
78

Considerations for assessing model averaging of regression 
 coefficients

Katharine M. Banner
1,3 and Megan d. higgs

1, 2

1Department of Mathematical Sciences, Montana State University, Wilson Hall 2-214, P.O. Box 172400, Bozeman,  
Montana 59717 USA

Abstract.   Model choice is usually an inevitable source of uncertainty in model-based 
statistical analyses. While the focus of model choice was traditionally on methods for choosing 
a single model, methods to formally account for multiple models within a single analysis are 
now accessible to many researchers. The specific technique of model averaging was developed 
to improve predictive ability by combining predictions from a set of models. However, it is now 
often used to average regression coefficients across multiple models with the ultimate goal of 
capturing a variable's overall effect. This use of model averaging implicitly assumes the same 
parameter exists across models so that averaging is sensible. While this assumption may initially 
seem tenable, regression coefficients associated with particular explanatory variables may not 
hold equivalent interpretations across all of the models in which they appear, making 
explanatory inference about covariates challenging. Accessibility to easily implementable 
software, concerns about being criticized for ignoring model uncertainty, and the chance to 
avoid having to justify choice of a final model have all led to the increasing popularity of model 
averaging in practice. We see a gap between the theoretical development of model averaging 
and its current use in practice, potentially leaving well-intentioned researchers with unclear 
inferences or difficulties justifying reasons for using (or not using) model averaging. We attempt 
to narrow this gap by revisiting some relevant foundations of regression modeling, suggesting 
more explicit notation and graphical tools, and discussing how individual model results 
are combined to obtain a model averaged result. Our goal is to help researchers make informed 
decisions about model averaging and to encourage question-focused modeling over  method-
focused modeling.

Key words:   Bayesian model averaging; explanatory inference; linear regression; model averaging; model 
selection; multimodel inference; predictive inference.

introduction

In practice, there typically exists more than one 
 reasonable model as a basis for statistical inference and 
for over 50 years the potential implications of ignoring 
uncertainty in the process of choosing an inferential 
model have been discussed. Leamer (1978) cautioned that 
inferences conditional on one model may result in inflated 
precision for estimates and predictions. Similarly, Hodges 
(1987) explicitly laid out three types of uncertainty he 
argued should be addressed in any analysis: uncertainty 
in structure (model), uncertainty in parameter estimates 
conditional on model, and uncertainty in measurement 
(inherent in data collection).

Algorithms for implementing Bayesian model selection 
and variable selection were developed in the late 1990s 
and the formal assessment of model uncertainty became 
possible (e.g., George and McCulloch 1993, Green 1995, 
Geweke 1996, George and McCulloch 1997, Raftery 
et al. 1997, Kuo and Mallick 1998, Hoeting et al. 1999). 

A substantial amount of work went into improving algo-
rithms’ computational efficiency (e.g., Clyde et al. 1996, 
Clyde 1999, Clyde et al. 2011) and exploring their sensi-
tivities to different prior specifications (e.g., Chipman 
1996, Chipman et al. 2001, Link and Barker 2006, 
Feldkircher and Zeugner 2009). Relatively little work has 
gone into assessing the practical implications of incorpo-
rating model uncertainty into analyses, particularly for 
explanatory (rather than predictive) goals. Concerns 
raised previously have received little formal attention or 
are still unsettled within the statistical community, as evi-
denced by recent publications (Cade 2015, Fieberg and 
Johnson 2015, Hooten and Hobbs 2015, Ver Hoef and 
Boveng 2015).

Bayesian model averaging was originally developed as 
a method for improving out-of-sample predictions by 
combining predictions from multiple models with weights 
based on their posterior model probabilities. Algorithms 
for obtaining posterior model probabilities were 
developed with this predictive goal in mind. Software to 
implement model averaging has developed to the point 
where researchers can almost automatically obtain 
results regardless of their statistical backgrounds and the 
potential benefits of model averaging are being adver-
tised in a very broad sense. In general, discussions about 
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the benefits of model averaging have blurred the dis-
tinction between predictive and explanatory inference, 
leading researchers to believe model averaging is always 
an advantage. This is concerning because the interpre-
tation of partial regression coefficients can depend on 
other variables that have been included in the model, so 
averaging regression coefficients across models may not 
be practically meaningful.

In their text geared towards biologists, Burnham and 
Anderson (2002) advocate for accounting for model 
uncertainty using AIC-based (Akaike's information cri-
terion; non-Bayesian) model averaging in problems 
where the estimates of coefficients are of primary interest 
(not just for prediction). Similarly, Montgomery and 
Nyhan (2010) advocate for Bayesian model averaging for 
political scientists, arguing it can “help applied researchers 
to ensure that their estimates of effects of key independent 
variables are robust to a wide range of possible model 
specifications." In their widely cited paper, Bayesian 
model averaging: a tutorial, Hoeting et al. (1999) suggest 
that model averaging for prediction can help researchers 
avoid having to defend a particular choice of model, with 
the benefit of a simplified presentation. While these are 
attractive qualities for predictive inference, we do not 
believe these statements were intended to extend to model 
averaging of regression coefficients.

The advertised allures of model averaging are strong, 
and we see researchers being pulled toward the method 
regardless of their research objectives. Our observations 
and concerns are, in general, consistent with those 
recently raised by Cade (2015), who argues that the use 
of model averaging of regression coefficients may result 
in misleading inferences while leaving researchers 
“strangely, feeling satisfied that model uncertainty has 
been addressed." Cade (2015) suggests using partial 

standard deviations to adjust the regression coefficients 
for their changing scales among models (due to 
multicollinearity).

There are many things a researcher must consider 
before deciding if model averaging is useful and appro-
priate for a particular problem (Fig. 1). After the decision 
to use model averaging has been made, there are addi-
tional considerations and decisions to be made about 
how model averaging will be implemented, such as 
whether to employ the standardization methods described 
in Cade (2015). Much of the model averaging literature 
falls into categories represented with rectangles in Fig. 1 
(e.g., Consider MA, Fit MA, etc.), with little falling into 
the Assess MA category. In this paper, we focus on the 
assessment step in the model averaging process.

Assessing the appropriateness of model averaging 
must be done on a case-by-case basis, as it is difficult to 
understand the model-averaged result without under-
standing how the individual model results combine to 
create it. We look closer at the difference between mod-
el-averaging predictions and regression coefficients, 
review foundations of linear regression, suggest helpful 
notation, and introduce graphical tools to help under-
stand how results from individual models are combined 
to form model averaged results. We also highlight the 
importance of making modeling decisions in the context 
of the research questions, which we term question-fo-
cused modeling. These considerations help researchers 
make informed decisions about model averaging on a 
case-by-case basis and provide a foundation for arguing 
against its use in cases where it is unnecessary or 
inappropriate.

We use two examples (see Example 1: Haul-out 
Behavior of Weddell Seals and Example 2: When 
Prediction Leads to Explanation) with different analysis 

Fig. 1. This flow chart depicts steps a researcher could take when considering model averaging. Much of the model-averaging 
literature falls under the rectangular nodes. Articles related to algorithms and computational efficiency fall under Fit MA (e.g., 
Clyde , 1999, 2012, Link and Barker 2006, Feldkircher and Zeugner 2009, Clyde et al. 2011, Barker and Link 2013), articles related 
to predictive performance fall under Prediction (e.g., Raftery et al. 1997, Hoeting et al. 1999), and literature related to using model 
averaging for explanatory inferences falls under Explanation of coefficients and variable importance (e.g., Burnham and Anderson 
2002, Cade 2015). Some of the literature raises concerns with particular aspects of model averaging and multimodel inference 
(e.g., Cade 2015, Fieberg and Johnson 2015, Ver Hoef and Boveng 2015). This paper falls under the Assess node.
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objectives to show how these considerations and graphical 
tools can be used in practice. In our first example, we 
demonstrate the practical importance of considering 
whether the added complexity of model averaging is 
worth the potential gains, particularly if inferences 
change very little compared to conditioning on one rea-
sonable model. We highlight question-focused modeling 
and illustrate advantages it can have over model aver-
aging. In our second example, we point out the often 
hidden secondary goals of analyses even when the stated 
goal is prediction. We use both examples to illustrate how 
we can assess the implications of the model-averaging 
process relative to the problem at hand.

