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Moyé: Multiple Analyses in Clinical Trials: Fundamentals for Investigators
Nielsen: Statistical Methods in Molecular Evolution
O’Quigley: Proportional Hazards Regression
Parmigiani/Garrett/Irizarry/Zeger: The Analysis of Gene Expression Data: Methods

and Software
Proschan/LanWittes: Statistical Monitoring of Clinical Trials: A Unified Approach
Siegmund/Yakir: The Statistics of Gene Mapping
Simon/Korn/McShane/Radmacher/Wright/Zhao: Design and Analysis of DNA

Microarray Investigations
Sorensen/Gianola: Likelihood, Bayesian, and MCMC Methods in Quantitative

Genetics
Stallard/Manton/Cohen: Forecasting Product Liability Claims: Epidemiology and

Modeling in the Manville Asbestos Case
Sun: The Statistical Analysis of Interval-censored Failure Time Data
Therneau/Grambsch: Modeling Survival Data: Extending the Cox Model
Ting: Dose Finding in Drug Development
Vittinghoff/Glidden/Shiboski/McCulloch: Regression Methods in Biostatistics: Linear,

Logistic, Survival, and Repeated Measures Models
Wu/Ma/Casella: Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL
Zhang/Singer: Recursive Partitioning in the Health Sciences
Zuur/Ieno/Smith: Analysing Ecological Data
Zuur/Ieno/Walker/Saveliev/Smith: Mixed Effects Models and Extensions in Ecology

with R



Alain F. Zuur · Elena N. Ieno · Neil J. Walker ·
Anatoly A. Saveliev · Graham M. Smith

Mixed Effects Models
and Extensions in Ecology
with R

123



Alain F. Zuur Elena N. Ieno Neil J. Walker
Highland Statistics Ltd. Highland Statistics Ltd. Central Science Laboratory
Newburgh Newburgh Gloucester
United Kingdom United Kingdom United Kingdom
highstat@highstat.com bio@highstat.com n.walker@csl.gov.uk

Anatoly A. Saveliev Graham M. Smith
Kazan State University Bath Spa University
Kazan Bath
Russia United Kingdom
saa@ksu.ru graham.smith@myotis.co.uk

Series Editors
M. Gail K. Krickeberg J. Samet
National Cancer Institute Le Chatelet Department of Preventive
Rockville, MD 20892 F-63270 Manglieu Medicine
USA France Keck School of Medicine

University of Southern
California

1441 Eastlake Ave. Room
4436, MC 9175

Los Angeles, CA 90089

A. Tsiatis W. Wong
Department of Statistics Department of Statistics
North Carolina State University Stanford University
Raleigh, NC 27695 Stanford, CA 94305-4065
USA USA

ISSN 1431-8776
ISBN 978-0-387-87457-9 e-ISBN 978-0-387-87458-6
DOI 10.1007/978-0-387-87458-6

Library of Congress Control Number: 2008942429

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

springer.com



Thanks to my parents for sharing the burden
of my university fees – Alain F. Zuur

To my friends, colleagues, and former students
who are actively committed to the protection and
care of the environment – Elena N. Ieno

Thanks to my wife Tatiana for her patience
and moral support – Anatoly A. Saveliev

I would like to thank all family and friends for
help and support through times good and bad
during the writing of this book – Neil J. Walker

To my parents who, even now, continue to support
me in everything I do – Graham M. Smith



Preface

No sooner, it seems, had our first book Analysing Ecological Data gone to print,
than we embarked on the writing of the nearly 600 page text you are now holding.
This proved to be a labour of love of sorts – we felt that there were certain issues
sufficiently common in the analysis of ecological data that merited more detailed de-
scription and analysis. Thus the present book can be seen as a ‘sequel’ to Analysing
Ecological Data but with much greater emphasis on these very issues so commonly
encountered in the collection of, and analysis of, ecological data. In particular, we
look at different ways of analysing nested data, heterogeneity of variance, spatial
and temporal correlation, and zero-inflated data.

