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 Statistical Practice
 Selecting the Best Linear Mixed Model Under REML

 J. GURKA

 Restricted maximum likelihood (REML) estimation of the pa
 rameters of the mixed model has become commonplace, even
 becoming the default option in many statistical software pack
 ages. However, a review of the literature indicates a need to
 update and clarify model selection techniques under REML, as
 ambiguities exist on the appropriateness of existing information
 criteria in this setting. A simulation study as well as an appli
 cation assisted in gaining an understanding of the performance
 of information criteria in selecting the best model when using
 REML estimation.

 KEY WORDS: Information criteria; Longitudinal data;
 Model selection; Random effects; Restricted likelihood.

 1. INTRODUCTION

 Linear mixed model theory has expanded greatly over the past

 few decades, resulting in its widespread application in many ar
 eas of research. This in turn has led to the development of pro
 cedures in multiple statistical packages for the analysis of lin
 ear mixed models, such as SAS's proc mixed (SAS 2003).
 Linear mixed models are especially useful in longitudinal data
 settings, because one not only models the mean (referred to as
 the fixed effects), but also the covariance (in terms of the random

 effects and pure error term). Restricted, or residual, maximum
 likelihood (REML) estimation of mixed models is recommended
 when interest lies in accurate estimators of the variance compo

 nents of the mixed model (Verbeke and Molenberghs 2000). In
 fact, many current mixed model-fitting procedures (e.g., proc
 mixed in SAS; lme in S-Plus, MathSoft 2002) include REML
 estimation as the default option.

 Additionally, the area of model selection has received in
 creased attention in recent years as dataseis and the models that

 analyze them have become more and more complex (Burnham
 and Anderson 2002). Model selection tools such as Akaike's in
 formation criterion, or AIC (Akaike 1974), the corrected AIC,
 or AICC (Hurvich and Tsai 1989), the consistent AIC, or CAIC

 (Bozdogan 1987), and Schwarz's Bayesian information crite
 rion, or BIC (Schwarz 1978), are also computed automatically
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 when fitting a linear mixed model with some of the very same

 procedures that use REML as a default. The documentation of

 these software packages indicate that the criteria can then be
 used to compare a set of models with varying covariance struc

 tures. However, in practice one usually wishes to select the best

 mixed model with respect to not only its covariance, but its mean
 as well.

 Verbeke and Molenberghs (2000) noted that the likelihood
 ratio test based on the REML log-likelihood function is not valid

 when interest lies in the comparison of models with different sets

 of fixed effects. Welham and Thompson (1997) introduced an
 adjusted likelihood-ratio test for the fixed effects under REML.

 In more complex model selection scenarios, though, likelihood
 ratio tests may not be very useful; it is in these cases that infor

 mation criteria are often employed. The comparison of mixed
 models with different mean structures using information cri

 teria such as the AIC or BIC is generally seen as inappropri
 ate under REML (Verbeke and Molenberghs 2000). For such
 a comparison, the employment of information criteria calcu
 lated from maximum likelihood (ML) parameter estimates is

 recommended, even after first fitting the model using REML
 estimation (Wolfinger 1993). Careful examination of the docu

 mentation of the cited mixed model fitting procedures relays this

 opinion as well. However, these procedures calculate the crite
 ria under REML automatically without a clear indication in the

 resulting output that the criteria should not be used in this way.

 Only the most diligent and resourceful reader of the software

 documentation will then employ the model selection techniques
 in the recommended manner.

 Even though it is evident that likelihood ratio tests in their true

 form cannot be computed using the restricted log-likelihood, it

 is this author's opinion that it is not apparent as to why model

 selection criteria computed under REML should not be used to
 select the best set of fixed effects. Additionally, Shi and Tsai
 (2002) raised the point that information criteria under ML are
 calculated from biased estimators and hence may not be suit

 able. The appropriateness of information criteria for both ML
 and REML estimation when interest lies in mixed model selec

 tion will be discussed. Likewise, the various formulas of these
 criteria will be described, as inconsistencies exist across the lit

 erature and software. Moreover, empirical results presented aid

 in the understanding of the validity of model selection criteria

 under REML when attempting to choose the best possible mixed

 model. These results assist in gaining more general knowledge
 about the relatively unknown effectiveness of information cri
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 teria in mixed model selection. Finally, an application of the
 discussed criteria and their formulas provides additional insight.

