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Abstract
Statistical analyses are an integral component of scientific research, and for decades, 
biologists have applied transformations to data to meet the normal error assumptions 
for F and t tests. Over the years, there has been a movement from data transformation 
toward model reformation—the use of non-normal error structures within the frame-
work of the generalized linear model (GLM). The principal advantage of model refor-
mation is that parameters are estimated on the original, rather than the transformed 
scale. However, data transformation has been shown to give better control over type 
I error, for simulated data with known error structures. We conducted a literature 
review of statistical textbooks directed toward biologists and of journal articles pub-
lished in the primary literature to determine temporal trends in both the text recom-
mendations and the practice in the refereed literature over the past 35 years. In this 
review, a trend of increasing use of reformation in the primary literature was evident, 
moving from no use of reformation before 1996 to >50% of the articles reviewed 
applying GLM after 2006. However, no such trend was observed in the recommenda-
tions in statistical textbooks. We then undertook 12 analyses based on published 
datasets in which we compared the type I error estimates, residual plot diagnostics, 
and coefficients yielded by analyses using square root transformations, log transfor-
mations, and the GLM. All analyses yielded acceptable residual versus fit plots and had 
similar p-values within each analysis, but as expected, the coefficient estimates dif-
fered substantially. Furthermore, no consensus could be found in the literature regard-
ing a procedure to back-transform the coefficient estimates obtained from linear 
models performed on transformed datasets. This lack of consistency among coeffi-
cient estimates constitutes a major argument for model reformation over data trans-
formation in biology.
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1  | INTRODUCTION

As the analysis of variance (Fisher, 1925) came into wider use in the 
middle of the 20th century, attention turned to the assumptions 
(Eisenhart, 1947), the effects of violations of assumptions (Cochran, 
1947), and remedies for violations (Bartlett, 1947) of the ANOVA as-
sumptions of homogeneity, normality, and additive effects. In biology 
and ecology, experimental and observational studies often yield count 
data, which do not meet the assumptions for ANOVA (e.g., number of 
species in an area, number of offspring, number of colonies). In such 
instances, textbooks such as Sokal and Rolf (1969) and Zar (1974) rec-
ommend applying standard ANOVA procedures after addressing the 
assumption of homogeneity by application of a transformation appro-
priate to the assumed error distribution. With count data that follows 
a Poisson distribution, a square root transformation is recommended 
(Crawley, 2003; Maindonald & Braun, 2007; Sokal & Rohlf, 1969; Zar, 
1974, 1999), while for datasets containing a large number of zeros, a 
square root transformation applied to y + 0.5 or to y + 3/8, where y is 
the response variable, may yield better results (Sokal & Rohlf, 1969). 
For data, where the variance is positively correlated with the mean, 
a logarithmic transformation is recommended (Sokal & Rohlf, 1969; 
Zar, 1974). When analyzing data bounded at zero and one, as with 
percentages and proportions or negative binomial counts, the arc-
sine square root transformation (arcsin(√y) where y is the response 
variable) is recommended (Anscombe, 1948; Sokal & Rohlf, 1969; 
Zar, 1974). Unfortunately, addressing homogeneity with an appro-
priate transformation does not necessarily address other assump-
tions (Bartlett, 1947; McCullagh & Nelder, 1983). For commonly used 
nonlinear equations in biology, the assumption of additive effects for 
count data can be addressed by linearization. The commonest exam-
ples (Crawley, 1993) are log transformation of the response variable 
for exponential relations (e.g., demographic rates), log transformation 
of the response and explanatory variables for power laws (e.g., spe-
cies–area curves), and taking the inverse of the response and explan-
atory variable for simple asymptotic relations (e.g., the Holling “disk” 
equation), and log transformation for proportional change in discrete 
(count) data (Bishop, Fienberg, & Holland, 1974). The proliferation of 
special-purpose transformations in the mid-20th century culminated 
in the Box–Cox family of transformations, which puts a range of trans-
formations on a single scale Yλ, that includes inverse, log, square root, 
and power law transformations. This approach (Box & Cox, 1964) al-
lows the contributions of additivity, homogeneity of variances, and 
normality to be separated.

