eq.
 1) for different combinations of values for predictor
 variables can be used to indirectly explore model
 relationships. The issues with model averaging discrete
 pieces of a model are a lot like the issues with
 interpreting main effects in an analysis of variance that
 includes interactions: while it may not be too misleading
 in some limited circumstances, it is not a good thing to
 do in general.

 This information is intended to help curb the
 overzealous use of simplistic AIC-based model averag

 ing of regression coefficients, treating it as a panacea for
 dealing with uncertainty and inference across multiple
 models. It should be considered along with other recent
 concerns about AIC and the information-theoretic

 approach. The initial enthusiasm for the information
 theoretic approach as an alternative paradigm for
 statistical inference is now being tempered by increased
 recognition of its direct relationship with other likeli
 hood based statistics (Aho et al. 2014, Murtaugh
 2014a, b, Spanos 2014). The currency of the informa
 tion-theoretic approach is differences in AIC between
 two models, AAIC, which fundamentally is based on the
 same likelihood ratios associated with likelihood ratio

 hypothesis tests, confidence intervals based on inver
 sions of those tests, and coefficients of determination (or
 partial coefficients of determination). These statistics
 just represent different scaling of the same basic
 information, likelihood ratios between two models.

 The different scales can be useful for different purposes,
 but it seems unreasonable to expect the scaling
 associated with AAIC and the information-theoretic

 approach to be a fundamentally superior paradigm for
 improved inferential insights. If model averaging for
 multimodel inferences is to be one of the principal
 advantages of the AIC information-theoretic approach
 to data analysis as Burnham and Anderson (2014)
 suggested, it must be done in a more enlightened fashion
 than currently employed, including only averaging
 estimates with comparable units and interpretations.
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