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Abstract
Statistical	analyses	are	an	integral	component	of	scientific	research,	and	for	decades,	
biologists	have	applied	transformations	to	data	to	meet	the	normal	error	assumptions	
for	F	and	t	tests.	Over	the	years,	there	has	been	a	movement	from	data	transformation	
toward	model	reformation—the	use	of	non-	normal	error	structures	within	the	frame-
work	of	the	generalized	linear	model	(GLM).	The	principal	advantage	of	model	refor-
mation	is	that	parameters	are	estimated	on	the	original,	rather	than	the	transformed	
scale.	However,	data	transformation	has	been	shown	to	give	better	control	over	type	
I	 error,	 for	 simulated	data	with	 known	error	 structures.	We	 conducted	 a	 literature	
	review	of	statistical	textbooks	directed	toward	biologists	and	of	journal	articles	pub-
lished	in	the	primary	literature	to	determine	temporal	trends	in	both	the	text	recom-
mendations	and	the	practice	in	the	refereed	literature	over	the	past	35	years.	In	this	
review,	a	trend	of	increasing	use	of	reformation	in	the	primary	literature	was	evident,	
moving	 from	no	use	of	 reformation	before	1996	 to	>50%	of	 the	 articles	 reviewed	
	applying	GLM	after	2006.	However,	no	such	trend	was	observed	in	the	recommenda-
tions	 in	 statistical	 textbooks.	We	 then	 undertook	 12	 analyses	 based	 on	 published	
datasets	in	which	we	compared	the	type	I	error	estimates,	residual	plot	diagnostics,	
and	coefficients	yielded	by	analyses	using	square	root	transformations,	log	transfor-
mations,	and	the	GLM.	All	analyses	yielded	acceptable	residual	versus	fit	plots	and	had	
similar	p-	values	within	each	analysis,	but	as	expected,	 the	coefficient	estimates	dif-
fered	substantially.	Furthermore,	no	consensus	could	be	found	in	the	literature	regard-
ing	 a	 procedure	 to	 back-	transform	 the	 coefficient	 estimates	 obtained	 from	 linear	
models	performed	on	 transformed	datasets.	This	 lack	of	consistency	among	coeffi-
cient	estimates	constitutes	a	major	argument	for	model	reformation	over	data	trans-
formation	in	biology.
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1  | INTRODUCTION

As	the	analysis	of	variance	(Fisher,	1925)	came	into	wider	use	in	the	
middle	 of	 the	 20th	 century,	 attention	 turned	 to	 the	 assumptions	
(Eisenhart,	1947),	 the	effects	of	violations	of	assumptions	 (Cochran,	
1947),	and	remedies	for	violations	(Bartlett,	1947)	of	the	ANOVA	as-
sumptions	of	homogeneity,	normality,	and	additive	effects.	In	biology	
and	ecology,	experimental	and	observational	studies	often	yield	count	
data,	which	do	not	meet	the	assumptions	for	ANOVA	(e.g.,	number	of	
species	in	an	area,	number	of	offspring,	number	of	colonies).	In	such	
instances,	textbooks	such	as	Sokal	and	Rolf	(1969)	and	Zar	(1974)	rec-
ommend	applying	standard	ANOVA	procedures	after	addressing	the	
assumption	of	homogeneity	by	application	of	a	transformation	appro-
priate	to	the	assumed	error	distribution.	With	count	data	that	follows	
a	Poisson	distribution,	a	square	root	transformation	is	recommended	
(Crawley,	2003;	Maindonald	&	Braun,	2007;	Sokal	&	Rohlf,	1969;	Zar,	
1974,	1999),	while	for	datasets	containing	a	large	number	of	zeros,	a	
square	root	transformation	applied	to	y	+	0.5	or	to	y	+	3/8,	where	y	is	
the	response	variable,	may	yield	better	results	(Sokal	&	Rohlf,	1969).	
For	data,	where	 the	variance	 is	positively	correlated	with	 the	mean,	
a	 logarithmic	 transformation	 is	 recommended	 (Sokal	&	Rohlf,	 1969;	
Zar,	 1974).	When	analyzing	data	bounded	at	 zero	 and	one,	 as	with	
percentages	 and	 proportions	 or	 negative	 binomial	 counts,	 the	 arc-
sine	 square	 root	 transformation	 (arcsin(√y)	where	 y	 is	 the	 response	
variable)	 is	 recommended	 (Anscombe,	 1948;	 Sokal	 &	 Rohlf,	 1969;	
Zar,	 1974).	 Unfortunately,	 addressing	 homogeneity	 with	 an	 appro-
priate	 transformation	 does	 not	 necessarily	 address	 other	 assump-
tions	(Bartlett,	1947;	McCullagh	&	Nelder,	1983).	For	commonly	used	
nonlinear	equations	in	biology,	the	assumption	of	additive	effects	for	
count	data	can	be	addressed	by	linearization.	The	commonest	exam-
ples	 (Crawley,	1993)	are	 log	transformation	of	the	response	variable	
for	exponential	relations	(e.g.,	demographic	rates),	log	transformation	
of	 the	 response	and	explanatory	variables	 for	power	 laws	 (e.g.,	 spe-
cies–area	curves),	and	taking	the	inverse	of	the	response	and	explan-
atory	variable	for	simple	asymptotic	relations	(e.g.,	the	Holling	“disk”	
equation),	and	log	transformation	for	proportional	change	in	discrete	
(count)	data	(Bishop,	Fienberg,	&	Holland,	1974).	The	proliferation	of	
special-	purpose	transformations	in	the	mid-	20th	century	culminated	
in	the	Box–Cox	family	of	transformations,	which	puts	a	range	of	trans-
formations	on	a	single	scale	Yλ,	that	includes	inverse,	log,	square	root,	
and	power	law	transformations.	This	approach	(Box	&	Cox,	1964)	al-
lows	 the	 contributions	 of	 additivity,	 homogeneity	 of	 variances,	 and	
normality	to	be	separated.