 2. ELABORATION OF THE PROBLEM

 2.1 Likelihoods of the Linear Mixed Model

 Before discussion of the related issues of model selection

 when using REML estimation, some preliminary notation must
 be introduced. In the context of repeated measures data, the
 linear mixed model for i G {1,..., m}, m the number of in
 dependent sampling units (subjects), is written in the following
 form

 y, = X,/3 + Z,b, + e2. (1)

 Here, y? is a (n? x 1) vector of observations on the ith subject,
 X? is a (rii x p) known, constant design matrix for the ith subject
 with rank p, and ? is a (p x 1) vector of unknown, constant
 population parameters. Also, Z? is a (n? x q) known, constant
 design matrix for the ith subject with rank q corresponding to

 hi, a (q x 1) vector of unknown, random individual-specific
 parameters, and e? is a (ru x 1) vector of random within-subject,
 or "pure" error terms. Additionally, let e? = Z?b? + e? denote

 the "total" error term of the model, and let N = YlT=i n? signify
 the total number of observations in the dataset.

 For the above mixed model (1), we make the following dis
 tributional assumptions: b? is normally distributed with mean
 vector 0 and covariance matrix D, and e? is distributed normally
 with mean vector 0 and covariance matrix R?, independent of
 hi. The covariance matrices D and R? are characterized by
 unique parameters contained in the (k x 1) vector B. The total
 variance for the response vector is S? = Z?DZ? + R?. The
 marginal log-likelihood function for (1) is

 N 1 m

 Zml(O) = -ylog (27T) - ?^log^l
 1 m

 --^(yi-Xi?yz^fri-Xi?). (2)

 Maximization of /ml (0) produces ML estimators (MLE's) of
 the unknown parameters. When 0 is known, the MLE of ? is
 given by

 ?m \ m i=l J i=l

 In the usual case when 6 is unknown, ?? is simply replaced with
 its estimate, ??. However, the ML estimator of 6 is biased, and

 thus REML estimators of 6, and hence ?, are typically sought.
 The REML estimator of 6 is calculated by maximizing the like
 lihood function of a set of error contrasts that stem from the fixed

 effects design matrix. The resulting function, not dependent on
 ?, is based on a transformation of the original observations that
 lead to a new set of N ? p observations. Harville (1974) showed
 that the restricted log-likelihood function can be written in the

 following form based on the original observations

 ?REML (0) =  -?^log(27r) + -log

 -^log|E?|--log

 Ex^x
 1%

 Ex^7lx

 9 E (* - x^) s*_1 (y* - x^) - <4> ?=i

 where /3 is of the form given in (3).

 2.2 Information Criteria

 The complexity of the mixed model has led to the increased
 use of model selection tools over traditional inference tech

 niques. This is especially the case when comparing mixed mod
 els that are non-nested, such as models with different covariance
 structures. Information criteria such as the AIC, AICC, CAIC,
 and BIC, and many other variations, are often used for these
 purposes. In general, these information criteria are functions of
 the calculated likelihood for a given model and a penalty term
 based on the number of parameters in the model. The use of
 these criteria is strictly subjective; no formal inference based
 on their values can be made. Comparison of the values of the
 criteria for a set of models simply indicates if a superior model
 in that set exists.

 When discussing model selection criteria, one should intro
 duce the large-sample notions of efficiency and consistency. Ef
 ficient criteria target the best model of finite dimension when
 the "true model" (which is unknown) is of infinite dimension.
 In contrast, consistent criteria choose the correct model with

 probability approaching 1 when a true model of finite dimen
 sion is assumed to exist. Selection criteria usually fall into one
 of the two categories; for instance, the AIC and AICC are ef
 ficient criteria, while the BIC and CAIC are considered to be
 consistent criteria. Debate has ensued as to which characteristic

 is preferred, as opinions are largely driven by the field of ap
 plication in which one is interested in applying model selection
 techniques. For further discussion, see Burnham and Anderson
 (2002) or Shi and Tsai (2002).

 In their original forms, a larger value of the criteria for a given
 model indicates a better fit of the data. However, it is common
 to see them presented in a "smaller-is-better" form when they
 are calculated directly from the ? 2 x log-likelihood. Table 1
 displays the formulas for the AIC, AICC, CAIC, and BIC from
 both angles, based on formulas familiar to readers of Vonesh

 and Chinchilli (1997). Here, I is either Zreml (#) or ?ml (0), s

 Table 1. General Formulas for Commonly Used Information Criteria

 Criteria  Larger-is-better formula  Smaller-is-better formula

 AIC

 AICC
 CAIC
 BIC

 I -
 N*

 ,/V* -s-1
 /-s(Iog/V* + 1)/2
 /-s(log/V*)/2

 -2/ +2s
 -21 + 2s

 A/*

 ,/V* -s-1
 -2/ + s(log/V* + 1)
 -21 + s (log A/*)