The original plan was to write a text of about 350 pages, but to do justice to
the sheer range of problems and ideas we have well exceeded that original target
(as you can see!). Such is the scope of applied statistics in ecology. In particular,
partly on the back of reviewer’s comments, we have included a chapter on Bayesian
Monte-Carlo Markov-Chain applications in generalized linear modelling. We hope
this serves as an informative introduction (but no more than an introduction!) to this
interesting and increasingly relevant area of statistics.

We received lots of positive feedback on the approach and style we used in
Analysing Ecological Data, especially the combination of case studies and a theory
section. We have therefore followed the same approach with this book. This time,
however, we have provided the R code used for the analysis. Most of this R code
is included in the text, but where the code was particularly long, it is only available
from the book’s website at www.highstat.com. In the case studies, we also included
advice on what to write in a paper.

Newburgh, United Kingdom Alain F. Zuur
Newburgh, United Kingdom Elena N. Ieno
Gloucester, United Kingdom Neil J. Walker
Kazan, Russia Anatoly A. Saveliev
Bath, United Kingdom Graham M. Smith
December 2008
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Recherche Scientifique, 79360 Villiers en Bois, France

A.F. Zuur Highland Statistics LTD., 6 Laverock Road, Newburgh, AB41 6FN,
United Kingdom

A. Ward Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United
Kingdom



Chapter 1
Introduction

1.1 What Is in the Book?

Does your data have repeated measurements; is it nested (hierarchical)? Is it
sampled at multiple locations or sampled repeatedly over time? Or is your response
variable heterogeneous? Welcome to our world, the world of mixed effects mod-
elling. The bad news is that it is a complicated world. Nonetheless, it is one that
few ecologists can avoid, even though it is one of the most difficult fields in statis-
tics. Many textbooks describe mixed effects modelling and extensions, but most are
highly mathematical, and few focus on ecology.

We have met many scientists who have proudly showed us their copy of Pinheiro
and Bates (2000) or Wood (2006), but admitted that these were really too technical
for them to fully use. Of course, these two books are extremely good, but probably
outside the reach of most non-mathematical readers.

The aim of this book is to provide a text on mixed effects modelling (and exten-
sions) that can be read by anyone who needs to analyse their data without the (imme-
diate) need to delve into the underlying mathematics. In particular, we focus on the
following:

1. Generalised least squares (GLS) in Chapter 4. One of the main underlying
assumptions in linear regression models (which include analysis of variance
models) is homogeneity (constant variance). However, our experience has shown
that most ecological data sets are heterogeneous. This is a problem that can be
solved by using non-parametric tests, transformations, or analysing the raw data
with GLS, which extends the linear regression by modelling the heterogeneity
with covariates.

2. Mixed effects models and additive mixed effects models in Chapters 5, 6, and 7.
We focus on regression and smoothing models for nested data (also called panel
data or hierarchical data), repeated measurements, temporal correlated data, and
spatial correlated data.

3. Generalised linear modelling (GLM) and generalised additive modelling (GAM)
for count data, binary data, proportional data, and zero-inflated count data in
Chapters 8–11.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 1,
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4. Generalised estimation equations (GEEs) in Chapter 12. GEE can be used to
analyse repeated measurements and longitudinal repeated measurements (over
time) data. These can be continuous, binary, proportional, or count data.

5. Generalised linear mixed models (GLMMs) and generalised additive mixed
models (GAMMs) in Chapter 13. GLMMs and GAMMs are used to model
nested data and temporal and spatial correlation structures in count data or bino-
mial data. These models combine mixed effects modelling and GLM and GAM.

When writing any technical book, a common starting point is to decide on the
existing expertise of your target reader. Do we assume no existing expertise or do
we assume a certain level of statistical background?

We decided that the entrance level for this text would be good knowledge of
linear regression. This means we have assumed a familiarity with the underlying
assumptions of linear regression, the model selection process, hypothesis testing
procedures (t-test, F-test, and nested models), backward and forward selection based
on the Akaike information criterion (or related information criteria), and model val-
idation (assessing the underlying assumptions based on graphical or numerical tools
using the residuals). Appendix A gives a short review of these procedures, and we
recommend that you first familiarise yourself with the material in this appendix
before continuing with Chapter 2. If you feel uncomfortable with the information in
the appendix, then we recommend that you have a look at the regression chapters
in, for example, Montgomery and Peck (1992), Fox (2002), or Quinn and Keough
(2002). In fact, any book on linear regression will do. Also, our own book, Zuur
et al. (2007), can be used.