As	 data	 transformation	 is	 an	 accessible	 solution	 to	 avoid	 non-	
normal	error	distributions	which	allows	analyses	to	be	easily	conducted	
by	application	of	linear	models	while	requiring	limited	computational	
power,	 it	has	been	widely	recommended	 in	textbooks	such	as	Sokal	
and	Rohlf	 (1969)	and	Zar	 (1974),	which	have	had	a	 formative	 influ-
ence	on	the	practice	of	statistics	in	biology	and	ecology.	Data	trans-
formations	can	also	be	appealing	as	they	can	help	decrease	the	impact	
of	outliers	and	equalize	the	spread	across	different	levels	of	a	factor,	
thus	improving	linearity	of	the	response	variable	and	homogeneity	of	
the	variance.	However,	the	approach	is	empirical;	it	does	not	address	

equations	where	the	parameters	are	known	from	biological	principles	
(Crawley,	1993,	McCullagh	&	Nelder,	1983).	Nor	does	the	approach	
address	the	problem	of	biologically	founded	equations	that	are	intrin-
sically	nonlinear	 (Crawley,	1993),	such	as	hyperbolic	and	asymptotic	
exponential	equations.	The	use	of	transformations	also	produces	pa-
rameter	estimates	which	are	hardly	interpretable	as	they	are	no	lon-
ger	in	the	same	scale	as	the	original	data.	Log-	transforming	data	are	
known	 to	produce	erroneous	 (Currie	&	Schneider,	2011;	Packard	&	
Boardman,	2008;	Stroup,	2013)	estimates	of	linear	trends	and	linear	
contrasts	among	means.	With	the	addition	of	a	fixed	value	for	trans-
formation	of	count	data	(e.g.,	using	log(y + 1)	to	work	around	the	prob-
lem	of	 log(0)	 for	count	data),	 these	 inaccuracies	can	be	exacerbated	
(O’Hara	&	Kotze,	2010).	Neither	textbooks	by	Sokal	and	Rohlf	(1969)	
nor	 Zar	 (1974)	mention	 checking	 the	 residuals	 for	 normality	 before	
undertaking	transformation,	nor	do	these	texts	mention	checking	re-
siduals	after	transformation	to	confirm	that	assumptions	were	met	for	
calculating	type	I	error	rates	to	declare	a	statistical	decision.

Landmark	texts	by	Sokal	and	Rohlf	 (1969)	and	Zar	 (1974)	follow	
Fisher	 (1925;	1954)	 in	 treating	count	data	as	a	goodness	of	 fit	 test	
where	type	I	error	in	accepting	one	model	over	another	is	calculated	
from	a	χ2	distribution.	McCullagh	and	Nelder	 (1983)	 introduced	 the	
generalized	 linear	model	 (GLM),	which	extended	Fisher’s	concept	of	
likelihood	 to	 include	 transformation	 of	 both	 the	 response	 variable	
and	the	fitted	value,	the	latter	by	specifying	a	link	function.	This	ap-
proach	 is	an	alternative	to	transformations	which	allows	the	analyst	
to	choose	some	combination	of	 link	 function	and	error	 structure	 to	
address	assumptions	for	estimating	parameters	and	type	I	error	where	
hypothesis	 testing	 is	warranted.	Thus,	biological	 researchers	 can	di-
rectly	specify	the	error	distribution	and	the	relationship	between	the	
mean	and	 the	variance,	 thereby	avoiding	 the	 inaccuracies	 that	arise	
from	 transforming	 and	 back-	transforming	 data	 (O’Hara	 &	 Kotze,	
2010).	With	the	GLM	approach,	a	binomial	error	structure	is	used	for	
units	scored	in	a	binary	fashion	or	as	counts	of	successes	relative	to	
trials,	and	a	Poisson	or	overdispersed	Poisson	error	structure	is	used	
for	 counts	 per	 unit.	 This	 approach	 is	 now	 being	 extended	 (Stroup,	
2013)	to	generalized	linear	mixed	models	(GLMM),	which	incorporate	
both	random	and	fixed	effects.	GLMs	function	well	on	count	data	that	
include	zeros	 (Bolker	et	al.,	2008;	McCullagh	&	Nelder,	1989);	how-
ever,	when	 there	 is	 an	 abundance	 of	 zeros	 relative	 to	 a	 Poisson	 or	
negative	binomial	error	model,	a	hurdle	or	zero-	inflated	model	is	rec-
ommended	when	 fitting	models	 and	 interpreting	 the	 estimates	 and	
trends	 (Lambert,	1992;	Mullahy,	1986).	The	 increasing	availability	of	
software	and	accessible	texts	(e.g.,	Dunteman	&	Ho,	2006;	Hoffmann,	
2004),	 combined	with	 the	advantages	of	avoiding	 transformation	of	
data	and	back-	transformation	of	parameter	estimates,	has	resulted	in	
repeated	recommendations	to	replace	data	transformation	with	GLM/
GLMM	 procedures	 (Lo	 &	 Andrews,	 2015;	 O’Hara	 &	 Kotze,	 2010;	
Steel,	Kennedy,	Cunningham,	&	Stanovick,	2013;	Warton	&	Hui,	2011;	
Wilson	&	Hardy,	2002).