 NOTE: Here, / is either Ireml(6) or Iml(?)> s refers to the number of parameters of the model,
 and N* is a function of the number of observations.
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 refers to the number of parameters of the model, and iV* is a
 function of the number of observations. When using ML esti
 mation, most often s = p -h k, the total number of parameters
 in the model. However, under REML, it is stated that informa
 tion criteria based on the restricted likelihood cannot be used to

 compare models with varying sets of fixed effects, as the con
 trast used to develop the restricted likelihood is dependent on the
 fixed effects design matrix. Thus, models with different fixed ef
 fects have likelihoods based on different observations and are no

 longer comparable. So, in the case when information criteria are
 computed under REML for procedures such as proc mixed,
 s = k, the number of covariance parameters only. However,
 as stated previously, the resulting output from such a procedure
 does not explicitly state when the criteria should be employed;
 this caveat is only discussed in the documentation of the proce
 dure.

 Other inconsistencies exist that display the confusion over
 the formulas used to compute the aforementioned criteria. One
 such issue is the use of the complete REML likelihood. The for

 mula for ?REML (0) has a constant term relative to estimation

 of the parameters, \ log E i X?X?|, and hence this term is
 not included in the computation of the REML likelihood in SAS
 proc mixed (2003). To clarify, in computing the restricted
 log-likelihood value from the estimators, SAS applies the for

 mula

 1\T 1 m JN ? v 1 v?>
 IkeulAO) =-^log(27r)--^log!S?

 m

 ExjEr1^ jlog  i = l
 1 rn I

 2 E (y* - x*3) sr1 (y* - x*3). (5) 2 i=l

 Consequently, the computations of the criteria from ?reml2 (#)
 do not include the constant term as well. It is clear that this term

 does not affect estimation of the model parameters; it is not ev
 ident if it should be included in the REML likelihood formula

 when computing the selection criteria for the purposes of assess
 ing the fixed effects portion of the mixed model. This constant
 term has appeared in a previous comparison of different versions
 of the BIC (Neath and Cavanaugh 1997), and its inclusion will
 be assessed here as well.

 The AIC works well in settings in which the sample size is
 fairly large, but it is biased when the sample size is small (Hur
 vich and Tsai 1989). Thus, "corrected" versions of the AIC have
 been proposed, such as the AICC. Essentially, the corrections
 are some function of the number of observations in the dataset.

 Like corrected forms of the AIC, the BIC accounts for the total

 number of observations in the dataset and has generally been
 known to perform relatively better for small sample size set
 tings. One point of view (Vonesh and Chinchilli 1997) is that
 under ML, N* = N, the total number of observations, and un
 der REML, iV* = N ? p, given that the restricted likelihood is
 based on N ? p observations. However, this recommendation
 has not been consistently employed, as SAS proc mixed uses
 N* = m under both ML and REML when computing the BIC
 and CAIC, where m is the total number of subjects, or indepen

 dent sampling units. To further add to the confusion, SAS proc
 mixed uses N* = N and N* = N-p (under ML and REML,
 respectively) for the correction term of the AICC only. Kass and
 Raftery (1995) explained that the sample size in the penalty term
 of the BIC should be "the rate at which the Hessian matrix of

 the log-likelihood function grows." Hence, at least for the BIC,
 m is suggested in the correction rather than N (or N ? p). It is
 clear that a comparison of various sample size corrections for
 all of the discussed criteria is warranted.

 The motivation for the problem to be analyzed and discussed
 can now be summarized. It would prove useful to know if crite

 ria under REML are truly inappropriate in choosing from a set
 of mixed models with different fixed effects. It is understand

 able that likelihood ratio tests (LRT's) are invalid when using
 restricted likelihoods. The true forms of restricted likelihoods,

 based on error contrasts, cannot be compared for models with
 different mean structures because they will use different sets
 of observations. When viewed in the formulation of Harville

 (1974), the restricted likelihood (3) depends on the terms from
 the originally noted model (1), rather than a model of a trans
 formation of the original observations. This version of the re
 stricted likelihood still allows one to conclude with ease that a

 LRT is not appropriate under REML, as terms arise not present
 in the marginal likelihood that do not allow for the assump
 tion of a chi-square distribution of the LRT. However, viewing
 the REML function in the manner described by Harville (1974)
 complicates the notion that information criteria should not be
 subjectively employed for mean model selection.
 Because it has been argued that ML estimators are biased,

 and because most procedures use REML as a default, it is worth
 comparing the performance of criteria under both estimation
 methods. Even though the benefit of the application of informa
 tion criteria in comparing models with varying means is not ap
 parent, information criteria can be especially useful when com
 paring models with nonnested mean structures and/or distinct
 covariance models.