As data transformation is an accessible solution to avoid non-
normal error distributions which allows analyses to be easily conducted 
by application of linear models while requiring limited computational 
power, it has been widely recommended in textbooks such as Sokal 
and Rohlf (1969) and Zar (1974), which have had a formative influ-
ence on the practice of statistics in biology and ecology. Data trans-
formations can also be appealing as they can help decrease the impact 
of outliers and equalize the spread across different levels of a factor, 
thus improving linearity of the response variable and homogeneity of 
the variance. However, the approach is empirical; it does not address 

equations where the parameters are known from biological principles 
(Crawley, 1993, McCullagh & Nelder, 1983). Nor does the approach 
address the problem of biologically founded equations that are intrin-
sically nonlinear (Crawley, 1993), such as hyperbolic and asymptotic 
exponential equations. The use of transformations also produces pa-
rameter estimates which are hardly interpretable as they are no lon-
ger in the same scale as the original data. Log-transforming data are 
known to produce erroneous (Currie & Schneider, 2011; Packard & 
Boardman, 2008; Stroup, 2013) estimates of linear trends and linear 
contrasts among means. With the addition of a fixed value for trans-
formation of count data (e.g., using log(y + 1) to work around the prob-
lem of log(0) for count data), these inaccuracies can be exacerbated 
(O’Hara & Kotze, 2010). Neither textbooks by Sokal and Rohlf (1969) 
nor Zar (1974) mention checking the residuals for normality before 
undertaking transformation, nor do these texts mention checking re-
siduals after transformation to confirm that assumptions were met for 
calculating type I error rates to declare a statistical decision.

Landmark texts by Sokal and Rohlf (1969) and Zar (1974) follow 
Fisher (1925; 1954) in treating count data as a goodness of fit test 
where type I error in accepting one model over another is calculated 
from a χ2 distribution. McCullagh and Nelder (1983) introduced the 
generalized linear model (GLM), which extended Fisher’s concept of 
likelihood to include transformation of both the response variable 
and the fitted value, the latter by specifying a link function. This ap-
proach is an alternative to transformations which allows the analyst 
to choose some combination of link function and error structure to 
address assumptions for estimating parameters and type I error where 
hypothesis testing is warranted. Thus, biological researchers can di-
rectly specify the error distribution and the relationship between the 
mean and the variance, thereby avoiding the inaccuracies that arise 
from transforming and back-transforming data (O’Hara & Kotze, 
2010). With the GLM approach, a binomial error structure is used for 
units scored in a binary fashion or as counts of successes relative to 
trials, and a Poisson or overdispersed Poisson error structure is used 
for counts per unit. This approach is now being extended (Stroup, 
2013) to generalized linear mixed models (GLMM), which incorporate 
both random and fixed effects. GLMs function well on count data that 
include zeros (Bolker et al., 2008; McCullagh & Nelder, 1989); how-
ever, when there is an abundance of zeros relative to a Poisson or 
negative binomial error model, a hurdle or zero-inflated model is rec-
ommended when fitting models and interpreting the estimates and 
trends (Lambert, 1992; Mullahy, 1986). The increasing availability of 
software and accessible texts (e.g., Dunteman & Ho, 2006; Hoffmann, 
2004), combined with the advantages of avoiding transformation of 
data and back-transformation of parameter estimates, has resulted in 
repeated recommendations to replace data transformation with GLM/
GLMM procedures (Lo & Andrews, 2015; O’Hara & Kotze, 2010; 
Steel, Kennedy, Cunningham, & Stanovick, 2013; Warton & Hui, 2011; 
Wilson & Hardy, 2002).

Recently, Ives (2015) has argued for the traditional route of log-
transforming count data, as it has a lower rate of type I error (false 
positive) than other typical transformations (most textbooks suggest 
square root transformation for count data) or GLM. Ives (2015) showed 
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that log-transforming count data using the formula log(y + 1) yields the 
best control over type I error, while acknowledging that potential inac-
curacy in the estimates of coefficients was not considered. Ives’ (2015) 
conclusion is similar to earlier work by Stroup (2013), who showed 
that transformation and GLM/GLMM procedures are equivalent when 
the only concern is control of type I error, and thus, emphasis is only 
placed on the p-value for declaring a statistical decision. Stroup (2013) 
also showed that transformations yield poor parameter estimates, es-
pecially in the case of the log transformation. Subsequently, Warton 
et al. (2016) used simulated overdispersed counts from an unbal-
anced sampling design to compare the outcomes of transformation 
and GLM with count data, arguing that GLM procedures should be 
applied rather than transformations if the GLM provides a good fit to 
the structure of the residuals, or if steps are taken to investigate and 
correct type I error (e.g., through resampling or permutation tests). Yet, 
Warton et al. (2016) underlined the importance of choosing an appro-
priate model based on data properties and diagnostic tools, which can 
be more difficult with small sample sizes. Warton et al. (2016) as well 
as Ives (2015) and Stroup (2013) used simulated data in their analyses, 
for which the error structure and true values of the parameter esti-
mates are known; they did not extend their analyses to case studies 
where the error structure is unknown.