Recently,	 Ives	 (2015)	has	argued	for	the	traditional	 route	of	 log-	
transforming	count	data,	 as	 it	has	a	 lower	 rate	of	 type	 I	error	 (false	
positive)	than	other	typical	transformations	(most	textbooks	suggest	
square	root	transformation	for	count	data)	or	GLM.	Ives	(2015)	showed	
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that	log-	transforming	count	data	using	the	formula	log(y + 1)	yields	the	
best	control	over	type	I	error,	while	acknowledging	that	potential	inac-
curacy	in	the	estimates	of	coefficients	was	not	considered.	Ives’	(2015)	
conclusion	 is	 similar	 to	 earlier	work	 by	 Stroup	 (2013),	who	 showed	
that	transformation	and	GLM/GLMM	procedures	are	equivalent	when	
the	only	concern	is	control	of	type	I	error,	and	thus,	emphasis	is	only	
placed	on	the	p-	value	for	declaring	a	statistical	decision.	Stroup	(2013)	
also	showed	that	transformations	yield	poor	parameter	estimates,	es-
pecially	 in	the	case	of	the	 log	transformation.	Subsequently,	Warton	
et	 al.	 (2016)	 used	 simulated	 overdispersed	 counts	 from	 an	 unbal-
anced	 sampling	 design	 to	 compare	 the	 outcomes	 of	 transformation	
and	GLM	with	 count	 data,	 arguing	 that	GLM	procedures	 should	 be	
applied	rather	than	transformations	if	the	GLM	provides	a	good	fit	to	
the	structure	of	the	residuals,	or	if	steps	are	taken	to	investigate	and	
correct	type	I	error	(e.g.,	through	resampling	or	permutation	tests).	Yet,	
Warton	et	al.	(2016)	underlined	the	importance	of	choosing	an	appro-
priate	model	based	on	data	properties	and	diagnostic	tools,	which	can	
be	more	difficult	with	small	sample	sizes.	Warton	et	al.	(2016)	as	well	
as	Ives	(2015)	and	Stroup	(2013)	used	simulated	data	in	their	analyses,	
for	which	 the	error	structure	and	 true	values	of	 the	parameter	esti-
mates	are	known;	they	did	not	extend	their	analyses	to	case	studies	
where	the	error	structure	is	unknown.

Given	 repeated	 recommendations	 to	 replace	 data	 transforma-
tion	with	GLM	procedures,	we	 investigated	whether	 statistical	 text-
books	for	biologists	continue	to	recommend	data	transformation	for	
the	analysis	of	count	data.	We	also	recorded	the	prevalence	of	data	
transformation	versus	model	reformation	in	the	peer-	reviewed	litera-
ture	over	the	period	of	1980–2017,	that	is,	when	the	majority	of	the	

textbooks	consulted	were	published.	We	then	extended	the	analysis	
of	Stroup	(2013),	Ives	(2015),	and	Warton	et	al.	(2016)	to	the	analysis	
of	nonsimulated	count	datasets,	using	examples	with	a	history	of	de-
tailed	treatment	in	textbooks.	For	12	examples,	we	compared	the	re-
sidual	plots,	type	I	error	rates,	and	coefficient	estimates	yielded	by	(1)	
a	linear	model	after	square	root	transformation	of	the	response	vari-
able;	(2)	a	linear	model	after	log(y + 1)	transformation	of	the	response	
variable;	and	(3)	a	GLM	(with	log	link	and	either	a	Poisson	or	a	negative	
binomial	distribution).	Given	the	prevalence	of	count	data	in	ecological	
research,	we	focused	the	literature	search	and	model	comparisons	to	
this	type	of	data	so	that	the	results	presented	here	are	of	interest	to	
ecologists	and	biologist.

2  | LITERATURE REVIEW

For	the	literature	review,	we	divided	our	search	into	two	categories:	
textbooks	and	journal	articles	published	in	the	refereed	literature.	In	
the	first,	we	consulted	over	50	statistical	 textbooks	published	since	
1980	(in	addition	to	early	editions	of	seminal	textbooks	by	Fisher	and	
Snedecor—see	below)	and	noted	whether	 the	author(s)	 recommend	
the	use	of	transformations	or	of	GLM/GLMM	when	confronted	with	
non-	Gaussian	data	(generally	count	data,	proportions,	or	binary	data).	
We	focused	our	review	on	general-	purpose	textbooks	that	are	suit-
able	for	use	in	undergraduate	and	graduate	levels	statistics	courses,	as	
they	are	comprehensive	in	nature	and	represent	that	to	which	most	
students	and	researchers	will	be	exposed.	Hence,	speciality	textbooks	
focusing	 on	 GLM	 have	 been	 excluded,	 despite	 their	 abundance	 in	
recent	years.	The	list	of	publications	consulted	and	their	recommen-
dation	for	the	analysis	of	data	with	non-	normal	error	structure	is	pre-
sented	in	Appendix	S1.	The	results	are	summarized	in	Figure	1,	where	
observations	are	grouped	by	5-	year	periods.

Data	 transformation	 to	 address	problems	of	non-	normal	or	 het-
erogeneous	errors	does	not	appear	in	any	of	the	12	editions	of	Fisher’	
text	(1925	through	1954).	Nor	does	it	appear	in	the	first	four	editions	
of	Snedecor	(1937	through	1946).

Abnormality, non- additivity, and heterogeneity of variance 
ordinarily appear together. It would be ideal if transforma-
tion could remedy all the difficulties, but that doesn’t often 
happen. 