 3. A SIMULATION STUDY

 A straightforward Monte Carlo simulation study that exam
 ines the performance of information criteria in selecting the cor
 rect linear mixed model should begin to answer the questions
 listed above. In assessing linear mixed model selection, three
 scenarios were considered: (1) selection of the correct set of
 fixed effects when the covariance structure is known; (2) selec
 tion of the correct set of random effects when the fixed effects

 are known; and (3) simultaneous selection of the correct set of
 fixed and random effects.

 This performance of the AIC, AICC, CAIC, and the BIC was
 assessed. These criteria were chosen due to their popularity in
 statistical research as well as software packages. Because this
 simulation is assuming the correct model exists and is of finite
 dimension, it should be expected that the consistent criteria will
 perform better in this case. Because the ability of the criteria
 to choose the proper mean structure is also of interest here, the
 formulas listed in Table 1 use s = p + k. The criteria were eval
 uated first under ML and then under REML estimation, using

 both the likelihood formula with the term \ log ?Y^iLi X?X?|
 (coined REMLi) as well as without it (referred to as REML2).

 All of the criteria involving a sample size correction were evalu
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 Table 2. Monte Carlo Assessment of Fixed Effects Model Selection: 10,000 dataseis, 100 subjects each, 6 observations per subject

 Criterion  Estimation method  A/*  P =  0.25

 Percentage of correct model selection

 *2 = 1
 0.50  0.75  0.25

 a2 = 4
 0.50  0.75

 AIC

 AICC

 CAIC

 BIC

 ML
 REML!
 REML2

 ML

 REML!

 REML2

 ML

 REMLt

 REML2

 ML

 REML!

 REML2

 N
 m

 N - p
 m

 N - p
 m

 N
 m

 N-p
 m

 N-p
 m

 N
 m

 N-p
 m

 N-p
 m

 84.0
 50.7
 92.7

 84.4
 86.5
 52.5
 60.7
 92.9
 93.7

 99.3
 98.1
 98.3
 95.4
 99.6
 99.1

 98.8
 96.8
 97.2
 91.5
 99.3
 98.4

 84.1
 65.2
 94.3

 84.5
 86.5
 66.2
 71.1
 94.5
 95.2

 99.3
 98.1
 98.6
 96.3
 99.7
 99.3

 98.8
 96.4
 97.6
 93.4
 99.5
 98.7

 84.1
 78.5
 96.1

 84.5
 86.5
 79.1
 82.0
 96.3
 96.6

 99.1
 98.1
 99.1
 97.5
 99.2
 99.4

 98.7
 96.4
 98.4
 95.6
 99.3
 99.1

 83.8
 0
 82.5

 84.2
 86.1
 0
 0
 83.0
 85.2

 90.1
 93.9
 95.2
 89.3
 86.7
 91.3

 92.6
 93.8
 92.9
 80.1
 89.6
 92.2

 81.6
 0
 83.2

 81.8
 83.4
 0
 0
 83.4
 84.5

 70.0
 80.4
 91.5
 90.7
 66.2
 77.0

 76.1
 84.2
 92.2
 84.9
 72.5
 81.9

 77.7
 29.8
 83.4

 77.8
 78.9
 33.7
 47.9
 83.3
 83.2

 52.6
 66.0
 87.1
 92.0
 50.5
 64.2

 60.2
 72.5
 90.8
 90.4
 58.3
 71.7

 NOTE: "REML-|" denotes the criteria were computed using the REML function /reml (that includes the constant term ^log | Y~\ X-X/|). "REML2" signifies the criteria were computed using the

 REML function/reml2 (that excludes the constant term - log| ?_]/._1 X-X/|). The estimated simulation standard error for each of the reported percentages, p, is equal to yj \p(J\ ? pj/10,000}

 ated using both N* = N and N* = m under ML (AT* =N-p
 and V* = m under REML).

 In all three scenarios of interest, a repeated measures study
 was simulated that assumes compound symmetry of the data;
 that is, the data generated were based on a model with only a ran

 dom intercept and an iid within-unit error term. The compound

 symmetry structure was simulated such that o2 = o\ + Oq,
 where o~2 is the total variance, o\ is the variance of the random
 intercepts, and ctq is the variance of the within-unit error term.

 Datasets were simulated using varying values of the total vari
 ance, namely o2 = 1 and 4, to get a sense of the effect of the true

 variance on the performance of the criteria. Corresponding to the

 standard model assumptions, the random intercepts and within
 unit error terms were generated as independent normal random

 variables with means zero and variances o\ and o\ , respectively.
 To get an idea of the impact of the within-unit correlation on the

 performance of the criteria, data were simulated using p = 0.25,

 0.50, and 0.75, where p = ol/cr2. To begin with, large sample
 performance was assessed; simulated datasets consisted of 100
 subjects with 6 observations each. This particular simulation
 study considered only the complete data case. Each simulation
 for the varying sample sizes, variances, and correlation values
 consisted of 10,000 realizations.