Given repeated recommendations to replace data transforma-
tion with GLM procedures, we investigated whether statistical text-
books for biologists continue to recommend data transformation for 
the analysis of count data. We also recorded the prevalence of data 
transformation versus model reformation in the peer-reviewed litera-
ture over the period of 1980–2017, that is, when the majority of the 

textbooks consulted were published. We then extended the analysis 
of Stroup (2013), Ives (2015), and Warton et al. (2016) to the analysis 
of nonsimulated count datasets, using examples with a history of de-
tailed treatment in textbooks. For 12 examples, we compared the re-
sidual plots, type I error rates, and coefficient estimates yielded by (1) 
a linear model after square root transformation of the response vari-
able; (2) a linear model after log(y + 1) transformation of the response 
variable; and (3) a GLM (with log link and either a Poisson or a negative 
binomial distribution). Given the prevalence of count data in ecological 
research, we focused the literature search and model comparisons to 
this type of data so that the results presented here are of interest to 
ecologists and biologist.

2  | LITERATURE REVIEW

For the literature review, we divided our search into two categories: 
textbooks and journal articles published in the refereed literature. In 
the first, we consulted over 50 statistical textbooks published since 
1980 (in addition to early editions of seminal textbooks by Fisher and 
Snedecor—see below) and noted whether the author(s) recommend 
the use of transformations or of GLM/GLMM when confronted with 
non-Gaussian data (generally count data, proportions, or binary data). 
We focused our review on general-purpose textbooks that are suit-
able for use in undergraduate and graduate levels statistics courses, as 
they are comprehensive in nature and represent that to which most 
students and researchers will be exposed. Hence, speciality textbooks 
focusing on GLM have been excluded, despite their abundance in 
recent years. The list of publications consulted and their recommen-
dation for the analysis of data with non-normal error structure is pre-
sented in Appendix S1. The results are summarized in Figure 1, where 
observations are grouped by 5-year periods.

Data transformation to address problems of non-normal or het-
erogeneous errors does not appear in any of the 12 editions of Fisher’ 
text (1925 through 1954). Nor does it appear in the first four editions 
of Snedecor (1937 through 1946).

Abnormality, non-additivity, and heterogeneity of variance 
ordinarily appear together. It would be ideal if transforma-
tion could remedy all the difficulties, but that doesn’t often 
happen. 

Snedecor (1956)

The first recommendation for transformation that we could find in 
a text appears in Snedecor and Cochran (1967) with a brief treatment 
of the arcsine square root transformation for proportions (i.e., arcsin(√y) 
where y is the response variable). Text recommendations for the use 
of GLM begin with McCullagh and Nelder (1983) and continue in spe-
cialty texts, similarly focused on the GLM. Recommendations for trans-
formation continued to appear in general-purpose texts for biologists 
throughout the 20th century into the present (Figure 1, Appendix S1). 

F IGURE  1 Proportion (%) of textbooks recommending the use of 
transformations (in gray), generalized linear models (GLM, in white), 
or both (in dark gray) when dealing with data with a non-normal error 
structure. Data are presented by year of publication and grouped 
into 5-year periods. All textbooks consulted were published between 
1980 and 2017. The number above each bar represents the total 
number of textbooks in each time period
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Several textbooks consulted contained recommendations for both GLM 
and transformations when assumptions of the linear model were not 
met (one text between 1980 and 1985 (Atkinson, 1985), and nine texts 
since 2001, see Appendix S1). In all but one of these cases (Vittinghoff 
et al. 2012), transformations were suggested as an alternative only in 
cases where the use of a GLM did not meet the necessary assumptions. 
Despite some recommendations for the use of GLM in textbooks pub-
lished since 1991, in addition to continued recommendations in special-
ity texts focused on the GLMs, transformations remain the predominant 
recommendation within general-purpose texts. These results, and the 
recent publication of several journal articles debating the use of trans-
formations and GLM (Ives, 2015; Lo & Andrews, 2015; O’Hara & Kotze, 
2010; Warton & Hui, 2011; Warton et al., 2016), show that there is not 
yet a consensus in general-purpose statistical texts directed toward biol-
ogists and ecologists as to the best practice for dealing with non-normal 
residuals.