The next question is then to decide who the book is to be aimed at. Since 2000,
the first two authors of this book have given statistical courses for environmental
scientists, biologists, ecologists, and other scientists; they have seen about 5000
participants in this time. The material covered in these courses is based on modules
described in Zuur et al. (2007). For example, a popular course is the following one:

• Day 1: Data exploration.
• Day 2: Linear regression.
• Day 3: GLM.
• Day 4: GAM.
• Day 5: Catching up.

This is a 40-hour course and has been incorporated into MSc and PhD courses
in several countries in Europe as well as being given as in-house and open courses
at many universities and research institutes, mainly at biology departments. The
problem with this course is that although you can teach people how to do linear
regression, GLM, or GAM, the reality is that nearly all ecological data sets contain
elements like nested data, temporal correlation, spatial correlation, data with lots of
zeros, and heterogeneity. Hence, most ecologists for most of the time will need to
apply techniques like mixed effects modelling, GLMM, GAMM, and models that
can cope with lots of zeros (zero-inflated GLM). And it is for the user of this type
of data that this book is primarily aimed at.
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This book is also aimed at readers who want to gain the required knowledge by
working through examples by downloading the code and data and try it for them-
selves before applying the same methods on their own data.

Two of the authors of this book are statisticians and speaking from their expe-
rience, having a book like this that first explains complicated statistical methods
in a non-mathematical context and demonstrates them in case studies before dig-
ging into the underlying mathematics can still be extremely useful, even for the
statistician!

The final question was what to write? We have already partially answered this
question in the paragraphs above: statistical techniques that can cope with compli-
cated data structures like nested data, temporal and spatial correlation, and repeated
measurements for all types of data (continuous, binary, proportional, counts, and
counts with lots of zeros).

1.1.1 To Include or Not to Include GLM and GAM

One of our dilemmas when writing this book was whether we should require the
reader to be familiar with GLM and GAM before reading this book. We decided
against this and have included GLM and GAM chapters in this book for the follow-
ing reasons.

1. During the pre-publication review process, it became clear that many instructors
would use this book to explain the full range of methods beyond linear regres-
sion. It, therefore, made sense to include GLM and GAM, allowing students to
buy a single book containing all the methods beyond linear regression.

2. Most statistical textbooks written 5 or 10 years ago tend to discuss only logistic
regression (for absence–presence and proportional data) and Poisson regression
(for count data). In reality, Poisson regression hardly ever works for ecological
count data due to its underlying assumption that the variance equals the mean
of the data. For most ecological data sets, the variance is larger than the mean;
this phenomenon is called overdispersion. Negative binomial GLMs and GAMs
have become increasingly popular to deal with overdispersion. However, we still
cover Poisson GLM as a pre-requisite to explain the negative binomial (NB)
GLM.

3. Many ecological data sets also contain large number of zeros, and during the
last 5 years, a new set of models have become popular in ecology to deal with
this. These include zero-inflated Poisson GLMs and GAMs and zero-inflated
negative binomial GLMs and GAMs. Zero inflated means that we have a data
set with lots of zeros, more than we expect based on the Poisson or negative
binomial distribution. The excessive number of zeros may (or may not!) cause
overdispersion. Using these zero-inflated models means that we can often solve
two problems at once: overdispersion and the excessive number of zeros. But
again, before we can explain these zero-inflated models, we have to ensure that
the reader is fully familiar with Poisson and logistic GLMs.
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This explains why we have included text on the Poisson GLM, negative bino-
mial GLM, and zero-inflated Poisson and the increasingly useful negative binomial
GLMs and GAMs.

A few applications of zero-inflated Poisson GLMMs and zero-inflated nega-
tive binomial GLMMs/GAMMs have been published recently. However, there is
hardly any fully tested software around that can be used to fit these zero-inflated
GLMMs and GAMMs. So, although we decided to include the zero-inflated GLMs
and GAMs in this book, we leave zero-inflated GLMMs and GAMMs for a future
text.