 For Scenario 1, data were simulated from a true linear mixed

 model consisting of the following fixed effects: an intercept, a
 dummy variable indicating membership in one of two groups,
 and a continuous covariate. The continuous covariate took

 equally spaced values in (0,1). More formally, the true linear
 mixed model has ?0 = (2, 1, 0.5/ corresponding to an inter

 cept, group, and slope. In order to assess the performance of
 the criteria in choosing the proper set of fixed effects based on
 this simulation study, a set of candidate models was fit for each
 generated dataset, and the number of times the criteria chose the
 correct model from this set of 10,000 was tallied. The set of can

 didate models consisted of three models each having the same
 compound symmetric covariance structure and fixed effects cor

 responding to: (1) a model with common intercept and common
 slope; (2) a model with a common intercept, a slope, and an
 additional group covariate (corresponding to the true model);
 and (3) a model with intercept, slope, group, and group x slope
 interaction. The number of times out of the 10,000 possibilities
 that the criterion in question chose model 2 as the best model

 was recorded.

 For Scenario 2, data were again simulated from a true model
 with the same fixed and random effects as in Scenario 1. In

 order to assess the performance of the criteria in choosing the
 proper random effects structure, three candidate models were
 fit for each generated dataset, and the number of times the cri
 teria chose the correct model from this set of 10,000 was tal
 lied. The set of candidate models consisted of three models each

 having the same correct set of fixed effects and iid within-unit

 error term, but random effects structures corresponding to: (1)
 no random effects (equivalent to a univariate linear model); (2)
 a random intercept only (corresponding to the true model); and
 (3) a random intercept and a random slope (unstructured covari
 ance). The number of times out of the 10,000 possibilities that
 the criterion in question chose model 2 as the best model was
 recorded.
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 Table 3. Monte Carlo Assessment of Simultaneous Fixed Effects and Random Effects Selection: 10,000 datasets, 100 sub
 jects each, 6 observations per subject

 Criterion  Estimation method  A/*  P =  0.25

 Percentage of correct model selection

 1

 0.50  0.75  0.25
 a2 = 4
 0.50  0.75

 AIC

 AICC

 CAIC

 BIC

 ML
 REML!
 REML2

 ML

 REMLt

 REML2

 ML

 REML!

 REML2

 ML

 REML!

 REML2

 N
 m

 N - p
 m

 N-p
 m

 N
 m

 N-p
 m

 N-p
 m

 N
 m

 N-p
 m

 N-p
 m

 76.8
 45.0
 84.9

 77.6
 81.0
 47.0
 56.3
 85.4
 88.3

 99.3
 98.0
 98.4
 95.6
 99.6
 98.9

 98.8
 96.3
 97.3
 91.5
 99.4
 98.0

 76.7
 58.6
 85.9

 77.4
 80.8
 59.9
 66.2
 86.4
 88.7

 99.4
 97.9
 98.7
 96.0
 99.7
 99.2

 98.8
 95.9
 97.6
 92.8
 99.6
 98.2

 77.2
 72.0
 87.8

 77.7
 81.4
 72.9
 77.1
 88.3
 90.7

 99.1
 98.0
 99.2
 97.6
 99.3
 99.1

 98.7
 96.4
 98.4
 95.4
 99.2
 98.5

 77.2
 0
 75.9

 77.7
 81.1
 0
 0
 76.6
 79.8

 89.9
 93.7
 95.5
 89.4
 86.3
 91.3

 92.5
 93.8
 93.1
 79.9
 89.4
 91.8

 75.0
 0
 76.3

 75.6
 78.5
 0
 0
 76.8
 79.2

 69.7
 79.6
 91.6
 90.9
 66.0
 76.2

 75.3
 83.4
 92.4
 84.5
 72.1
 80.9

 71.0
 27.8
 75.8

 71.7
 74.1
 31.8
 45.6
 76.2
 77.7

 52.6
 65.9
 86.9
 91.9
 50.7
 64.2

 59.9
 72.2
 91.1
 89.8
 58.1
 71.1

 NOTE: "REML-i" denotes the criteria were computed using the REML function /reml (that includes the constant term ^iog| /_]._ X-X/|). "REML2" signifies the criteria were computed using the

 REML function/reml2 (that excludes the constant term -iog| 2_]/_1 X-X, |). The estimated simulation standard error for each of the reported percentages, p, is equal to y {pfi ? pj/10,000}

 Finally, for Scenario 3, data were again simulated from a true
 model with the same fixed and random effects as in the previous
 two scenarios. In order to assess the performance of the criteria

 in choosing the proper fixed and random effects structure si
 multaneously, six candidate models were fit for each generated
 dataset, and the number of times the criteria chose the correct
 model from this set of 10,000 was tallied. Each of the three
 fixed effects models listed in Scenario 1 were combined with

 the last two random effects structures in Scenario 2 (a random

 intercept-only model, and a model with a random intercept and
 slope), resulting in six possible candidate models. The number of
 times out of the 10,000 possibilities that the criterion in question

 chose the true model (fixed intercept, group, and slope effects,
 and a random intercept) as the best model was recorded.