For the second part of our literature review, we used Google 
Scholar to find articles published in peer-reviewed journals in the 
fields of biology and ecology presenting original research in which 
analyses are conducted on count data and determined whether the 
authors had transformed their data or applied a GLM/GLMM. We 
used the keywords “count” or “count data” and focused on articles 
published after 1980. In order to cover both terrestrial and marine 
publications, we concentrated our efforts on ten ecology journals that 
publish mainly original research and are influential in their respective 
fields (as marked by their relatively high impact factor score and cita-
tions): Ecology, Oikos, Journal of Animal Ecology, Ecology Letters, Plant 
Biology, Journal of Ecology, Nature, Plant Ecology, Marine Biology, and 
Marine Ecology Progress Series. The list of publications consulted and 
the statistical method applied in each (either transformations or GLM/
GLMM) is presented in Appendix S2. The results are summarized in 
Figure 2, where observations are grouped by 5-year periods.

The results of the literature review of journal articles show that 
all the articles published before the year 1996 used the classical ap-
proach of applying a transformation to the response variable prior 
to analysis. The proportion of articles using GLM increased in the 
following decades: from 4% of the publications using these models 
between 1996 and 2000, to 43% between 2000 and 2005, and to 
approximately 52% after 2006. This trend may be due at least in part 
to the increasing availability of software packages that allow easy 
application of GLM/GLMM and to increasing knowledge of these 
software among researchers. It may also be due to the rise in num-
ber of articles critiquing the use and outcomes of data transformation, 
as discussed in our introduction. However, the increasing number of 
researchers (as indicated by articles published in the primary litera-
ture) favoring GLM/GLMM over transformation cannot be linked to 
general-purpose texts, which continue to recommend transformation 
(Figure 1, Appendix S1). It is possible that researchers rely more heav-
ily on the documentation related to their preferred software or on the 
increasing number of textbooks specialized in the application of GLM/
GLMM to guide their analysis, rather than on general-purpose text-
books. Researchers, in particular graduate students, also rely heavily 
on web resources such as online course material and tutorials to guide 

the execution of analyses on their favorite software. Of all the journal 
articles consulted, only two mentioned using both GLMs and transfor-
mations (Langwig et al., 2012; McCauley et al., 2010); for certain data 
in their analyses, the GLM did not meet the necessary assumptions 
and thus a transformation was applied, as was suggested in nine text-
books consulted in our review (see Appendix S1).

3  | MODEL COMPARISONS

3.1 | Method

To contrast the difference in results when using transformation 
(square root and log) and reformation (GLM), we applied and com-
pared different models to 12 analyses of count data obtained from 
the landmark text of McCullagh and Nelder (1983) and from the 
widely cited text of Agresti (1996). These datasets were chosen as 
their error structure fitted well a Poisson distribution, hence eliminat-
ing the risk of differences caused by a poor choice of error structure. 
In addition, the datasets are not overdispersed (except in one case, 
see Appendix S6). In each case, the assumption of homogeneity of 
variances was assessed graphically (Neter & Wasserman, 1974). All 
analyses were run using R 3.2.2 with the car and MASS packages (R 
Development Core Team, 2009).

Each dataset was analyzed in three different ways by (1) apply-
ing a square root transformation to the response variable and running 
a linear model; (2) applying a log transformation (log(y + 1) where y 
is the response variable) and running a linear model, and (3) running 

F IGURE  2 Proportion (%) of research articles using 
transformations (in gray), generalized linear models (GLM, in white), 
or both (in dark gray) when dealing with data with a non-normal error 
structure. All articles considered come from peer-reviewed journals 
in the fields of biology and ecology. Data are presented by year of 
publication from 1980 to 2017, grouped into 5-year periods. The 
number above each bar represents the total number of articles in 
each time period
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a GLM with either a Poisson or negative binomial distribution, de-
pending on which was more appropriate from examination of residual 
plots. The residual versus fit plots, the outcome of the test statistic 
(significance of the p-value), and the value of the coefficients (means 
for ANOVA factors, and slopes and intercepts for regressions) were 
compared among the models applied to each dataset. The models for 
each dataset, as well as the resulting comparisons, are presented in 
Appendices S3–S14.