The information in this paper should be relevant to a 
broad spectrum of researchers, ranging from those with 
little statistical background to quantitative ecologists and 
applied statisticians. The information presented is meant 
to be foundational for some, a refresher for others, and 
for all, an aid for assessing when and why model aver-
aging might be used as an effective research tool.

Model averaging Within MultiModel inFerence

Multimodel inference is an umbrella term for incorpo-
rating multiple models into a single analysis, including 
both model selection (selection of a model for inference 
from a clearly defined set of models) and model combi-
nation (e.g., model averaging; Hooten and Hobbs 2015). 
To conduct multimodel inference, a model set 
 ≡ {M1,M2,...,MJ} must be defined, where J is the 
total number of models considered. Ideally,  is spec-
ified using sound science and expert knowledge prior to 
observing the data (e.g., Burnham and Anderson 2002). 
However, for processes that are not well understood and 
do not have a pre-defined set of potential models, it is 
common for researchers to define  as the set of all pos-
sible regression models made up from combinations of a 
set of potential input variables. The consideration of all 
first-order combinations of quantitative input variables 
without any interactions is commonly referred to as all 
subsets regression and is the default in multiple software 
packages. Other strategies for choosing model sets are 
discussed elsewhere (e.g., Doherty et al. 2012).

Model averaging was originally developed in a Bayesian 
framework, where all unknowns are modeled with proba-
bility distributions and the hierarchy stemming from 
models and parameters within models is naturally incor-
porated. Knowledge about parameters before data are 
collected (prior) is combined with information from the 
data (through the likelihood) to form posterior distribu-
tions for all unknowns of interest, as opposed to focusing 
only on a likelihood function for inference. Including the 
model set  as an unknown allows model uncertainty to 
be directly incorporated into an analysis. Prior distribu-
tions must be placed on  and all of the parameters in 
each model. A prior for the discrete random variable  is 
defined by assigning prior probabilities to each model in 
, such that p() = {Pr(M1),Pr(M2),...,Pr(MJ)}, and 

∑J

j= 1
Pr(Mj) = 1. Similarly, we denote the joint prior dis-

tribution on the parameters in the jth model as p(�j|Mj), 
where �j is the parameter vector for the jth model (including 
regression coefficients and any other parameters in model 
Mj, such as, but not limited to, (co)variance terms). The 
collection of posterior model probabilities {Pr(Mj|y) for 
j = 1,2,...,J} defines the posterior distribution for , con-
ditional on the observed data (y). The posterior model 
probability for an individual model is connected to the 
prior model probability and the distribution p(y|Mj) 
through Bayes’ theorem:

where

Specifically, the likelihood function associated with 
model Mj is based on p(y|�j,Mj), and p(y|Mj) is obtained 
by integrating over the posterior distribution of the 
parameters in Mj. The integration is typically intractable 
and therefore done computationally. Note in Eq. 2 that 
the prior distribution for the parameters is contributing 
to p(y|Mj), which in turn contributes to the posterior 
model probabilities.

To provide clear meaning to the posterior model prob-
abilities, it is natural to assume truth is in the model set 
so that the posterior model probabilities represent the 
probability that a model is true, given the data and the 
priors. While this assumption is surely false in practice, 
we appeal to the rationale presented in Link and Barker 
(2006) and Barker and Link (2015) as to why it is rea-
sonable to proceed. Collectively, the posterior model 
probabilities are also used to combine posteriors of quan-
tities of interest from multiple models with the goal of 
incorporating model uncertainty into inferences and are 
also often used to discuss the degree of uncertainty in the 
model set.

Let ϕ be a quantity of interest, such as a prediction of a 
new observation or a regression coefficient. To generally 
define a posterior distribution for a model-averaged ϕ, the 
marginal posterior distributions of ϕ from individual 
models in  are combined using posterior model proba-
bilities to form the distribution commonly written as

Eq. 3 is useful conceptually, but sometimes, as we will 
see in Eq. 9, the posterior distribution for a model- 
averaged ϕ can be more complicated than it appears. For 
more details about the formal setup of Bayesian 
model averaging that is accessible to ecologists and 

(1)Pr(Mj�y)=
p(y�Mj)Pr(Mj)

∑J

j=1
p(y�Mj)Pr(Mj)

(2)p(y|Mj)=∫�j

p(y|�j,Mj)p(�j|Mj)d�j.

(3)p(ϕMA|y)=

J∑

j=1

Pr(Mj|y)p(ϕ|Mj,y).
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environmental scientists, we refer the reader to Link and 
Barker (2010).

We present the fully Bayesian implementation of multi-
model inference, but the concepts and discussion can be 
extended to the non-Bayesian approaches through a focus 
on combining point estimates and their standard errors, 
rather than on parameters and their posterior distribu-
tions. Formulas for the non-Bayesian context can be found 
elsewhere (e.g., Burnham and Anderson 2002, Link and 
Barker 2010). The broad use of Akaike's information cri-
terion (AIC) among ecologists has naturally led to its pop-
ularity for use in model averaging, and while AIC and 
Bayesian information criterion (BIC) approximations ini-
tially seem a simpler option, practitioners should under-
stand the implications of their choice for results (see Link 
and Barker 2006, Hooten and Hobbs 2015).

Model averaging in regression

In the context of linear regression, including gener-
alized linear regression, model uncertainty typically 
enters through the variable selection process. For all 
subsets regression with p first-order input variables,  
contains J = 2p elements, and a common motivating 
question is: Which of p potential input variables should 
define the model(s) ultimately used for inference? We 
follow convention and focus on the case where only first-
order terms of p quantitative input variables are con-
sidered. The issues we discuss in the context of this 
common convention are even more relevant and compli-
cated when higher-order terms such as interactions and 
polynomials are considered. Thus, the challenges in 
implementing Bayesian model averaging with higher 
order terms often naturally leads to their exclusion, and 
we discuss concerns with this in Example 1: Haul-out 
Behavior of Weddell Seals.

We use typical regression notation, defining y as a 
(n×1) column vector of observations of a response var-
iable and X as a (n × (p + 1)) matrix with a column vector 
of 1s for the intercept and additional column vectors for 
the p potential input variables, X = [1,x1,x2,...,xp]. Let �j 
be the (p + 1) column vector of regression coefficients 
associated with Mj. Assuming normal, independent 
errors with constant variance (y∼Nn(�{y|X},�2In× n)), 
we have our familiar multiple linear regression model. 
The mean of y is modeled as a function of the first order 
terms of the p input variables and the intercept. More 
generally, it can be assumed that y follows another distri-
bution (such as binomial or Poisson), and the mean of y 
can be connected to the input variables through a link 
function g(),

where g() is simply the identity function for multiple 
linear regression.

We include an index for model in our notation for 
regression coefficients to make it explicit that the meaning 

of the regression coefficient associated with input var-
iable Xv in model Mj (βv,j) is model dependent. All models 
in  can be defined by excluding certain input variables 
from the fullest model, which is equivalent to setting the 
βv,j associated with those variables equal to 0.