Snedecor (1956)

The	first	recommendation	for	transformation	that	we	could	find	in	
a	text	appears	in	Snedecor	and	Cochran	(1967)	with	a	brief	treatment	
of	the	arcsine	square	root	transformation	for	proportions	(i.e.,	arcsin(√y)	
where y	 is	 the	 response	 variable).	 Text	 recommendations	 for	 the	 use	
of	GLM	begin	with	McCullagh	and	Nelder	(1983)	and	continue	in	spe-
cialty	texts,	similarly	focused	on	the	GLM.	Recommendations	for	trans-
formation	 continued	 to	 appear	 in	 general-	purpose	 texts	 for	 biologists	
throughout	 the	20th	century	 into	 the	present	 (Figure	1,	Appendix	S1).	

F IGURE  1 Proportion	(%)	of	textbooks	recommending	the	use	of	
transformations	(in	gray),	generalized	linear	models	(GLM,	in	white),	
or	both	(in	dark	gray)	when	dealing	with	data	with	a	non-	normal	error	
structure.	Data	are	presented	by	year	of	publication	and	grouped	
into	5-	year	periods.	All	textbooks	consulted	were	published	between	
1980	and	2017.	The	number	above	each	bar	represents	the	total	
number	of	textbooks	in	each	time	period
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Several	textbooks	consulted	contained	recommendations	for	both	GLM	
and	 transformations	when	 assumptions	 of	 the	 linear	model	were	 not	
met	(one	text	between	1980	and	1985	(Atkinson,	1985),	and	nine	texts	
since	2001,	see	Appendix	S1).	In	all	but	one	of	these	cases	(Vittinghoff	
et	al.	2012),	 transformations	were	 suggested	as	an	alternative	only	 in	
cases	where	the	use	of	a	GLM	did	not	meet	the	necessary	assumptions.	
Despite	some	recommendations	for	the	use	of	GLM	in	textbooks	pub-
lished	since	1991,	in	addition	to	continued	recommendations	in	special-
ity	texts	focused	on	the	GLMs,	transformations	remain	the	predominant	
recommendation	within	 general-	purpose	 texts.	These	 results,	 and	 the	
recent	publication	of	several	journal	articles	debating	the	use	of	trans-
formations	and	GLM	(Ives,	2015;	Lo	&	Andrews,	2015;	O’Hara	&	Kotze,	
2010;	Warton	&	Hui,	2011;	Warton	et	al.,	2016),	show	that	there	is	not	
yet	a	consensus	in	general-	purpose	statistical	texts	directed	toward	biol-
ogists	and	ecologists	as	to	the	best	practice	for	dealing	with	non-	normal	
residuals.

For	 the	 second	 part	 of	 our	 literature	 review,	 we	 used	 Google	
Scholar	 to	 find	 articles	 published	 in	 peer-	reviewed	 journals	 in	 the	
fields	 of	 biology	 and	 ecology	 presenting	 original	 research	 in	 which	
analyses	are	conducted	on	count	data	and	determined	whether	 the	
authors	 had	 transformed	 their	 data	 or	 applied	 a	 GLM/GLMM.	We	
used	 the	 keywords	 “count”	 or	 “count	 data”	 and	 focused	 on	 articles	
published	 after	 1980.	 In	 order	 to	 cover	 both	 terrestrial	 and	marine	
publications,	we	concentrated	our	efforts	on	ten	ecology	journals	that	
publish	mainly	original	research	and	are	influential	in	their	respective	
fields	(as	marked	by	their	relatively	high	impact	factor	score	and	cita-
tions):	Ecology,	Oikos,	Journal of Animal Ecology,	Ecology Letters,	Plant 
Biology,	 Journal of Ecology,	Nature,	Plant Ecology,	Marine Biology,	 and	
Marine Ecology Progress Series.	The	 list	of	publications	consulted	and	
the	statistical	method	applied	in	each	(either	transformations	or	GLM/
GLMM)	 is	presented	 in	Appendix	S2.	The	 results	 are	 summarized	 in	
Figure	2,	where	observations	are	grouped	by	5-	year	periods.

The	 results	of	 the	 literature	 review	of	 journal	 articles	 show	 that	
all	the	articles	published	before	the	year	1996	used	the	classical	ap-
proach	 of	 applying	 a	 transformation	 to	 the	 response	 variable	 prior	
to	 analysis.	 The	 proportion	 of	 articles	 using	 GLM	 increased	 in	 the	
following	decades:	 from	4%	of	 the	 publications	 using	 these	models	
between	1996	and	2000,	 to	43%	between	2000	and	2005,	 and	 to	
approximately	52%	after	2006.	This	trend	may	be	due	at	least	in	part	
to	 the	 increasing	 availability	 of	 software	 packages	 that	 allow	 easy	
application	 of	 GLM/GLMM	 and	 to	 increasing	 knowledge	 of	 these	
software	among	researchers.	 It	may	also	be	due	to	the	rise	 in	num-
ber	of	articles	critiquing	the	use	and	outcomes	of	data	transformation,	
as	discussed	in	our	introduction.	However,	the	increasing	number	of	
researchers	 (as	 indicated	 by	 articles	 published	 in	 the	 primary	 litera-
ture)	 favoring	GLM/GLMM	over	 transformation	cannot	be	 linked	 to	
general-	purpose	texts,	which	continue	to	recommend	transformation	
(Figure	1,	Appendix	S1).	It	is	possible	that	researchers	rely	more	heav-
ily	on	the	documentation	related	to	their	preferred	software	or	on	the	
increasing	number	of	textbooks	specialized	in	the	application	of	GLM/
GLMM	to	guide	their	analysis,	 rather	 than	on	general-	purpose	 text-
books.	Researchers,	 in	particular	graduate	students,	also	rely	heavily	
on	web	resources	such	as	online	course	material	and	tutorials	to	guide	

the	execution	of	analyses	on	their	favorite	software.	Of	all	the	journal	
articles	consulted,	only	two	mentioned	using	both	GLMs	and	transfor-
mations	(Langwig	et	al.,	2012;	McCauley	et	al.,	2010);	for	certain	data	
in	 their	analyses,	 the	GLM	did	not	meet	 the	necessary	assumptions	
and	thus	a	transformation	was	applied,	as	was	suggested	in	nine	text-
books	consulted	in	our	review	(see	Appendix	S1).