 In calculating the proportion of correct model selection out
 of a set of candidate models for each of the three scenarios, it is

 necessary to discuss what is considered an acceptable level of
 performance. Unlike most other simulation studies, when one is
 interested in comparing simulated rejection rates to some nom
 inal significance level (e.g., a ? 0.05), a similar number for

 model selection performance is not obvious. In Scenarios 1 and
 2, in which a finite set of candidate models for only one aspect
 of the linear mixed model are compared, and it is assumed the
 other portion of the model is known, it is reasonable to expect
 at least a 90-95% rate of correct model selection. Even though
 such rates would obviously be acceptable in Scenario 3, the very
 fact that both primary portions of the mixed model are allowed
 to vary should naturally decrease the expectations of the per

 formance of the criteria. In this case, a rate of correct model

 selection of 80% would probably be acceptable. Of course, such
 a determination is subjective and can and should vary based on
 the analyst and the context of the data analysis.

 Tables 2 and 3 display the results of the simulations regarding
 Scenarios 1 and 3, respectively. The results of the Scenario 2
 simulations are not displayed, as there were not many distin
 guishing features between the four criteria and their examined
 variations. All versions of the four criteria selected the proper
 random effects structure over 90% of the time, no matter the true

 variance or correlation. A factor in the excellent performance of
 the criteria in this simulation is the fact that in roughly half of
 the simulated dataseis, the covariance matrix estimate of the

 random intercept and random slope in model 3 was not positive
 definite, implying no variance of the one of the components. In
 this case, the random slope in the mixed model was found to
 have zero variance, a phenomenon that makes sense given the
 true model from which the data were generated did not contain
 a random slope. Not surprisingly, the consistent criteria (CAIC
 and BIC) performed slightly better than their efficient counter
 parts (AIC and AICC), selecting the correct model around 99%
 of the time (compared to approximately 90-93% selection rate).
 Large true variance values or within-unit correlations did not
 alter performance of the criteria. For this particular scenario,
 REML selection was roughly equivalent to ML selection.

 Results of the other two scenarios proved to be more insight
 ful, particularly when examining selection performances for the
 larger variance value. Some characteristics and trends are no
 ticed regarding the four criteria examined in the Monte Carlo
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 study. First, it is necessary to address the questions brought to
 light earlier in this discussion of linear mixed model selection.
 Specifically, despite the common belief, can model selection
 criteria be employed in choosing the best mean model when
 using REML methods? Based on the results of this simple sim
 ulation comparison, the answer is yes, with the caveat that this
 notion needs to be studied further before a definitive conclusion

 can be made. The performance of the criteria under REML cer
 tainly contradicts the contention that mean model selection for
 the mixed model is inappropriate using REML estimation. In

 many cases, the criteria actually performed better in choosing
 the proper set of fixed effects under REML compared to when
 using ML estimation methods. Without making a definitive con
 clusion (yet), it can certainly be stated that REML mixed model
 selection of the fixed effects is not inappropriate.

 The next level of assessment involves which version of the

 REML likelihood should be used when computing these crite
 ria. From the two simulation scenarios, some initial conclusions
 can be made. The consistent criteria, the BIC and the CAIC,
 performed better overall when using the full residual likelihood,
 including the constant term (denoted as REMLi). Performance
 of the BIC and CAIC was better under REMLi than under ML
 in both scenarios. It is very apparent that REMLi should not
 be used, however, for the efficient criteria (AIC and AICC). For

 these two efficient criteria, REML2 selection was superior to
 REMLi as well as ML. If one were to use the performance of
 the criteria under ML as the basis for comparison, the perfor

 mance of all four criteria under REML2 more closely resembles
 that under ML. To be expected, the AICC performed slightly
 better than the AIC.