1.1.2 Case Studies

A common criticism of statistical textbooks is that they contain examples using
‘ideal’ data. In this book, you will not find ozone data or Fisher’s iris data to illus-
trate how well certain statistical methods work. In contrast, we have only used data
sets from consultancy projects and PhD research projects, where for many our first
reaction was “How are we ever going to analyse these data?”

As well as the chapters on applied theory, this book also contains ten case study
chapters with each case study showing a detailed data exploration, data analysis,
discussion and a ‘what to write in a paper’ section. In the data exploration and data
analysis section, we describe our thinking process, and in the ‘what to write in a
paper’ section, we emphasise the key points for a paper.

It should be noted that our analysis approach for these data may not be the only
one; as it is often the case, multiple statistical analyses can be applied to the same
data set.

The data used in the case studies, and in the main text, are all available from
the book’s website at www.highstat.com. The computer code is also available for
downloading. If you want to use any of the data from this book for publications,
please contact the owner of the data for permission. Contact details are given at the
beginning of the book.

1.1.3 Flowchart of the Content

The flowchart in Fig. 1.1 gives a schematic overview of this book. In Part I, we start
discussing the limitations of the linear regression model and show how these limita-
tions can be solved with additive modelling, including random effects (resulting in
mixed effects models), and temporal and spatial correlation. In Part II, we discuss
GLM, GAM, and zero-inflated models. In Part III, we combine Parts I and II and
discuss GEE, GLMM, and GAMM. Finally, in Part IV, we present ten case studies,
each of them showing a detailed example using real data.

There are various ways to use this book. You can start reading the case studies,
find one that matches your data, and apply the same steps on your own data. Then
look up the corresponding theory. The alternative is to read the theory first, perhaps
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Outline of the book

Case studies
14. Application of linear regression on Penguin time series
15. Additive modelling and trend estimaton for Scottish birds
16. Negative binomial GAM & GAMM on amphibian roadkills
17. Additive mixed modelling on bioluminescent data with depth correlation
18. Additive mixed modelling on phytoplankton time series
19. Mixed modelling on honey bees
20. Three-way mixed modelling on cetaceans tooth data
21. GLMM on nested binomial koala data
22. GEE applied on binomial longitudinal badger data
23. MCMC and temporal seal counts

2. Limitations linear regression

3. Additive modelling for non-linear effects
4. GLS for heterogenous data

5. Mixed effects models for nested data
6 & 7. Temporal and spatial correlation for

dependent data

8. Distributions

9. GLMs and GAMs for count data
10. GLMs and GAMs for binary and

proportional data
11. GLMs and GAMs for zero inflated

data

12. GEE for repeated measurement and
longitudinal Poisson and binomial data

13. GLMM for nested Poisson and binomial
data

Part I

Part IV

Part III

Part II

Fig. 1.1 Outline of this
book. In Part I, the
limitations of linear
regression are discussed, and
various solutions are
discussed (additive
modelling for non-linear
patterns, GLS for
heterogeneity, mixed effects
modelling for nested data,
and correlation structures to
deal with dependence). In the
second part, GLM and GAM
are introduced, and in the
third part, these methods are
extended towards GLMM
and GAMM. In the last part,
case studies are presented

concentrate on the numerous examples, and find a matching case study. Yet, a third
option is to read the book from A to Z (which we obviously advise our readers).

Some sections are marked with an asterisk. These are more technical sections, or
expand on ideas in the main text. They can be skipped on the first reading.

1.2 Software

There are many software packages available for mixed effects modelling, for exam-
ple MLWIN, SPLUS, SAS, Stata, GENSTAT, and R. All have excellent facilities
for mixed effects modelling and generalised linear mixed modelling; see West et al.
(2006) for a comparison. As to GAM and GAMM, we can only recommend SPLUS
or R. Stata seems to be particularly suited for negative binomial models, but has
limited GAM facilities (at the time of writing).

Our choice is R (www.r-project.org), because it is good and it is free. There is no
point teaching students a complicated computer language in a 2500 USD package
if a future employer is unwilling to buy the same package. Because R is free, this is
not an issue (unless the employer demands the use of a specific package).