A considerable amount of work has been put into 
investigating the implications and limitations of different 
prior specifications for  and �j in a regression context 
(e.g., George, and McCulloch 1993, 1997, Carlin and 
Chib 1995, Geweke 1996, Raftery et al. 1997, Kuo and 
Mallick 1998, Feldkircher and Zeugner 2009) and also 
the implementation of Markov chain Monte Carlo 
(MCMC) and other sampling schemes, such as Bayesian 
adaptive sampling and reversible jump MCMC (e.g., 
Green 1995, Link, and Barker 2006, 2010, Clyde et al. 
2011, Barker and Link 2013). In depth discussions or cri-
tiques of the different methods available are beyond the 
scope of this paper. We focus on understanding how 
model averaging may be used when the default (or easier 
to use) priors are chosen for implementation.

One of the most common priors for  is the discrete 
uniform prior, which places equal prior weight on each of 
the models considered, Pr(Mj) = 1∕J for j = 1,2,...,J. 
Assuming normal likelihoods, forms of the conjugate 
normal prior for regression parameters are commonly 
used because of their computational advantages and 
availability in R (R Core Team 2016). One such prior is 
Zellner's g-prior (Zellner 1984, Feldkircher and Zeugner 
2009), which specifies a vague multivariate normal prior 
on the partial regression coefficients in each model and 
an improper uniform prior on the standard deviation 
parameter. Specification of one hyper-parameter, g, 
allows the researcher to control how diffuse the prior will 
be, and the resulting posterior distributions for the 
regression coefficients from an individual model are mul-
tivariate t distributions (see Appendix S1 for details).

Knowing the form of the posterior distributions under 
the g-prior greatly simplifies the implementation of mul-
timodel inference from a computational perspective 
because it only requires approximating the first two 
moments, rather than the whole posterior distribution. 
However, the validity of the multivariate t form of the 
posterior distributions is contingent upon no severe vio-
lations of regression assumptions for all models in . In 
the all subsets setting, the size of  grows exponentially 
with the number of input variables considered, which can 
make model checking prohibitive even for moderately 
sized p. This poses a major limitation for multimodel 
inference, as recently pointed out by Ver Hoef and 
Boveng (2015).

Model averaging of predictions

The original motivation for the development of model 
averaging was to improve prediction, with the quantity of 
interest being a new observation at specified values of the 
input variables, denoted ϕj = ỹj for model Mj (consistent 
with Gelman et al. 2013). Although the values of 

(4)g(�{y|X})=β0,j+β1,jx1+β2,jx2+ ...+βp,jxp =X�j,
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predictions will change among models, ỹj holds the same 
meaning for all models and can be directly compared 
among models or combined in a weighted average to 
provide an average prediction over models. It has been 
demonstrated that model averaging can be advantageous 
under many out-of-sample prediction criteria (e.g., 
Raftery et al. 1997, Hoeting et al. 1999).

Within Bayesian inference, we obtain a posterior dis-
tribution of predictions from Mj for a particular set of 
input variables in Xnew. This posterior predictive distri-
bution p(ỹ|y) is defined by

and it describes the current knowledge about the pre-
diction by combining uncertainty in the parameters of the 
model with variability coming from the distribution 
defining the likelihood (i.e., the two components on the 
right of Eq. 5).

We can think of the weighted average 
ỹMA =

∑J

j=1
Pr(Mj�y)ỹj as a model- averaged prediction in 

both the Bayesian and non-Bayesian context. In the 
Bayesian context, ỹMA is an unknown of interest with a 
distribution. Specifically, its distribution is the mixture 
distribution of the posterior predictive distributions from 
the individual models, with weights equal to the posterior 
model probabilities (as in Eq. 3). In the non-Bayesian 
context, the point prediction of ỹMA, is constructed using 
the point predictions from the individual models, and 
formulas are available to obtain the approximate 
standard error of a model- averaged point prediction (see 
Burnham and Anderson 2002, Link and Barker 2010).

This approach of directly averaging predictions works 
for linear and nonlinear models, and even for combining 
predictions from models with different forms. However, 
for normal linear models, a shortcut using the regression 
coefficients has become the most common way to obtain 
model averaged predictions because it bypasses the need 
to actually obtain predictions (or posterior predictive dis-
tributions) for the J models. This shortcut is particularly 
useful when there are many more models than there are 
input variables. For normal linear models, the posterior 
prediction from Mj can be written ỹj =Xnew�j, leading to

Again, in a Bayesian setting �MA describes unknowns 
with distributions. In a non-Bayesian setting, carrying 

through point predictions and point estimates for 
regression parameters provides the same endpoint and 
illustrates the shortcut.

To better understand the equality in Eq. 7, we consider 
an example with two possible predictors, for which the all 
subsets model set is defined by four models: (intercept 
only, X1, X2, or X1 and X2) where j = 1, 2, 3, 4, respectively. 
The vectors of partial regression coefficients for each 
model can be written: �1 = (β0,1,0,0)T, �2 = (β0,2,β1,2,0)T, 
�3 = (β0,3,0,β2,3)T, and �4 = (β0,4,β1,4,β2,4)T. We rewrite 
Eqs. 6 and 7 to explicitly show the connection between 
model averaging of predictions and this shortcut through 
model averaged regression coefficients (for this equation 
we denote Pr(Mj|y) = wj),

We suspect the current emphasis on interpreting model- 
averaged partial regression coefficients (as opposed to 
predictions) evolved from this practice. Model-averaged 
regression coefficients are mixtures of regression coeffi-
cients from different models (e.g., β1,MA = w2β1,2 + w4β1,4 
in Eq. 8), and while the natural desire is for an “overall 
effect”, we need to carefully think about what is actually 
represented by the weighted average. To build a foun-
dation for this discussion, we revisit the properties of 
partial regression coefficients in the context of linear 
regression.

Model averaging of partial regression coefficients

A concept critical to understanding the potential chal-
lenges with interpreting model-averaged regression coef-
ficients is that of partial regression coefficients. An 
appreciation of the meaning of the term partial is com-
monly overlooked, forgotten, or not given adequate 
attention in introductions to regression; it reflects the 
potential change in meaning of a regression coefficient 
associated with a particular variable when the other var-
iables in the model change. To help illustrate this and 
discuss the challenges in the context of model averaging, 
we use a subset of data from Sacher and Staffeldt (1974) 
also used as an example in The Statistical Sleuth (Ramsey 
and Schafer 2013). These data are average values for 
brain weight (g), gestation length (days), and body size 
(kg) for 96 species of mammals. Natural log transforma-
tions on average brain weight (lbrain), body size (lbody), 
and gestation length (lgest) were performed as the rela-
tionships are approximately linear on the log–log scale.

In this example, primary interest is in the relationship 
between gestation length and mean brain weight. Given 
the available variables and the common model averaging 
choice of not including higher order terms, we consider 

(5)p(ỹj|y,Mj)=∫�j

p(ỹj|�j,Mj)p(�j|y,Mj)d�j

ỹMA =

J∑

j=1

Pr(Mj|y)ỹj

(6)
=

J∑

j=1

Pr(Mj|y)
[
Xnew�j

]
,

(7)=X
new

[
J∑

j=1

Pr(Mj|y)�j

]
=X

new�MA.

(8)

ỹMA = X
new

(
w1β0,1+w2β0,2+w3β0,3+w4β0,4

w1×0+w2β1,2+w3×0+w4β1,4

w1×0+w2×0+w3β2,3+w4β2,4

)

=X
new

(
β0,MA

β1,MA

β2,MA

)
.
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two models representing two distinctly different research 
goals: (1) we can investigate the overall relationship 
between gestation length and mean brain size using 
μ{lbrain|Mg} = β0,g + β1,glgest, and (2) we can inves-
tigate the relationship between gestation length and mean 
brain weight conditional on body size using 
μ{lbrain|Mgb} = β0,gb + β1,gblgest + β2,gblbody.