To obtain estimates of the coefficients (means or intercept and slope, 
for categorical or regression analyses, respectively) from the linear model 
applied to the square-root-transformed data, a back-transformation was 
necessary. For categorical analyses, we first obtained the estimate of the 
“transformed” mean for each factor by calculating the sum of each fac-
tor added to the value of the intercept estimate, as is the procedure for 
calculating means from the estimates of a model with the identity link 

(Gaussian/normal distribution). Then, the value of each “transformed” 
mean was squared to return the values to the original scale. In the 
case of regressions, the “transformed” estimates of the intercept and 
the slope were squared to place them back on the original scale, and 
when the uncorrected estimate was below zero, the negative sign was 
retained after squaring to maintain the same trend (e.g., increasing or 
decreasing slope, positive or negative intercept).

A back-transformation was also applied to the estimates of the co-
efficients of the linear model applied to the log-transformed data. For 
categorical data, we first obtained the estimate of the “transformed” 
mean for each factor by calculating the sum of each factor (separately) 
and the “transformed” estimate of the intercept. Then, each “trans-
formed” coefficient (β) was back-transformed by exponentiating it and 
subtracting 1 (i.e., eβ − 1) to obtain the geometric means. The same 
method (i.e., exponentiating the estimate and subtracting one) was 
used to obtain the value of the intercept and the slope in the case of 
regressions.

The values of the coefficients for the GLM were easily obtained 
and are known to be accurate (Stroup, 2013; table 11.1). First, we ex-
ponentiated the estimates to obtain the coefficients for each factor, 
then we multiplied the coefficient of each factor by the coefficient of 
the intercept (the mean) to obtain the mean for each factor (i.e., eβ · βin-
tercept). We followed this procedure because the log link was used in 
the GLM, which produces coefficients that are multiplicative in na-
ture, as the coefficients provide a proportion relative to the intercept 
mean. In the case of regressions, the exponentiated coefficient for the 
regression factor shows the proportion change with each increment 
of the explanatory variable. Thus, we obtained the value of the slope, 
which was necessary for comparison with the other two models, by 
subtracting one from the value of the proportion change (i.e., the value 
of the exponentiated coefficient).

3.2 | Comparison of the residual plots

For eight of the 12 datasets, the residual versus fit plots were very 
similar between the three models—two transformations and one GLM 
(Figure 3). When a difference was observed, it was almost always in 
the linear model applied to square-root-transformed data, which dis-
played more of a fan-shaped trend than the plots from the other two 
models (in three datasets of 12, see Appendices S9–S11). However, 
in most cases, all three models had acceptable residual versus fit plots 
(i.e., uniform bands in the plots).

3.3 | Comparison of the outcome of the 
statistical test

The outcome of the statistical test was generally consistent among 
the three models for a given dataset. Although the actual p-value var-
ied substantially between the models, only in the case of two datasets 
(out of 12, see Appendices S6 and S13) did this variation result in a 
change of decision at a fixed tolerance for type I error of α = 0.05, 
as both models using transformed data yielded a different outcome 
compared to the GLM.

F IGURE  3 Example of comparison of residual versus fit plots 
for (top to bottom) linear model performed on square-root-
transformed data, linear model performed on log-transformed 
data (using log(y + 1) where y is the value of the response variable), 
and generalized linear model, applied to the dataset presented in 
Appendix S6, representing the number of train-to-car collisions in 
relation to the year (from Agresti, 1996, p. 83). Red lines represent 
smoothed curves fitted to the data in each plot. See Appendices S3–
S14 for residual versus fit plots for all 12 datasets used in case 
studies
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3.4 | Comparison of the coefficient values

Given that the estimates obtained by application of the GLM on 
untransformed data are known to be accurate (Stroup, 2013; table 
11.1), the estimates obtained by the models applied to transformed 
data were compared to those of the GLM to evaluate their accuracy. 
Both models using the transformed data underestimated the value of 
the intercept and slope in regressions compared to GLM estimates 
(Figure 4, Appendices S3–S8). In these models, the square root 
transformation typically had the lowest values of the three models, 
yielding an estimate more distant from the accurate values obtained 
with the GLM on untransformed data than the estimate calculated 
for the log transformation. Similarly, in models containing categori-
cal explanatory variables, we found that the coefficients calculated 
for linear models applied to transformed data were generally lower 
than the ones obtained from the GLM (Figure 4, Appendices S9–S14). 
In contrast to the regression models, the coefficients of the square-
root-transformed data were not consistently lower than those of the 
models using the log transformation.