If you are an instructor and use this book for teaching, we advise you start your
class with an introductory course in R before starting with this book. We have tried
teaching R and statistics at the same time, but have found this is rather challenging
for the student.
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The pre-requisite R knowledge required for this book is fairly basic and is cov-
ered in Appendix A; important commands are boxplot, dotchart, pairs, lm,
plot, summary, and anova. Some basic R skills in data manipulating and plot-
ting will also be useful, especially if the data contain missing values.

Instructors can contact us for an R survival guide that we wrote for our own
courses. It contains all essential R code for pre-required knowledge for this book.

1.3 How to Use This Book If You Are an Instructor

We wrote this book with teaching in mind. When we teach, we tend to have groups
consisting of 10–25 people (environmental scientists, biologists, etc.), mostly con-
sisting of PhD students, post-docs, consultants, senior scientists, and the occasional
brave MSc students. As people can only fully appreciate the text in this book if
they have good knowledge of linear regression and basic R knowledge, our courses
contain the following:

• Day 1: Revision of linear regression and R (half a day).
• Day 1 and 2: GLS.
• Day 3: Mixed effects modelling and additive mixed modelling.
• Day 4: Adding temporal and spatial correlation to linear regression, mixed effects

models, and additive (mixed) models.
• Days 5 and 6: GEE, GLMM, and GAMM.

Each day is 8 hours of teaching and exercises. The case studies and detailed
examples in the sections can be used as exercises. The schedule above is challeng-
ing, and depending on the pre-knowledge and number of questions, 48 hours may
not be enough.

We have taught our courses in more than 20 different countries and noticed that
there is a huge difference in mathematical and statistical knowledge of students. We
have had groups of 60 MSc students where 20 had never seen any statistics at all,
20 were familiar with basic statistics, and 20 had done regression and GLM during
their undergraduate courses and were keen to move on to GLMMs and GAMMs!
This applies not only to MSc courses but also to postgraduate courses or courses at
research institutes. Hence, teaching statistics is a challenge.

Before starting with the mixed effects modelling material, you need to ensure
that all students are familiar with concepts like interaction, comparing full and
nested models, model validation, sketching fitted values, and dealing with nominal
variables.

1.4 What We Did Not Do and Why

During the writing of this book and when it was finished, we received comments
from a large group of people, including the referees. This resulted in an enormous
amount of ideas and suggestions on how to improve the text, and most of these
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suggestions were included in the final version, but a few were not. As some of these
topics are important for all readers, we decided to briefly discuss them.

Originally, our plan was to provide all the data in nicely prepared ASCII files and
use the read.table command to import the data into R. However, data prepara-
tion is also part of the analyses, and we therefore decided to provide the data in the
same format as was given to us. This means we put the reader through the same data
preparation process that they would need to go through with their own data. With
the read.table command, one has to store the data somewhere physically in a
directory, e.g. on the C or D drive, and access it from there. However, not everyone
may be able to store data on a C drive due to security settings or has a D drive. To
avoid any confusion, we created a package (don’t call it a library!) that contains all
data sets used in this book. This means that any data set used in this book can be
accessed with a single command (once the package has been installed). Our package
is available from the book website at www.highstat.com. There, you can also find all
the R code and data files in ASCII format, should you wish to use the read.table
command.

It has also been suggested that we include appendices on matrix algebra and giv-
ing an introduction to R. We think that this would duplicate material from other
books as many statistical textbooks already contain appendices on matrix algebra.
As for R, we suggest you get a copy of Dalgaard (2002) and spend some time famil-
iarising yourself with it. Appendix A shows what you need to know to get started,
but R warrants spending additional time developing your expertise. We realise this
means that you need to buy yet more books, but information on matrix algebra and
R programming can also be obtained free from the Internet.

We have also deliberately decided not to add more mathematics into the text. If,
after completing the book, you have a desire to dig further into the mathematical
details, we recommend Pinheiro and Bates (2000) or Wood (2006).

1.5 How to Cite R and Associated Packages

This is an important issue. Without the effort of the people who programmed R and
the packages that we have used, this book would not exist. The same holds for you;
you have access to a free package that is extremely powerful. In recognition, it is
appropriate therefore to cite R or any associated package that you use. Once in R,
type

> citation()

and press enter. Do not type the > symbol. It gives the following text.