As one would suspect, body size and gestation length 
are collinear on the log–log scale (r = 0.85). For those 
taught to view multicollinearity as having only negative 
consequences, this degree of collinearity may seem 
alarming. However, the more interesting of the two ques-
tions (from a biological point of view) is the second. In an 
observational study like this one, it would have been 
impossible for the researchers to experimentally control 
body size while manipulating gestation length of 
mammals. However, using regression, we can assess evi-
dence of a relationship between gestation length and 
mean brain weight, after accounting for the strong (but 
not very interesting) relationship between body size and 
brain weight. We fully accept the larger posterior vari-
ances (or standard errors) that are a consequence of 
having less information in the data to estimate the rela-
tionship of interest conditional on body size; it is a small 
price to pay to be able to address the specific question of 
interest.

Returning to the two models, we do not expect the rela-
tionship between gestation length and mean brain weight 
over all the mammal species to be the same as the rela-
tionship between gestation length and mean brain weight 
for mammal species with the same (or similar) body sizes. 
In other words, we do not expect the parameters β1,g and 
β1,gb to be equal. Note that with no interaction in the 
model, we are assuming a common β1,gb applies to all 
body sizes (i.e., the relationship between gestation length 
and mean brain weight is the same across all body sizes). 
To gain intuition for the potential difference in meaning 
between these two parameters, we use the data to create 
arbitrary categories of body size and estimate the slope 
and intercept within each category (Fig. 2). This visual 
aid helps us compare the estimated relationships between 
gestation length and brain weight for groups of mammals 
with similar body sizes to the estimated relationship 
observed over all mammals (ignoring body size). As 
expected, the estimated relationship changes when we 
group by similar body sizes, though the separate slopes 
look very similar, which is consistent with the exclusion 
of the interaction term in the second model.

Using exploratory tools like Fig. 2 can be extremely 
informative when there are two collinear variables and 
we want to control for one of them while making inference 
about the other. Similar tools are partial residual (or 
added variable) plots and partial regression plots (pre-
sented in Cade 2015), which can aid in understanding 
partial relationships captured in estimated coefficients 
for more than two explanatory variables. Although the 
scatterplot is limited to two explanatory variables, it pro-
vides a more intuitive way to visualize and illustrate the 

different information used to estimate the two different 
regression coefficients.

Conventional notation for regression coefficients does 
a poor job distinguishing between β1,g and β1,gb by 
labeling both parameters β1, implying β1,g = β1,gb, which 
is rarely true. In general, the only case for which partial 
regression coefficients associated with a particular 
explanatory variable hold the same interpretation across 
models is when the explanatory variables are orthogonal. 
This case is only realized in balanced experimental 
designs and other settings where variables are con-
structed to be orthogonal (e.g., principle components, 
orthogonal polynomials); it is very rare in observational 
studies. Therefore, we recommend explicit notation con-
necting a partial regression coefficient to the model it is 
defined in, as also suggested by others (e.g., Hocking 
2003, Jewell 2004, Cade 2015).

Vague notation has also contributed to the common 
mistake of misinterpreting partial regression coefficients as 
effects of the explanatory variable they precede, regardless 

Fig. 2. Interest lies in the relationship between lgest and 
lbrain, so we categorize the continuous variable we wish to 
account for, lbody, into subgroups of similar body size and 
create a scatterplot with points coded by these groups. We call 
this type of plot a cut-and-coded scatterplot. The corresponding 
lines represent the estimated relationships between lgest and 
lbrain conditional on the subgroups (we can think about the 
average slope across the body size subgroups as an approximate 
estimate of β1,gb). This figure was created using the ggplot 
function in the ggplot2 R package (Wickham 2009, R Core 
Team 2016). Code is available in Appendix S2. A script file, 
can also be found in Appendix Data S1 (Rcode-appendix-
MAPP.R).
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of which variables are in the model. We believe it also con-
tributes to the attractiveness of capturing an “overall 
effect” through model averaging. Often, users fail to con-
sider that (1) the meaning of the relationship associated 
with a partial regression coefficient is not exchangeable 
across models, and (2) the word “effect” implies a causal 
relationship between the input variable and the response, 
which is often inappropriate for observational studies 
without paying careful attention to principles and methods 
of causal modeling. We prefer interpreting partial 
regression coefficients as the linear relationship between 
the input variable and the mean response, after accounting 
for the other variables in the model.

Two components of the model-averaged posterior distri-
bution.— The total probability of  the posterior distribu-
tion of  a model-averaged regression coefficient is made 
up of  two components, one coming from the models 
where the coefficient is set to zero, and the other com-
ing from the models where the coefficient is estimated. 
We explicitly include both components by differentiat-
ing between the subset of  models including the vth in-
put variable (v = {Mj|βv,j ≠ 0}), and its complement, 
the subset of  models excluding the vth input variable 
(v = {Mj|βv,j = 0}). For the remainder of  the paper, 
we will refer to the posterior distribution conditional on 
v as the continuous component, and the part condi-
tional on v as the zero component (describing a point 
mass at zero). The notation may seem cumbersome, but 
it is important to  formally represent both pieces because 
inferences depend on which components are used. This 
property of  the  model-averaged posterior distribution is 
not intuitively  obvious, and is rarely discussed in detail 
in the Bayesian model averaging literature, with the ex-
ception of  Hoeting et al. (1999), who explicitly show it 
graphically.

The posterior distribution of the model-averaged 
partial regression coefficient associated with the input 
variable xv is a mixed distribution, which can be written 
as

It is most typical to see reference to the two parts sep-
arately, and for different reasons; the continuous com-
ponent is used for summarizing “overall effects”, and the 
zero component is used for measuring variable impor-
tance. The complement of the zero component is the pos-
terior probability that the variable is included, termed the 
posterior inclusion probability (PIP). The PIP for input 
variable xv is PIPv = 1 −

∑
j∈v

Pr(Mj�y), and a variable 
is often referred to as important if its PIP is greater than 
or equal to 0.5 (threshold suggested in the AIC-based 
context, see Burnham and Anderson 2002, Burnham 
2015).

The zero component can be ignored without any prac-
tical consequences when using model averaging for pre-
diction, and so it is often forgotten or omitted when the 
model-averaging is extended to regression coefficients. 
When model-averaging regression coefficients, it is 
important to be aware of the point mass at zero, which is 
part of the posterior distribution and therefore is included 
when performing Bayesian model averaging. The 
inclusion of the zeros leads to shrinkage of regression 
coefficients toward zero. However, a common version of 
the AIC-based method for model-averaging regression 
coefficients conditions on v and therefore ignores the 
zero component in constructing the average (see Burnham 
and Anderson 2002, Cade 2015).

To illustrate the difference, suppose we are interested 
in three models with the following forms: M1:β0,1, 
M2:β0,2+β1,2x1, and M3:β0,3 + β1,3x1 + β2,3x2. Let the pos-
terior distribution for  be p(|y)={0.34,0.33,0.33}. To 
model average the partial regression coefficients associated 
with x1 over all models (), we use both components to 
obtain β1,MA = (0.34 × 0) + (0.33 × β1,2) + (0.33 × β1,3). 
When users choose to average over only the continuous 
component, the weights are normalized over the models in 
v to obtain β1,MAv

= (0.5 × β1,2) + (0.5 × β1,3). Again, 
this latter type of weighting is atypical in Bayesian mod-
el-averaging, but common in AIC-based averaging, and 
therefore researchers should be aware of the differences for 
inference.