4  | DISCUSSION

The proportion of journal articles in the primary literature in which au-
thors used reformation (GLM/GLMM) has steadily increased over the 
past 25 years (Figure 2) relative to the articles in which authors trans-
formed their data to then apply a linear model. However, this trend in 
the primary literature does not represent the recommendations found 
in general-purpose texts for biologists (see Figure 1). The increasing 
use of GLM/GLMM procedures to address non-normal errors may 

be consistent with the increase in special-purpose texts, but was not 
consistent with the continuing recommendation of transformation in 
textbooks for biologists in general and ecologists in particular.

Ives (2015) argued that the traditional approach of transformation 
is preferable as GLMs are prone to high type I error rates under some 
simulated conditions. Stroup (2013, table 11.1) similarly reported a 
slightly higher rejection rate for a GLM with Poisson error than for log-
transformed data. Stroup (2015) attributed the disparity to excessively 
conservative tests with log transformation. In addition, Stroup (2013) 
found that the log transformation did a poor job estimating parame-
ters. Also, the log transformation performed poorly as measured by 
disparity between “the standard error of the estimator and the stan-
dard deviation of the estimator’s sampling distribution” (Stroup, 2013; 
p. 340). It has been demonstrated repeatedly that the GLM produces 
narrower confidence limits than transformation of the response vari-
able (Hamada & Nelder, 1997; Lewis, Montgomery, & Myers, 2001). 
When we extended the analysis of data transformation versus refor-
mation from simulated data with known parameters to datasets with 
unknown parameters, we found that the residuals differed little be-
tween linear models applied to transformed data and GLM. Consistent 
with the findings of Stroup (2013) for simulated data, we found that 
decisions from the p-values (at α = 0.05) were usually consistent 
among models (square-root-transformed data, log-transformed data, 
and GLM), although GLMs can be prone to high type I error rates if 
misspecified (Ives, 2015).

As expected from previous studies, the coefficients from the lin-
ear models run on transformed data, once back-transformed, were 
consistently distant from the estimates on the original scale obtained 
with the GLM (Figure 4). The distance of the coefficients of the trans-
formed datasets relative to the accurate coefficients from the GLM 

F IGURE  4 Linear model estimates relative to those calculated in the generalized linear models (GLM) (% difference) for each dataset. 
Complete results are presented in Appendices S3–S14
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(Stroup, 2013) varied dramatically from one dataset to another. This 
suggests that a general procedure to correct for such inaccuracy can-
not be applied. A primary source of uncertainty in our procedure lies 
in the method used for back-transforming the coefficients obtained 
from the square-root-  and log-transformed data. Despite extensive 
search in statistical textbooks (Appendix S1) and online statistical re-
sources, there was insufficient and often conflicting information on 
the appropriate procedure to apply. Little information on the proce-
dure to back-transform estimates was found in statistical textbooks 
aimed toward biologists and ecologists, and the few recommendations 
presented typically addressed only simple scenarios. For example, 
one squares the estimates to obtain the coefficients with square-
root-transformed data. However, because this procedure will always 
produce positive coefficients, the negative sign must be reapplied 
as appropriate, yet this correction was never stated explicitly. With 
regard to log transformation of count data, back-transformation was 
calculated in the literature as 10β. However, due to the occurrence of 
zeroes in count data, a constant was generally added to the data prior 
to applying the log transformation (e.g., log(y + 1)). Nowhere in the lit-
erature did we find a clear preference for using 10β − 1 as opposed to 
10β − 1 to back-transform. The lack of a clearly stated procedure for 
back-transformation of estimates adds an additional level of uncer-
tainty when comparing results from different studies. For the analyses 
presented here, coefficients were back-transformed that seemed most 
logical based on the overall recommendations found through a thor-
ough web search and consultation of statistical textbooks. We do not 
maintain that our approach to back-transformation is definitive. Other 
investigators attempting back-transformation of coefficient estimates 
might well arrive at a different choice in methods and thus obtain dif-
ferent outcomes, which points to a clear need for a definitive treat-
ment of the problem of accurate back-transformation of coefficient 
estimates. The analysis of data on its original scale, either via random-
ization tests or by use of an appropriate error model, is an established 
and certain way of yielding unambiguous parameter estimates in the 
field of quantitative biology. The uninterpretability of transformed 
data has been repeatedly stated (Warton & Hui, 2011). The hidden 
cost of transformation is that parameter estimates are no longer repre-
sentative measurements, defined by Krantz, Luce, Suppes, and Tversky 
(1971) as mappings from empirical relations into numerical relations. A 
transformed variable ceases to represent additive empirical relations, 
such as 2 m + 2 m = 4 m. Put another way, units are lost in transfor-
mation. Cases where representational measurement is preferable are 
readily imagined.