3  | MODEL COMPARISONS

3.1 | Method

To	 contrast	 the	 difference	 in	 results	 when	 using	 transformation	
(square	 root	 and	 log)	 and	 reformation	 (GLM),	we	 applied	 and	 com-
pared	different	models	 to	12	analyses	of	 count	data	obtained	 from	
the	 landmark	 text	 of	 McCullagh	 and	 Nelder	 (1983)	 and	 from	 the	
widely	 cited	 text	 of	Agresti	 (1996).	 These	datasets	were	 chosen	 as	
their	error	structure	fitted	well	a	Poisson	distribution,	hence	eliminat-
ing	the	risk	of	differences	caused	by	a	poor	choice	of	error	structure.	
In	addition,	 the	datasets	are	not	overdispersed	 (except	 in	one	case,	
see	Appendix	S6).	 In	 each	 case,	 the	 assumption	 of	 homogeneity	 of	
variances	was	 assessed	graphically	 (Neter	&	Wasserman,	1974).	All	
analyses	were	run	using	R	3.2.2	with	the	car	and	MASS	packages	(R	
Development	Core	Team,	2009).

Each	dataset	was	 analyzed	 in	 three	different	ways	by	 (1)	 apply-
ing	a	square	root	transformation	to	the	response	variable	and	running	
a	 linear	model;	 (2)	 applying	 a	 log	 transformation	 (log(y + 1)	where	y 
is	the	response	variable)	and	running	a	linear	model,	and	(3)	running	

F IGURE  2 Proportion	(%)	of	research	articles	using	
transformations	(in	gray),	generalized	linear	models	(GLM,	in	white),	
or	both	(in	dark	gray)	when	dealing	with	data	with	a	non-	normal	error	
structure.	All	articles	considered	come	from	peer-	reviewed	journals	
in	the	fields	of	biology	and	ecology.	Data	are	presented	by	year	of	
publication	from	1980	to	2017,	grouped	into	5-	year	periods.	The	
number	above	each	bar	represents	the	total	number	of	articles	in	
each	time	period
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a	 GLM	with	 either	 a	 Poisson	 or	 negative	 binomial	 distribution,	 de-
pending	on	which	was	more	appropriate	from	examination	of	residual	
plots.	The	 residual	versus	 fit	plots,	 the	outcome	of	 the	 test	 statistic	
(significance	of	the	p-	value),	and	the	value	of	the	coefficients	(means	
for	ANOVA	 factors,	 and	 slopes	 and	 intercepts	 for	 regressions)	were	
compared	among	the	models	applied	to	each	dataset.	The	models	for	
each	dataset,	 as	well	 as	 the	 resulting	comparisons,	are	presented	 in	
Appendices	S3–S14.

To	obtain	estimates	of	the	coefficients	(means	or	intercept	and	slope,	
for	categorical	or	regression	analyses,	respectively)	from	the	linear	model	
applied	to	the	square-	root-	transformed	data,	a	back-	transformation	was	
necessary.	For	categorical	analyses,	we	first	obtained	the	estimate	of	the	
“transformed”	mean	for	each	factor	by	calculating	the	sum	of	each	fac-
tor	added	to	the	value	of	the	intercept	estimate,	as	is	the	procedure	for	
calculating	means	from	the	estimates	of	a	model	with	the	identity	link	

(Gaussian/normal	distribution).	Then,	 the	value	of	 each	 “transformed”	
mean	was	 squared	 to	 return	 the	 values	 to	 the	 original	 scale.	 In	 the	
case	of	 regressions,	 the	 “transformed”	estimates	of	 the	 intercept	 and	
the	slope	were	squared	to	place	them	back	on	the	original	scale,	and	
when	the	uncorrected	estimate	was	below	zero,	the	negative	sign	was	
retained	after	squaring	to	maintain	 the	same	trend	 (e.g.,	 increasing	or	
decreasing	slope,	positive	or	negative	intercept).

A	back-	transformation	was	also	applied	to	the	estimates	of	the	co-
efficients	of	the	linear	model	applied	to	the	log-	transformed	data.	For	
categorical	data,	we	first	obtained	the	estimate	of	the	“transformed”	
mean	for	each	factor	by	calculating	the	sum	of	each	factor	(separately)	
and	 the	 “transformed”	 estimate	of	 the	 intercept.	Then,	 each	 “trans-
formed”	coefficient	(β)	was	back-	transformed	by	exponentiating	it	and	
subtracting	1	 (i.e.,	 eβ	−	1)	 to	obtain	 the	geometric	means.	The	 same	
method	 (i.e.,	 exponentiating	 the	 estimate	 and	 subtracting	 one)	was	
used	to	obtain	the	value	of	the	intercept	and	the	slope	in	the	case	of	
regressions.