Graphical tools for assessing model averaging

In practice, regression analysis should include both 
exploratory data analysis and diagnostic plots to assess 
appropriateness of the proposed models (e.g., scatter-
plots, various plots of residuals, posterior predictive 
checks). Similar practices are also important, and perhaps 
even more so, for model averaging because we must assess 
the appropriateness of many individual regression models 
and also consider whether it is appropriate to combine 
them. However, what we have observed in practice sug-
gests less exploratory data analysis and model checking is 
actually done in the context of model averaging, which in 
part can be attributed to prohibitively large or at least 
inconveniently large  (Ver Hoef and Boveng 2015). 
Hoeting et al. (1999) recommend checking the usual diag-
nostics for the fullest model in the model set before pro-
ceeding with model averaging for predictions, which is 
similar to common advice when considering a set of nested 
models for multiple linear regression. The method for 
checking assumptions for many models simultaneously is 
inherently context and situation dependent, and therefore 
we do not provide broad suggestions here. However, in 
our next two points, we do help with assessing whether it 
is appropriate to combine results from individual models, 
assuming assumptions are not severely violated.

First, we have observed that choosing model aver-
aging as an inferential tool may lead to a lack of consider-
ation of higher order terms such as interactions or 

(9)

p(βv,MA�y)=
�∑

j∈v
Pr(Mj�y) for βv,MA =0

∑
j∈v

Pr(Mj�y)p(βv,j�y,Mj) for βv,MA ≠0.
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polynomials. This seems to be done out of convention or 
ease of implementation and is often not justified by plots 
of the data or subject matter expertise. Many of the usual 
regression plotting tools could help researchers identify 
interactions and higher order terms to include in an 
analysis. Including such terms complicates the model 
averaging process and the researcher will need to restrict 
the all subsets model set by forcing interactions and 
higher order terms into models together (Chipman 
1996). We provide an example of forcing variables into 
a model in Example 1: Haul-out Behavior of Weddell 
Seals, but we do not discuss the implications for the prior 
model probabilities when the model set is manipulated 
in this way because it is beyond the scope of this paper. 
We refer the reader to Chipman (1996) and Clyde and 
George (2004).

Second, we see the need for an accessible graphical 
tool to help researchers efficiently compare results from 
individual models and understand how they are com-
bined into model-averaged posterior distributions. Such 
a tool allows researchers to assess the implicit assumption 
that the parameters (or estimates) being averaged have 
a common (enough) meaning across models and to 
understand the weights given to each. Software for 
model averaging makes it relatively easy to obtain the 
posterior for the model averaged partial regression coef-
ficient, but the ability to visualize how individual poste-
riors are combined to create it is absent. Another 
common and slightly more informative visualization 
tool displays how the signs of the posterior means of 
partial regression coefficients associated with each input 
variable change across the top models (commonly called 
an image plot). However, the individual posterior distri-
butions could have means with the same sign, and still 
be noticeably different. A comparison of the entire pos-
terior distribution is much more desirable.

We developed the model averaged posteriors plot 
(MAP plot hereafter) to provide a visual summary of all 
components going into, and resulting from, the averaging 
of partial regression coefficients across models. The plot 
is designed to be used in the process of deciding whether 
model averaging is an appropriate tool for inference, not 
as a way to display the results of model averaging at the 
end of an analysis. An effective way to assess whether 
model averaging is potentially appropriate for a par-
ticular case is to actually implement it and then use the 
MAP plot to carefully digest and critically evaluate the 
potential usefulness of model averaging for the problem 
at hand. This plot is not meant to replace the usual 
regression diagnostics and modeling decisions mentioned 
previously, but it can help identify models that should be 
checked. For example, if model averaging makes sense 
for a particular example, and the model-averaged result 
is essentially a combination of five models, the researcher 
could easily check diagnostics for those five models. In 
the following sections, we use the MAP plot for assessing 
model averaging in two examples with different analysis 
objectives.

exaMple 1: haul-out Behavior oF Weddell seals

In 2010, researchers studying Weddell Seal 
(Leptonychotes weddellii) haul-out behavior in Erebus 
Bay, Antarctica, set up cameras to take photos of a 
portion of Big Razorback haul-out site (Fig. 3a). 
Photos were taken every 45 minutes for the purpose of 
aligning the time of day for data collection to the time 
of day most seals were expected on the ice. One of the 
peak haul-out times is between the hours of 8:00 and 
20:00, so we use only the data collected during these 
convenient times. Other explanatory variables thought 
to be related to the number of seals on the ice at a given 
time were also collected at each time point. The specific 
goal of this analysis is to make inference about the time 
of day associated with maximum mean seal counts, 
after accounting for : wind speed (m/s), temperature 
(◦ C), and tide height (m). Note that interest in the 
maximum necessitates a quadratic term for time of 
day.

For this data set and question of interest, we have 
already identified a useful model (up to consideration of 
interactions). However, suppose we are asked by 
reviewers to use model averaging to incorporate model 
uncertainty into the analysis (not an unrealistic scenario 
given our personal experiences). In an attempt to satisfy 
the reviewers, but still keep the question of interest in 
sight, we force the linear and quadratic components of 
time of day into all models in . It is possible that inter-
actions should be investigated to allow the relationship 
between time of day and maximum expected seal count 
to depend on the values of the other explanatory vari-
ables, but we follow the common implementation of 
model averaging and do not include interactions in our 
model set. For this analysis, models are indexed by the 
explanatory variables they include. We define 
 ≡ {MT,MTw,MTt,MTd,MTd,MTwt,MTtd,MTwd,MTtwd}, 
where T is defined to include both the linear and quad-
ratic components of time of day (time and time2), and 
others are defined as w = wind speed, t = temp, and 
d = tide.

Given the count data, we could implement a Poisson 
generalized linear model using reversible jump MCMC 
(RJMCMC) similar to Link and Barker (2006). 
However, in this case all seal counts are greater than 
zero, averaging 15.79 seals, and natural log-trans-
formed counts reveal that linearity, normality, and 
 constant variance assumptions for normal linear 
regression are reasonable. Therefore, we expect Poisson 
log-linear regression and normal linear regression on 
the log-transformed counts to provide very similar 
results for this example, and they do. We choose to use 
the simpler and computationally faster alternative 
because the choice of method does not change the con-
clusions or the points we wish to make with this 
example. Thus, the models in  are of the form 
μ{log (y)} = X�j, where errors are assumed independent 
and normally distributed.
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There is an obvious violation of independence through 
temporal autocorrelation among residuals within a day. 
However, the violation exists for every model in the model 
set and ignoring it for this exercise does not affect the com-
parisons we use to illustrate our points. Preliminary 
analyses revealed an AR(1) correlation structure was suf-
ficient to account for the correlation within days. 
Incorporating an AR(1) correlation structure into the 
analysis would result in us recommending that the 
researchers start sampling about 40 minutes earlier and 
end sampling about 40 minutes later than if the correlation 
was left unaccounted for. A sampling effort will span mul-
tiple hours, so the practical implications of the difference 
in results are minimal given the objective of the analysis.

The quantity of interest is the time of day that maxi-
mizes the expected number of seals, which can be 
expressed as a function of the regression coefficients asso-
ciated with time and time2 using the formula for the 
vertex of a parabola, {Time at max}j = − (βtime, j∕2βtime2, j) 
for Mj. Using Bayesian inference, it is straightforward to 
computationally obtain a posterior distribution for this 
quantity, and in a likelihood setting, the delta method is 
a common choice for obtaining an associated standard 
error for the point estimate.

We implement Bayesian model averaging with the bms 
function in the BMS R package (Feldkircher and Zeugner 
2009, R Core Team 2016). We use the default unit infor-
mation formulation of the g-prior (g = n = 769) on the 
parameters and a discrete uniform prior on . The 

standard output returned by the bms function tabulates 
posterior means, standard deviations for the model 
averaged partial regression coefficients, posterior inclusion 
probabilities for each explanatory variable, and the fre-
quency with which the posterior means are positive across 
models (which gets at the partial regression coefficient idea, 
but requires a sign switch, see Graphical tools for assessing 
model averaging). The user can also easily extract posterior 
model probabilities and other posterior summaries from 
the bms output for all models in . Based on the prior we 
use, we can appeal to analytical results providing the form 
of the posterior distributions as t-distributions using 
moments obtained directly from bms (details available in 
Appendix S1 and S2). We display all relevant information 
about the individual models and the resulting model-av-
eraged posterior distributions in a MAP plot (Fig. 4).