 Another comparison to be made regarding the formulas is the
 assessment of the "correction term" involving the sample size.
 Specifically, should the total number of observations be used,
 or should the total number of independent sampling units be
 applied instead? Under ML, evidence points towards the use of
 m in the correction terms of the CAIC and BIC, as well as the

 AICC. Under REML, we should first keep in mind which of
 the two examined REML functions was indicated to be used
 for the three criteria. For the consistent BIC and CAIC, use
 of the complete REML function (REMLi) is suggested; in this
 case, the total number of observations minus the number of fixed

 parameters, N ? p, seems to be more effective than using m.
 However, the performance of the BIC and CAIC when using m
 is not terrible, and thus cannot be excluded from consideration.

 In fact, performance of the criteria under REML2 using m most
 closely resembles their performance under ML using m.

 Finally, how do the four criteria perform overall when ex
 amining varying variance, correlation, and sample size? All
 four criteria perform reasonably well, but are very sensitive to
 large total variances. Not surprisingly, simulations repeated for
 a smaller sample size situation (ra = 25, n? = 3) demonstrated
 decreasing performance for all criteria (not shown). For the fixed
 effects-only selection scenario, when the examined criteria did
 not choose the proper model, they almost always selected the
 full model for o2 = 1. For the larger total variance value, the
 criteria, when incorrect, usually still preferred the full model, but

 the frequency of selection of the smaller models increased. In
 fact, the consistent criteria (CAIC and BIC) chose the smaller in

 correct model more frequently in these cases, a type of selection
 error that is in the author's opinion more severe than selecting a
 model with too many parameters.

 In the more general scenario?when both the fixed and
 random effects models had to be selected?a similar pattern
 emerged. Most of the time, when the criteria did not select the
 correct model, they selected the correct random effects structure,

 but the full fixed effects model (that included the group x slope
 interaction). However, as the variance increased, the percentage
 of selection of the model with too few fixed effects (again with
 the correct random effects structure) increased for the consistent

 criteria (particularly under REML2). Within-subject correlation
 somewhat affects the performance of all four criteria in both sce

 narios, but the extent of this influence is relatively minor com
 pared to sample size and variance. It is difficult to determine the
 best criterion to employ based on this limited simulation study.
 Surprisingly, though, the consistent criteria did not outperform
 their efficient counterparts as much as was hypothesized prior
 to running simulations that would seem to favor consistency.

 4. AN EXAMPLE

 Even though the simulation study provided much insight into
 the performance of multiple model selection criteria computed
 in a variety of ways and under many different conditions, use
 of these criteria in an application would also be extremely in
 formative. The data to be analyzed were introduced by Verbeke
 and Molenberghs (2000, pp. 7-9). This longitudinal study was
 interested in the impact of testosterone inhibition on the cranio
 facial growth of rats. The "rat study" involved the application
 of a testosterone-inhibiting drug in two different doses to two
 groups of rats, in addition to a control group (50 rats total). The
 response of interest in the book is one type of measurement used
 to characterize the height of the rat skull; this response was mea
 sured repeatedly on each rat. The primary purpose of the data
 analysis was to estimate changes over time in this response, and
 to test if these changes vary across the treatment levels. Thus, the

 full model of interest is as follows (Verbeke and Molenberghs
 2000):

 Vij = A) + ?iUjLi + ?2UjHi + ?zUjd + b0t + ei0; (6)

 i = l,...,m;j = l,...,n?. Here, m is the num
 ber of rats, n% is the number of observations on rat i,

 Uj =ln[l+(Age^ - 45) /10], and L?, Hi, and Ci are indica
 tor variables equal to one if rat i belongs to the low-dose group,
 the high-dose group, or the control group (equal to 0 otherwise),
 respectively. Thus, the three treatment groups share a common
 intercept, but have different slopes in the full model.

 An approximate Wald test under REML (Verbeke and Molen
 berghs 2000, p. 75) led to the conclusion that the three treatment

 specific slopes were not significantly different (p = 0.0987).
 The authors then proceeded to demonstrate the application of
 the AIC and BIC for this particular example, computing the two
 criteria under ML for the full model and for the model with a

 common slope for the three treatment groups. Table 4 contains
 these values, as well as values for all four discussed criteria in
 all of their forms.

 Verbeke and Molenberghs (2000, p. 76) noted that the AIC
 and BIC under ML point to different final models; the AIC leads
 to the full model, while the BIC prefers the reduced model. Ex
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 Table 4. Rat Study Example: Model Selection Criteria Values for Two
 Models of Interest

 Smaller-is-better values

 Estimation
 Criterion Method N*

 Full model
 (distinct slopes)

 Reduced model
 (common slopes)