The	values	of	 the	coefficients	 for	 the	GLM	were	easily	obtained	
and	are	known	to	be	accurate	(Stroup,	2013;	table	11.1).	First,	we	ex-
ponentiated	the	estimates	to	obtain	the	coefficients	for	each	factor,	
then	we	multiplied	the	coefficient	of	each	factor	by	the	coefficient	of	
the	intercept	(the	mean)	to	obtain	the	mean	for	each	factor	(i.e.,	eβ · βin-
tercept).	We	followed	this	procedure	because	the	 log	 link	was	used	 in	
the	GLM,	which	 produces	 coefficients	 that	 are	multiplicative	 in	 na-
ture,	as	the	coefficients	provide	a	proportion	relative	to	the	intercept	
mean.	In	the	case	of	regressions,	the	exponentiated	coefficient	for	the	
regression	factor	shows	the	proportion	change	with	each	 increment	
of	the	explanatory	variable.	Thus,	we	obtained	the	value	of	the	slope,	
which	was	necessary	for	comparison	with	the	other	two	models,	by	
subtracting	one	from	the	value	of	the	proportion	change	(i.e.,	the	value	
of	the	exponentiated	coefficient).

3.2 | Comparison of the residual plots

For	eight	of	 the	12	datasets,	 the	residual	versus	fit	plots	were	very	
similar	between	the	three	models—two	transformations	and	one	GLM	
(Figure	3).	When	a	difference	was	observed,	it	was	almost	always	in	
the	linear	model	applied	to	square-	root-	transformed	data,	which	dis-
played	more	of	a	fan-	shaped	trend	than	the	plots	from	the	other	two	
models	 (in	three	datasets	of	12,	see	Appendices	S9–S11).	However,	
in	most	cases,	all	three	models	had	acceptable	residual	versus	fit	plots	
(i.e.,	uniform	bands	in	the	plots).

3.3 | Comparison of the outcome of the 
statistical test

The	outcome	of	 the	 statistical	 test	was	generally	 consistent	 among	
the	three	models	for	a	given	dataset.	Although	the	actual	p-	value	var-
ied	substantially	between	the	models,	only	in	the	case	of	two	datasets	
(out	of	12,	see	Appendices	S6	and	S13)	did	this	variation	result	 in	a	
change	of	decision	at	 a	 fixed	 tolerance	 for	 type	 I	 error	of	α	=	0.05,	
as	both	models	using	transformed	data	yielded	a	different	outcome	
compared	to	the	GLM.

F IGURE  3 Example	of	comparison	of	residual	versus	fit	plots	
for	(top	to	bottom)	linear	model	performed	on	square-	root-	
transformed	data,	linear	model	performed	on	log-	transformed	
data	(using	log(y	+	1)	where	y	is	the	value	of	the	response	variable),	
and	generalized	linear	model,	applied	to	the	dataset	presented	in	
Appendix	S6,	representing	the	number	of	train-	to-	car	collisions	in	
relation	to	the	year	(from	Agresti,	1996,	p.	83).	Red	lines	represent	
smoothed	curves	fitted	to	the	data	in	each	plot.	See	Appendices	S3–
S14	for	residual	versus	fit	plots	for	all	12	datasets	used	in	case	
studies
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3.4 | Comparison of the coefficient values

Given	 that	 the	 estimates	 obtained	 by	 application	 of	 the	 GLM	 on	
untransformed	 data	 are	 known	 to	 be	 accurate	 (Stroup,	 2013;	 table	
11.1),	 the	estimates	obtained	by	the	models	applied	to	transformed	
data	were	compared	to	those	of	the	GLM	to	evaluate	their	accuracy.	
Both	models	using	the	transformed	data	underestimated	the	value	of	
the	 intercept	 and	 slope	 in	 regressions	 compared	 to	GLM	estimates	
(Figure	4,	 Appendices	S3–S8).	 In	 these	 models,	 the	 square	 root	
transformation	 typically	had	 the	 lowest	values	of	 the	 three	models,	
yielding	an	estimate	more	distant	from	the	accurate	values	obtained	
with	 the	GLM	on	 untransformed	 data	 than	 the	 estimate	 calculated	
for	 the	 log	 transformation.	 Similarly,	 in	models	 containing	 categori-
cal	 explanatory	 variables,	we	 found	 that	 the	 coefficients	 calculated	
for	 linear	models	 applied	 to	 transformed	data	were	generally	 lower	
than	the	ones	obtained	from	the	GLM	(Figure	4,	Appendices	S9–S14).	
In	contrast	to	the	regression	models,	the	coefficients	of	the	square-	
root-	transformed	data	were	not	consistently	lower	than	those	of	the	
models	using	the	log	transformation.

4  | DISCUSSION

The	proportion	of	journal	articles	in	the	primary	literature	in	which	au-
thors	used	reformation	(GLM/GLMM)	has	steadily	increased	over	the	
past	25	years	(Figure	2)	relative	to	the	articles	in	which	authors	trans-
formed	their	data	to	then	apply	a	linear	model.	However,	this	trend	in	
the	primary	literature	does	not	represent	the	recommendations	found	
in	general-	purpose	texts	for	biologists	 (see	Figure	1).	The	 increasing	
use	 of	 GLM/GLMM	 procedures	 to	 address	 non-	normal	 errors	may	

be	consistent	with	the	increase	in	special-	purpose	texts,	but	was	not	
consistent	with	the	continuing	recommendation	of	transformation	in	
textbooks	for	biologists	in	general	and	ecologists	in	particular.