For this example, the MAP plot is composed of five 
panels, one for each of the explanatory variables con-
sidered. A column (panel) displays the distributions of 
partial regression coefficients associated with the same 
explanatory variable across models. A row (going across 
panels) provides the posterior distributions for the partial 
regression coefficients from a particular model, with the 
model-averaged posterior distribution in the bottom row. 
The probability associated with the point mass at zero of 
the model-averaged distribution is provided as text. All 
explanatory variables were standardized to have zero 
mean and unit standard deviation prior to analysis due to 
large differences in their ranges (Fig. 4). An alternative 

Fig. 3. A digital image used for enumerating Weddell seals on the fast ice in the Big Razorback haul-out site, Erebus Bay, Antarctica. 
This image was taken at 17:30 on 18 October 2010. Weddell seal imagery obtained under authority of permit NMFS Permit No. 1032-
1917-02. The data for this example are in Appendix Data S1 (seal-count-data.csv). Code is available in Appendix S2. A script file, can also 
be found in Appendix Data S1 (Rcode-appendix-MAPP.R). 
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form of standardization proposed in Cade (2015) uses 
partial standard deviations to adjust for changing multi-
collinearity among explanatory variables. However, as 
explained in Graphical tools for assessing model averaging, 
we are focusing on the early stages of assessing the appro-
priateness of model averaging, rather than deciding how 
to present results of model averaging. Creating the MAP 
plot at this stage promotes investigation of the differences 
in results across models before making the decision to 
possibly implement the standardization in Cade (2015).

There are several observations gleaned from the infor-
mation provided by the MAP plot (Fig. 4). First, we 
observe that only two of the eight models received 
non-negligible posterior mass (MTtd with posterior model 
probability 0.884 and MTtwd with posterior model proba-
bility 0.116). The remaining models had such small pos-
terior model probabilities that, in this case, model 
averaging is the result of a weighted average of only two 
models. The PMPs as visualized through the MAP plot is 
a useful tool for identifying when results of model aver-
aging are a combination from a few models.

We also observe that the continuous component of the 
posterior distributions for the model-averaged coefficients 
associated with tide and temp are essentially the same as the 
model-averaged posterior including both the zero and con-
tinuous components. For example, the panel for tide shows 
that all models excluding tide have very small posterior 
model probabilities (given as ≈ 0, with values <<0.0001). 
Therefore, the probability associated with the point mass at 
zero for the model-averaged  coefficients associated with 
tide is essentially zero, and the total posterior probability is 
almost entirely contained in the continuous component. 
Similar observations hold for temperature. The panels for 
time and time2 have posteriors for all models because both 
explanatory variables were forced into all models in , and 
therefore, the model averaged posterior distributions for 
time and time2 do not have zero components.

In contrast to the previous observations, we highlight 
the panel summarizing the partial regression coefficient 
for wind. One of the models excluding wind (MTtd) has 
large posterior model probability (0.884), and the other 
models excluding wind (MTt, MT, and MTd) have small 
posterior model probabilities (given as ≈ 0, with values 
<<0.0001). The zero component of the model-averaged 
distribution associated with wind is the sum of posterior 
model probabilities from these models, totaling approxi-
mately 0.884, and the continuous component comes from 
just one model, MTtwd, with posterior model probability 
0.116 (1 − 0.884 = 0.116). Therefore, the model-averaged 
distribution associated with wind is essentially made up 
of one model contributing to the zero component and one 
model contributing to the continuous component.

It is also clear from the plot that while the posterior 
model probability for the largest model MTtwd is small, the 
posterior distributions for partial regression coefficients 
from MTtwd are similar to their model averaged counter-
parts. This is largely due to the fact that the addition of 
wind to the model with the highest posterior model 

probability, MTtd, did not appreciably change the pos-
terior distributions of the partial regression coefficients for 
temp, tide, time, or time2. Observations such as these are 
meant to encourage readers to use the MAP plot to further 
investigate how information from individual models com-
bines to create the model averaged posterior, particularly 
in the presence of strong multicollinearity, and also to 
evaluate whether model averaging makes sense given the 
question of interest and desired inferences.

Now, we use the MAP plot to help assess averaging of 
the quantity of interest, time of day associated with 
maximum mean seal counts. We use posterior draws of 
βtime,j|y,Mj and βtime2,j|y,Mj, to create posterior distribu-
tions for {Time at max}j for all models, and then create 
the model averaged distribution {Time at max}MA (Fig. 
5). Recall that inference for the quantity of interest could 
have been directly addressed using the model including all 
of the available covariates. Therefore, it is interesting to 
compare inferences drawn from model averaging to those 
drawn from the largest model, which is straightforward 
because the posterior distribution of {Time at max}MA 
does not have a zero component. We compare a posterior 
credible interval for {Time at max}MA to that for 
{Time at max}Ttwd. After back-transforming, we have 
95% posterior credible intervals of 16:13–17:13 for the 
model averaged result and 16:14–17:14 for the largest 
model. There is a direct interpretation for the posterior 
interval coming from the largest model: There is a 95% 
chance the time of day at which the maximum number of 
seals are on the ice is between 16:14 and 17:14, after 
accounting for tide, wind, and temp. However, the inter-
pretation of the interval from the model-averaged result is 
less clear because we average over two models that do not 
account for the same covariates. In this example, we used 
model averaging to incorporate model uncertainty but 
ended up with a posterior interval no wider than what we 
would have obtained had we chosen a reasonable model 
based solely on the question of interest.

By definition, the variance of the model-averaged 
quantity is based on the entire posterior distribution, 
including both the zero and continuous components. It is 
not always reasonable to compare posterior variances 
from individual models to the posterior variance coming 
from only the continuous component. The posterior var-
iance of the model-averaged quantity of interest can be 
larger than the variance based only on the continuous 
component when the zero component is large and the 
continuous component is far from zero. Similarly, it can 
be smaller when the zero component is large and the con-
tinuous component is near zero. The only coefficient in 
this example with this potential is that associated with 
wind, where the variance from the continuous component 
of the model-averaged distribution, Varcts, is larger than 
the variance from the model averaged distribution con-
sidering both the zero and continuous components, 
VarMA, (VarMA = 3.51 × 10−5, Varcts = 9.22 × 10−5). For 
the other variables, it is reasonable to compare the indi-
vidual model posterior variances to those of the 
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continuous component of the model-averaged posterior 
because the probability associated with the zero com-
ponent is essentially 0, and therefore the point mass at 
zero is not contributing to the variance. These compar-
isons can be easily made using Figs. 4 and 5 and the pos-
terior standard deviations in Table 1. In this example 
there is little difference. This may seem unexpected, as 
discussions of multimodel inference lead us to expect that 
accounting for model uncertainty should always result in 
increased posterior variance (or decreased precision).