 AIC

 AICC

 CAIC

 ML
 REMLi
 REML2

 ML

 REMLi

 REML2

 ML

 N
 m

 N-p
 m

 N-p
 m

 N
 m

 REMLi N-P
 m

 REML2 N-p
 m

 BIC  ML

 REMLi

 REML2

 N
 m

 N-p
 m

 N-p
 m

 940.7
 924.0
 944.4

 941.0
 942.6
 924.3
 925.9
 944.8
 946.4

 967.8
 958.1
 951.1
 941.5
 971.5
 961.9

 961.8
 952.1
 945.1
 935.5
 965.5
 955.9

 941.3
 933.4
 943.8

 941.4
 942.1
 933.5
 934.2
 944.0
 944.7

 959.4
 952.9
 951.4
 945.0
 961.9
 955.4

 955.4
 948.9
 947.4
 941.0
 957.9
 951.4

 NOTE: Values in bold indicate which of the two models is preferred by the criterion.

 amination of Table 4 further demonstrates the validity of these
 very same criteria when computed under REML. However, as
 seen in the simulations, the REML function without the con

 stant, \ log \Y^iLi X^X2| (denoted as REML2), again displays
 the most consistency across the four criteria. In fact, all four
 criteria under REML2, no matter what correction is used, pre
 fer the reduced model, which is consistent with the conclusion

 based on the approximate Wald test. None of the criteria in any
 of their examined forms indicated a random slope is needed in
 the model (6); these values are not shown.

 One aspect of the use of model selection criteria becomes
 evident from this example. Comparing models on the basis of
 criteria values is strictly subjective and relative to the magnitude
 of those values. Thus, in examining the above numbers, even for
 the ML AIC value that technically "prefers" the full model, many
 practicing statisticians would ultimately decide on the reduced
 model since such a simplification of the final model does not
 translate to a dramatic change in value of the AIC.

 5. CONCLUSIONS AND DISCUSSION

 So what judgments can be made based on this concise yet
 informative Monte Carlo study, as well as from the example?
 Indeed, some of the questions raised in the beginning can be
 partially answered by this analysis. This study overall was able
 to shed light into the performance of information criteria in se
 lecting the best linear model at a very basic level. More impor
 tantly, this discussion highlights the need for a thorough, unified

 methodological examination of model selection techniques un
 der REML.

 The use of information criteria is commonplace in model se
 lection for the mixed model, as exhibited by their automatic com

 putation in popular statistical software packages. Despite their
 popularity, the combination of statistical literature and software

 documentation has led to discrepancies in the formulas and un
 certainties of the proper use of information criteria for the pur

 pose of mixed model selection. The aim of this study was to
 clearly document these inconsistencies and potentially provide
 answers to the questions that arise.

 The primary question that needed to be addressed is the appro

 priateness of restricted likelihood-based model selection tools
 for the fixed effects portion of the model. Although not proved

 beyond a reasonable doubt, this study was able to act as a coun
 terexample to the notion that information criteria under REML
 cannot be used to select the best mean model. It could be ar

 gued that this examination is not important, as the employment

 of information criteria are probably not necessary in selecting
 the best mean model out of a set of nested models. In this case,

 one could use existing inference techniques that are valid under

 REML. However, the presented simulations demonstrate in this
 instance the suitability of REML-based criteria in selecting the
 proper mean model, even when the true covariance structure is
 unknown. It is in this situation where information criteria can

 be especially useful, and this study clearly leads one to believe
 that they are apt for such a comparison, even under REML.

 The study also sought to provide some numerical evidence
 of the performance of criteria in selecting the best linear mixed

 model. All four examined criteria perform exceptionally well
 in selecting the proper set of random effects. However, the dis

 cussed simulation was admittedly limited, as a more sophisti
 cated covariance model selection evaluation (including different

 models for the within-unit error term) is worth an article by it

 self. The results of this simulation study whose primary focus
 is on mean model selection show that information criteria such

 as the AIC, AICC, CAIC, and BIC can be valuable, but they
 also indicate that characteristics of the data, such as variance

 and sample size, can greatly impact the criteria's performance.
 No one criteria clearly stands above and beyond the others in
 terms of selection performance in this simulation study.

 Even though use of these criteria under REML is supported
 here, the results clearly indicate that the correct form of the
 REML function needs to be studied further. These initial find

 ings indicate the superiority of the REML function without the

 constant in question, denoted as /reml2 ? f?r me efficient crite

 ria, while the full REML function, /remlx, seems to be advan
 tageous for the consistent criteria. Further methodological and

 analytical research on this possible trend is needed. Likewise,
 additional study is necessary in determining the proper correc
 tion factor in the context of longitudinal or clustered data. Some

 conclusions can be made based on this research, namely the dis
 missal of the notion that REML-based information criteria are

 not appropriate for selection of the fixed effects of the mixed

 model. But, it is clearly displayed here that more work needs
 to be done, both theoretically and numerically, in understanding
 the role of information criteria in mixed model selection.
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