Ives	(2015)	argued	that	the	traditional	approach	of	transformation	
is	preferable	as	GLMs	are	prone	to	high	type	I	error	rates	under	some	
simulated	 conditions.	 Stroup	 (2013,	 table	 11.1)	 similarly	 reported	 a	
slightly	higher	rejection	rate	for	a	GLM	with	Poisson	error	than	for	log-	
transformed	data.	Stroup	(2015)	attributed	the	disparity	to	excessively	
conservative	tests	with	log	transformation.	In	addition,	Stroup	(2013)	
found	that	the	log	transformation	did	a	poor	job	estimating	parame-
ters.	Also,	 the	 log	 transformation	performed	poorly	as	measured	by	
disparity	between	“the	standard	error	of	the	estimator	and	the	stan-
dard	deviation	of	the	estimator’s	sampling	distribution”	(Stroup,	2013;	
p.	340).	It	has	been	demonstrated	repeatedly	that	the	GLM	produces	
narrower	confidence	limits	than	transformation	of	the	response	vari-
able	 (Hamada	&	Nelder,	1997;	Lewis,	Montgomery,	&	Myers,	2001).	
When	we	extended	the	analysis	of	data	transformation	versus	refor-
mation	from	simulated	data	with	known	parameters	to	datasets	with	
unknown	parameters,	we	 found	 that	 the	 residuals	differed	 little	be-
tween	linear	models	applied	to	transformed	data	and	GLM.	Consistent	
with	the	findings	of	Stroup	(2013)	for	simulated	data,	we	found	that	
decisions	 from	 the	 p-	values	 (at	 α	=	0.05)	 were	 usually	 consistent	
among	models	 (square-	root-	transformed	data,	 log-	transformed	data,	
and	GLM),	although	GLMs	can	be	prone	to	high	type	I	error	rates	 if	
misspecified	(Ives,	2015).

As	expected	from	previous	studies,	the	coefficients	from	the	lin-
ear	 models	 run	 on	 transformed	 data,	 once	 back-	transformed,	were	
consistently	distant	from	the	estimates	on	the	original	scale	obtained	
with	the	GLM	(Figure	4).	The	distance	of	the	coefficients	of	the	trans-
formed	datasets	 relative	 to	 the	accurate	coefficients	 from	 the	GLM	

F IGURE  4 Linear	model	estimates	relative	to	those	calculated	in	the	generalized	linear	models	(GLM)	(%	difference)	for	each	dataset.	
Complete	results	are	presented	in	Appendices	S3–S14
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(Stroup,	2013)	varied	dramatically	from	one	dataset	to	another.	This	
suggests	that	a	general	procedure	to	correct	for	such	inaccuracy	can-
not	be	applied.	A	primary	source	of	uncertainty	in	our	procedure	lies	
in	 the	method	used	 for	back-	transforming	 the	coefficients	obtained	
from	 the	 square-	root-		 and	 log-	transformed	 data.	 Despite	 extensive	
search	in	statistical	textbooks	(Appendix	S1)	and	online	statistical	re-
sources,	 there	was	 insufficient	 and	often	 conflicting	 information	on	
the	appropriate	procedure	to	apply.	Little	 information	on	the	proce-
dure	 to	back-	transform	estimates	was	 found	 in	 statistical	 textbooks	
aimed	toward	biologists	and	ecologists,	and	the	few	recommendations	
presented	 typically	 addressed	 only	 simple	 scenarios.	 For	 example,	
one	 squares	 the	 estimates	 to	 obtain	 the	 coefficients	 with	 square-	
root-	transformed	data.	However,	because	this	procedure	will	always	
produce	 positive	 coefficients,	 the	 negative	 sign	 must	 be	 reapplied	
as	 appropriate,	yet	 this	 correction	was	 never	 stated	 explicitly.	With	
regard	to	log	transformation	of	count	data,	back-	transformation	was	
calculated	in	the	literature	as	10β.	However,	due	to	the	occurrence	of	
zeroes	in	count	data,	a	constant	was	generally	added	to	the	data	prior	
to	applying	the	log	transformation	(e.g.,	log(y + 1)).	Nowhere	in	the	lit-
erature	did	we	find	a	clear	preference	for	using	10β	−	1	as	opposed	to	
10β	−	1	 to	back-	transform.	The	 lack	of	 a	 clearly	 stated	procedure	 for	
back-	transformation	 of	 estimates	 adds	 an	 additional	 level	 of	 uncer-
tainty	when	comparing	results	from	different	studies.	For	the	analyses	
presented	here,	coefficients	were	back-	transformed	that	seemed	most	
logical	based	on	the	overall	recommendations	found	through	a	thor-
ough	web	search	and	consultation	of	statistical	textbooks.	We	do	not	
maintain	that	our	approach	to	back-	transformation	is	definitive.	Other	
investigators	attempting	back-	transformation	of	coefficient	estimates	
might	well	arrive	at	a	different	choice	in	methods	and	thus	obtain	dif-
ferent	outcomes,	which	points	to	a	clear	need	for	a	definitive	treat-
ment	of	 the	problem	of	 accurate	back-	transformation	of	 coefficient	
estimates.	The	analysis	of	data	on	its	original	scale,	either	via	random-
ization	tests	or	by	use	of	an	appropriate	error	model,	is	an	established	
and	certain	way	of	yielding	unambiguous	parameter	estimates	in	the	
field	 of	 quantitative	 biology.	 The	 uninterpretability	 of	 transformed	
data	has	been	 repeatedly	 stated	 (Warton	&	Hui,	 2011).	The	hidden	
cost	of	transformation	is	that	parameter	estimates	are	no	longer	repre-
sentative	measurements,	defined	by	Krantz,	Luce,	Suppes,	and	Tversky	
(1971)	as	mappings	from	empirical	relations	into	numerical	relations.	A	
transformed	variable	ceases	to	represent	additive	empirical	relations,	
such	as	2	m	+	2	m	=	4	m.	Put	another	way,	units	are	lost	 in	transfor-
mation.	Cases	where	representational	measurement	is	preferable	are	
readily	imagined.