From this example, we see that the incorporation of 
model uncertainty into an analysis does not always result 
in what we expect, and there is a need for more scrutiny 
on a case-by-case basis. This is important information for 
weighing whether the complexity of model averaging, 
along with its often added simplifying assumptions, is 
worth the supposed gains. When a research question is 
well defined, it can be addressed by building a ques-
tion-driven model justified by the objective. This can be 
achieved by clearly defining the relationship(s) of interest, 
considering what variables should be accounted for (or 
controlled for) so that the relationship(s) of interest can 
be addressed, and possibly iterating on that model, as 
described by Ver Hoef and Boveng (2015). This process 
of building such a model can seem difficult because of the 
effort needed in justifying decisions and assumptions. 
Therefore, it is often tempting to elicit a more automatic 

approach to find the best model or combine results over 
multiple models. While model averaging may hold the 
allure of a decision-free model building technique (just 
use all of them), we must consider whether the added 
complexity is necessary. In this example, we believe 
model averaging was unnecessary for the following 
reasons: (1) there was a well defined research question 
that could have been addressed directly by a single model 
(the largest model), and (2) inferences from the largest 
model were nearly identical to the model averaged result.

exaMple 2: When prediction leads to explanation

In this section, we revisit an example from Hoeting 
et al. (1999) using data from Penrose et al. (1985) and 
Johnson (1996). The objective is to predict percentage of 
body fat with age, weight, height, and 10 body circum-
ference measures. Training data are available for 251 
adult males between the ages of 22 and 81 years. We refer 
to the variables as predictors rather than explanatory var-
iables, because the analysis objective is prediction, rather 
than explanation using regression coefficients. We choose 
this example because these data appear multiple times in 
the model averaging literature (e.g., Hoeting et al. 1999, 
Burnham and Anderson 2002, Zeugner 2011, Burnham 
2015).

Fig. 4. The model-averaged posteriors (MAP) plot is split into five panels, one for each of the explanatory variables considered. 
Rows across panels display output from one model and are ordered by increasing magnitude of posterior model probability (printed 
along the leftmost y-axis. Probabilities given as ≈ 0 have a value < 0.0001.). The posterior distribution of the model-averaged partial 
regression coefficient associated with each explanatory variable is located at the bottom of the plot (continuous component is shown 
as a density plot and the zero component is shown in text). Note that the point mass associated with the  zero components associates 
with the coefficients time and time2 are actually exactly zero because they appear in every model (although the label suggests 
otherwise). The vertical line shows the posterior mean of the model averaged distribution. We created the MApp R package 
(Kampstra 2008, Feldkircher and Zeugner 2009, Albert 2014, Wickham and Francois 2015, R Core Team 2016) that includes a 
MAP plot function to automatically construct the plot from different sources of model averaging output, along with a vignette. This 
package is available at https://github.com/kbanner14/MApp-Rpackage, Code to recreate the figure is available in Appendix S2, a 
script file, can also be found in Appendix Data S1 (Rcode-appendix-MAPP.R). 
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Even when the stated goal of model averaging is to 
improve predictive ability, it is often attractive to use the 
results to quantify the relative importance of predictors 
and interpret their overall effects. Both of these secondary 
goals typically lead to predictors being considered in iso-
lation, outside the context of models created with collec-
tions of predictors. As previously discussed (Model 
averaging of predictions), the appropriateness of model 

averaging for prediction does not imply it is appropriate 
for explaining overall effects. Careful examination of the 
individual model results using the MAP plot can help 
researchers decide if  reporting conclusions focused on a 
variable in isolation may be appropriate.

We keep the objective consistent with Hoeting et al. 
(1999) and suppose the researchers have no a priori infor-
mation about which variables are useful for predicting 
mean percent body fat and no specific question of interest 
regarding any of the variables beyond using first order 
combinations of the variables for prediction. We use the 
same all subsets model set with J = 213 = 8,192 models, the 
same discrete uniform prior on , and a formulation of 
the g-prior for the regression coefficients that approximates 
the prior used in Hoeting et al. (1999; see Zeugner 2011) 
and the bms function (Feldkircher and Zeugner 2009).

The bms implementation of this example computes pos-
terior model probabilities for all models in  and by 
default stores only the top 500. The results for this analysis 
indicate a substantial amount of model uncertainty; the 10 
models with the highest posterior model probabilities 
account for about 74% of the posterior probability, and the 
top 500 models capture about 99.8%. We create model-av-
eraged distributions using only these 500 models. Using the 
MAP plot, we display results for three predictors (weight, 
abdomen circumference, and wrist circumference) using 
the 10 models with highest probabilities (Fig. 6). The 
reader is encouraged to use the plot to investigate how 
information related to these variables in different models is 
combined to form the model-averaged results.

In Two components of the model-averaged posterior distri-
bution, we introduced the PIP for the vth variable (PIPv) as 
the sum of the posterior model probabilities over the models 
including that variable (v). PIPs are often interpreted as 
relative measures of overall importance for each explan-
atory variable over all models considered. See Cade (2015) 
for an alternative measure of relative importance and 
Burnham (2015) for a recent discussion about using AIC 
weights for this purpose. Rather than repeat arguments here, 
we tie our discussion of overall importance to the previously 
discussed implications of ignoring the partial in partial 
regression coefficients (Model averaging of partial regression 
coefficients).

taBle 1. Posterior standard deviations for the partial regression coefficients associated with each explanatory variable (each row) 
are shown for each model in the model set.

MA Ttd Ttwd Tt Ttw T Td Tw Twd

Tide 0.0119 0.0119 0.0124 … … … 0.0138 … 0.014
Temp 0.0097 0.0098 0.0098 0.0097 0.0096 … … … …
Wind 0.0095 … 0.0096 … 0.0096 … … 0.0112 0.0113
Time 0.0107 0.0107 0.0109 0.0096 0.0095 0.0111 0.0126 0.0113 0.0128
Time2 0.0119 0.0118 0.0121 0.0106 0.0107 0.0126 0.0139 0.0125 0.0141
Time at max 0.0716 0.0717 0.0711 0.0971 0.0987 0.1236 0.1215 0.1243 0.1185
PMP … 0.8837 0.1158 4e-04 0 0 0 0 0

Notes: The columns define models in the model set (columns Ttd–Twd). The posterior standard deviation coming from the 
 continuous component of the model averaged distribution is shown in the MA column. The row for time at max was appended to 
the results. This table is standard output from our plotting function, MApp_bms which was programmed in R (R Core Team 2016). 
Code is provided in Appendix S1 and S2.

Fig. 5. Posteriors for the time at max parameter were 
created by finding the time of day corresponding to the 
maximum log total seals on the ice, which is a function of the 
partial regression coefficients associated with time and time2 
from Fig. 4. The MAP plot for time at max shows the posterior 
distributions for the quantity of interest across the models in  
along with the model averaged counterpart. Code to recreate 
the figure is available in Appendix S2, a script file, can also be 
found in Appendix Data S1 (Rcode-appendix-MAPP.R). 
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The posterior model probabilities provide information 
about a collection of predictors working together to 
model the mean response, and each predictor occurs in 
isolation in only one model. Making statements about the 
importance of a single predictor with a posterior inclusion 
probability may imply (particularly to those with little 
background in regression or model averaging) that the 
predictor alone will be an effective predictor, regardless 
of what else accompanies it in the model. We show why 
such statements are potentially misleading by considering 
the PIP for wrist (PIPwrist = 0.55) which is large enough to 
be considered “important.” Now, consider how wrist per-
forms by itself  as compared to when it is coupled with 
weight and/or abdomen. The model with wrist alone does 
not even rank in the top 500 with respect to posterior 
model probability, but when wrist is combined with 
weight and abdomen, the resulting model ranks second 
(i.e., after accounting for abdomen and weight, wrist adds 
meaningful information for the prediction). However, 
one would not want to collect only information about 
wrist circumference to predict percent body fat. We bring 
up this point to promote discussion of the issues that arise 
when the importance of a variable is assessed in isolation 
and to encourage careful thought about which quantities 
are chosen as a basis for conclusions.

discussion

In the last 20 years, it has become relatively easy to 
implement model averaging with automatic priors and 
closed form posteriors, and also through non-Bayesian 
approximations (e.g., AIC or BIC weights). This ease of 
implementation, coupled with the allures of addressing 
model uncertainty and avoiding having to justify choosing 
one model, have made model averaging an increas-
ingly popular method with many researchers in the eco-
logical and environmental sciences. We suggest a critical 
look at this method, especially when it is used with 
part ial regression coefficients, before it becomes more 
commonplace.