Data transformation can be applied for four purposes, as stated 
by Crawley (1993, p. 214): (1) to obtain a constant error variance; (2) 
to obtain approximately normal errors; (3) to achieve linear (additive) 
relation between response and explanatory variables (but note that 
while some transformations lead to additive relations [such as log(pro-
portions)], transformations destroy additivity on the original scale of 
measurement); and (4) to allow more straightforward scientific expla-
nation. The first two establish sound estimates of type I error. The 
second and third establish the applicability of model results to the an-
alytic goals. However, achieving all four purposes is rare; trade-offs are 

almost inevitable. Given our results, where the use of GLM had mini-
mal impacts on the residuals and the statistical outcome, and yielded 
interpretable coefficients, we take into account the advantages and 
trade-offs of both analytical methods (transformation and GLM) and 
recommend that transformation be used only in cases where (a) type 
I error is more important than parameter estimates, (b) an estimate of 
type I error is necessary, or (c) a suitable error model cannot be identi-
fied from examination of residual plots and other diagnostics.

Our recommendation (a) addresses the trade-off between control 
over type I error and interpretability of coefficient estimates. When 
might type I error be more important? A good example comes for 
Fisher’s (1925) text: prevalence of typhoid in uninoculated and inocu-
lated soldiers. The parameter estimate (an odds ratio) is less important 
than decision based on type I error, in the context of the cost of inoc-
ulation versus the cost of mortality under trench warfare conditions in 
World War I. Our recommendation (b) pertains to cases when type I 
error estimates is necessary for planning experiments, designing mon-
itoring programs, and justifying research proposals. In many fields, in-
cluding some areas of ecology, calculations of adequate sample sizes, 
relative to standards for type I and type II errors (typically 5% and 20%, 
respectively), are expected. Lastly, physically or biologically interpreta-
ble regression estimates used for interpolation are of little value if the 
error model employed to produce the estimates does not fit the data 
(i.e., a suitable error model cannot be identified from examination of 
residual plots and other diagnostics, our recommendation (c)). In such 
cases, it would be better to get the type I error correct via heuristic 
transformation of the response variable rather than focusing on coef-
ficient estimates.

5  | CONCLUSIONS

Although the transformation of data and the use of GLM/GLMM both 
continue to be recommended in statistical textbooks from 1967 to 
the present, the occurrence of GLM/GLMM applied to count data in 
peer-reviewed articles has shown a clear increase since 2000. Our 
findings from 12 analyses with unknown parameters extend those of 
Stroup (2013): Transformation and GLM techniques applied to count 
data yielded p-values that rarely resulted in a change in the statistical 
decision, and the use of transformations resulted in inconsistent and 
sometimes large differences in the coefficient estimates. The absence 
of a consensus or clear procedure regarding the back-transformation 
of coefficient estimates is at once a gap in statistical practice and a 
major argument against the use of transformations. GLM/GLMM 
methods yield directly interpretable estimates on an additive rather 
than multiplicative scale, without greatly impacting the control over 
type I error in our analyses as well as in synthetic data sets with known 
parameters (Stroup, 2013). Furthermore, these estimates are free of 
the known inaccuracy present in parameters estimated on a trans-
formed scale, as occurs with data transformations. Measures can also 
be taken to improve control over type I error in GLM procedures, for 
example, through permutation or parametric bootstrap (Warton et al., 
2016). Given the availability of statistical software capable of running 
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such models, together with accessible texts, we recommend the use 
of model reformation over data transformation for the analysis of 
count data, except when a decision against a fixed type I error rate 
is more important than estimating a parameter on its original scale.
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