Data	 transformation	can	be	applied	 for	 four	purposes,	 as	 stated	
by	Crawley	(1993,	p.	214):	(1)	to	obtain	a	constant	error	variance;	(2)	
to	obtain	approximately	normal	errors;	(3)	to	achieve	linear	(additive)	
relation	between	 response	 and	 explanatory	variables	 (but	 note	 that	
while	some	transformations	lead	to	additive	relations	[such	as	log(pro-
portions)],	 transformations	destroy	additivity	on	the	original	scale	of	
measurement);	and	(4)	to	allow	more	straightforward	scientific	expla-
nation.	The	 first	 two	 establish	 sound	 estimates	 of	 type	 I	 error.	The	
second	and	third	establish	the	applicability	of	model	results	to	the	an-
alytic	goals.	However,	achieving	all	four	purposes	is	rare;	trade-	offs	are	

almost	inevitable.	Given	our	results,	where	the	use	of	GLM	had	mini-
mal	impacts	on	the	residuals	and	the	statistical	outcome,	and	yielded	
interpretable	 coefficients,	we	 take	 into	 account	 the	advantages	 and	
trade-	offs	of	both	analytical	methods	(transformation	and	GLM)	and	
recommend	that	transformation	be	used	only	in	cases	where	(a)	type	
I	error	is	more	important	than	parameter	estimates,	(b)	an	estimate	of	
type	I	error	is	necessary,	or	(c)	a	suitable	error	model	cannot	be	identi-
fied	from	examination	of	residual	plots	and	other	diagnostics.

Our	recommendation	(a)	addresses	the	trade-	off	between	control	
over	 type	 I	error	and	 interpretability	of	coefficient	estimates.	When	
might	 type	 I	 error	 be	 more	 important?	A	 good	 example	 comes	 for	
Fisher’s	(1925)	text:	prevalence	of	typhoid	in	uninoculated	and	inocu-
lated	soldiers.	The	parameter	estimate	(an	odds	ratio)	is	less	important	
than	decision	based	on	type	I	error,	in	the	context	of	the	cost	of	inoc-
ulation	versus	the	cost	of	mortality	under	trench	warfare	conditions	in	
World	War	I.	Our	recommendation	(b)	pertains	to	cases	when	type	I	
error	estimates	is	necessary	for	planning	experiments,	designing	mon-
itoring	programs,	and	justifying	research	proposals.	In	many	fields,	in-
cluding	some	areas	of	ecology,	calculations	of	adequate	sample	sizes,	
relative	to	standards	for	type	I	and	type	II	errors	(typically	5%	and	20%,	
respectively),	are	expected.	Lastly,	physically	or	biologically	interpreta-
ble	regression	estimates	used	for	interpolation	are	of	little	value	if	the	
error	model	employed	to	produce	the	estimates	does	not	fit	the	data	
(i.e.,	a	suitable	error	model	cannot	be	identified	from	examination	of	
residual	plots	and	other	diagnostics,	our	recommendation	(c)).	In	such	
cases,	 it	would	be	better	to	get	the	type	I	error	correct	via	heuristic	
transformation	of	the	response	variable	rather	than	focusing	on	coef-
ficient	estimates.

5  | CONCLUSIONS

Although	the	transformation	of	data	and	the	use	of	GLM/GLMM	both	
continue	 to	 be	 recommended	 in	 statistical	 textbooks	 from	1967	 to	
the	present,	the	occurrence	of	GLM/GLMM	applied	to	count	data	in	
peer-	reviewed	 articles	 has	 shown	 a	 clear	 increase	 since	 2000.	Our	
findings	from	12	analyses	with	unknown	parameters	extend	those	of	
Stroup	(2013):	Transformation	and	GLM	techniques	applied	to	count	
data	yielded	p-	values	that	rarely	resulted	in	a	change	in	the	statistical	
decision,	and	the	use	of	transformations	resulted	in	inconsistent	and	
sometimes	large	differences	in	the	coefficient	estimates.	The	absence	
of	a	consensus	or	clear	procedure	regarding	the	back-	transformation	
of	coefficient	estimates	 is	at	once	a	gap	 in	statistical	practice	and	a	
major	 argument	 against	 the	 use	 of	 transformations.	 GLM/GLMM	
methods	yield	directly	 interpretable	estimates	on	an	additive	 rather	
than	multiplicative	scale,	without	greatly	 impacting	the	control	over	
type	I	error	in	our	analyses	as	well	as	in	synthetic	data	sets	with	known	
parameters	(Stroup,	2013).	Furthermore,	these	estimates	are	free	of	
the	 known	 inaccuracy	 present	 in	 parameters	 estimated	 on	 a	 trans-
formed	scale,	as	occurs	with	data	transformations.	Measures	can	also	
be	taken	to	improve	control	over	type	I	error	in	GLM	procedures,	for	
example,	through	permutation	or	parametric	bootstrap	(Warton	et	al.,	
2016).	Given	the	availability	of	statistical	software	capable	of	running	
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such	models,	together	with	accessible	texts,	we	recommend	the	use	
of	 model	 reformation	 over	 data	 transformation	 for	 the	 analysis	 of	
count	data,	except	when	a	decision	against	a	fixed	type	 I	error	rate	
is	more	important	than	estimating	a	parameter	on	its	original	scale.
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