In general, potential benefits of new methods are 
readily communicated, popularized, and propagated 
through the peer review process, while challenges in using 
them are often left in the shadows. We believe statisticians 
have a responsibility to help researchers navigate the hard 
decisions about whether methods are appropriate or nec-
essary for a particular problem. We are not the first to 
raise red flags suggesting a more careful look at multi-
model inference and model averaging, and many of our 
concerns are consistent with those expressed elsewhere 
(e.g., Thomas et al. 2007, Cade 2015, Fieberg and Johnson 
2015, Ver Hoef and Boveng 2015). In this paper, we 
offered researchers accessible information to help provide 
a basis for critically evaluating model averaging of partial 
regression coefficients on a case-by-case basis.

In Model Averaging Within Multimodel Inference, we 
provided notation for partial regression coefficients and 
the posterior distribution for model averaged regression 

coefficients. While subtle, these suggested changes for 
notation have the potential to remind the user of the 
implicit assumption underlying model averaging 
regression coefficients and may prevent errant use of the 
method.

In Model averaging of partial regression coefficients, 
we briefly discussed question-focused modeling, which 
we believe is directly tied to discussions about the chal-
lenges of model-averaging regression coefficients. In 
general, we find linear regression is a useful tool for 
three purposes: (1) estimating relationships between an 
explanatory variable and the mean response, often after 
accounting for other control variables, (2) estimating 
effects from experimental designs, and (3) building pre-
dictive models. It is typically easier in designed experi-
ments to think about what variables should be controlled 
for or accounted for when making the treatment com-
parisons. However, this same thought exercise can, and 
should, extend to observational studies. Often, we can 
identify the relationship(s) of interest, think about what 
we would have controlled for in the design if random 
assignment had been possible, and then use regression 
as a way to adjust for the identified variables. This can 
be thought of as working toward ceteris paribus (holding 
all else constant except the treatment assignment), even 
in observational studies. This describes question- 
focused modeling because the research question drives 
the choice of what variables to control for rather than 
allowing the analysis method to automatically choose 
them (method-focused modeling). Fieberg and Johnson 
(2015) and Ver Hoef and Boveng (2015) agree we have 
much to gain by carefully considering what variables are 
directly of interest and what variables we would like 
to account for. Automatic approaches like model 
 averaging certainly hold an appeal, but model-based 
automatic approaches can be dangerous in the context 
of explanatory inference.

A common motivation for model averaging is to 
incorporate model uncertainty into the analysis, infer-
ences, and ultimately management decisions. This 
implies an increase in posterior variance of predictions 
on average (with a decrease in bias), and it has been 
stated that the same should hold for the posterior var-
iance of model averaged partial regression coefficients 
(Leamer 1978, Raftery et al. 1997). Beyond the scope of 
this paper, we are investigating the extent to which this 
may be the case in practice and how this relates to the 
two components (the zero component and the con-
tinuous component) of the model averaged posterior 
distribution. If the results are essentially the same for 
model averaging as compared to using one model, 
model averaging may not be a mistake, but it may be 
adding unnecessary complexity to an analysis for a per-
ceived goal that is left unrealized.

When model averaging is used for prediction, it is 
natural to inquire which predictors are most useful for 
predicting the mean response. Posterior inclusion 
probabilities (PIPs) have been used as such a summary 
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for individual predictors. However, a good model (as 
a collection of predictors) should be distinguished 
from a good predictor in isolation. We do not criticize 
the use of PIPs in general but suggest careful thought 
about when they are appropriate and how they are 
interpreted when they are used for stating broad con-
clusions. Although PIPs are a standard output from 
software packages designed for multimodel inference, 
we do not think they should be used simply because 
they are readily available. We deliberately use the pos-
terior exclusion probabilities in the model averaged 
posteriors (MAP) plot because of their critical role in 
fully defining the posterior distribution of model 
averaged regression coefficients.

While the goal of accounting for as many sources of 
uncertainty as possible is certainly worthy, we believe 
the complexity of the method used to achieve this goal, 
and the potential loss in the interpretability of results in 
the context of the question of interest, should be weighed 
against sheer sophistication and popularity of the 
method. The utility of a modeling approach should be 
measured by how well it serves the intended purpose of 

the research, by whether it is accessible for others to 
critique, and by the degree to which it facilitates prac-
tical interpretations and meaningful conclusions. In 
Example 1: Haul-out Behavior of Weddell Seals and 
Example 2: When Prediction Leads to Explanation, we 
demonstrated the utility of the MAP plot for all three of 
the aforementioned criteria. The MAP plot can help 
researchers understand the differences between the 
results from model averaging and those from individual 
models, assess the appropriateness and usefulness of 
model averaging for a particular problem, and find a 
starting place for justifying their choice of method to 
peers. We presented the MAP plot and discussion within 
a Bayesian framework, but the information contained 
in the plot and the ideas motivating it can directly be 
translated to model averaging performed using AIC. 
The main difference is displaying confidence intervals 
instead of posterior distributions, and such a plot can be 
used to elicit the same type of discussion and thought 
about model averaging (there is a function in our R 
package to create the MAP plot for AIC results MApp 
IC(); see Appendix S1 for details).

Fig. 6. This MAP plot includes variables weight, abdomen, and wrist from the body fat example. The models with the two 
highest posterior model probabilities are those including weight and abdomen, and weight, abdomen, and wrist, represented in rows 
M1 and M2, respectively. For the other rows, not all variables included in the model are shown in the plot. This plot shows the 
posterior distributions for the partial regression coefficients associated with these three predictors for the ten models with the highest 
posterior model probabilities (note that the model-averaged distribution is an approximation, computed using the top 500 models 
which amount to 99.8% of the posterior model mass). mass). See Fig. 4 for definition of abbreviations. Code to recreate the figure 
is available in Appendix S2, a script file, can also be found in Appendix Data S1 (Rcode-appendix-MAPP.R). 
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Conclusion

Negative attention directed toward not accounting for 
model uncertainty has led to researchers feeling as though 
they must account for it in their analyses. In such cases, 
model averaging may be the low hanging fruit (e.g., 
Burnham and Anderson 2002, Montgomery and Nyhan 
2010) or may be suggested by peer reviewers. We have 
experienced this ourselves as statistical consultants 
through reviewer requests to conduct model selection or 
model averaging among competing models when it was, 
at best, unnecessary, and at worst, inappropriate. Reviewer 
comments have reflected both a lack of understanding of 
interpretation of partial regression coefficients and a 
loyalty to more automatic model selection techniques as 
a way to justify a model. This experience is echoed by 
other statisticians and scientists with solid statistical 
foundations (Thomas et al. 2007, Brewer 2015, Cade 
2015).

Maintaining a focus on question-focused modeling in 
cases where it is appropriate can be difficult to justify to 
peers who may be expecting some form of multimodel 
inference in an analysis. With our tools for assessing 
model averaging, we shed light on the complexity of the 
posterior distribution of model-averaged partial 
regression coefficients and address a common miscon-
ception that model averaging is an easier, nearly auto-
matic, alternative to question-focused modeling or other 
model selection methods. Crainiceanu et al. (2008) and 
Wilson and Reich (2014) describe methods that may fall 
closer to middle ground between multimodel inference 
and question-focused modeling by proposing algorithms 
to help identify a subset of models addressing a particular 
question of interest and where the meanings of the partial 
regression coefficients of interest are similar enough 
across models to be reasonably averaged.

This paper is meant to provoke careful thought and 
continued discussions about model averaging, as well as 
provide common foundations to facilitate assessment 
and discussion of model averaging on a case-by-case 
basis. We agree with Ver Hoef and Boveng (2015) that 
iterating on one model can often be better than consid-
ering many models, and we stress that adding complexity 
to analyses to account for model uncertainty should be 
seriously weighed against the cost of interpretation and 
the simplifying assumptions made in the process.
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