To cite R in publications use:

R Development Core Team (2008). R: A language and environment

for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. ISBN 3-900051-07-0,

URL http://www.R-project.org.
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. . .

We have invested a lot of time and effort in creating R,

please cite it when using it for data analysis. See also

'citation("pkgname")' for citing R packages.

The last lines suggest that for citing the mgcv or nlme packages (which we will
use a lot), you should type

> citation("nlme")

> citation("mgcv")

It gives full details on how to cite these packages. In this book, we use a
large number of packages. Citing them each time would drastically increase the
number of pages; so for the sake of succinctness, we mention and cite them
all below. In alphabetic order, the packages used in the book and their citations
are as follows: AED (Zuur et al., 2009), BRugs (Thomas et al., 2006), coda
(Plummer et al., 2007), Design (Harrell, 2007), gam (Hastie, 2006), geepack
(Yan, 2002; Yan and Fine 2004), geoR (Ribeiro and Diggle, 2001), glmmML
(Broström, 2008), gstat (Pebesma, 2004), lattice (Sarkar, 2008), lme4 (Bates
and Sarkar, 2006), lmtest (Zeileis and Hothorn, 2002), MASS (Venables and
Ripley, 2002), mgcv (Wood, 2004; 2006), ncf (Bjornstad, 2008), nlme (Pinheiro
et al., 2008), pscl (Jackman, 2007), scatterplot3d (Ligges and Mächler,
2003), stats (R Development Core Team, 2008), and VGAM (Yee, 2007). The
reference for R itself is R Development Core Team (2008). Note that some refer-
ences may differ depending on the version of R used. While writing this book, we
used versions 2.4.0–2.7.0 inclusive, and therefore, some references are to packages
from 2006, while others are from 2008.

1.6 Our R Programming Style

One of the good things about R is also, perversely, a problem; everything can be
done in at least five different ways. To many, of course, this is a strength of R, but
for beginners it can be confusing. We have tried to adopt a style closely matching the
style used by Pinheiro and Bates (2000), Venables and Ripley (2002), and Dalgaard
(2002). However, sometimes these authors simplify their code to reduce its length,
minimise typing, and speed up calculation. For example, Dalgaard (2002) uses the
following code to print the output of a linear regression model:

> summary(lm(y ∼ x1 + x2))

An experienced R user will see immediately that this combines two commands;
the lm is used for linear regression, and its output is put directly into the summary
command, which prints the estimated parameters, standard errors, etc. Writing
optimised code, such as this, is good practice and in general something to be
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encouraged. However, in our experience, while teaching statistics to R beginners,
it is better to explicitly write code as easily followed steps, and we would write the
above examples as

M1 <- lm(y ∼ x1 + x2)

summary(M1)

We call this a – b – c programming; first a, then b, and finally c. This may not
produce the most elegant or most efficient code, but its simplicity makes it easier to
follow when learning R.

1.7 Getting Data into R

The most difficult thing in learning a new stats package is to import your data and
start working with it. As an example of importing data in R, we use data from Cronin
(2007), which is also used in Chapter 23. The following R code reads the data. We
assume the data are available as a text (tab-delimited) file ‘Seals.txt’ on the C drive
in the directory ‘Bookdata’. The following code reads the data into R:

> Seals <- read.table(file = "C:\\Bookdata\\Seals.txt",
header = TRUE)

The > symbol is used to mimic the R commander. You should not type it into
R! R commands are case sensitive; so make sure you type in commands exactly as
illustrated. The header = TRUE option tells R that the first row contains headers
(the alternative is FALSE). The data are stored in a data frame called Seals, which
is a sort of data matrix. Information in a data frame can be accessed in various ways.

If you just type in Abun (the column with abundances), R gives an error message
saying that it does not know what Abun is. There are various options to access the
variables inside the object Seals. You can use commands like

> hist(Seals$Abun)

to make a histogram of the abundance. The $ sign is used to access variables inside
the object Seals. It is also possible to work along the lines of

> A <- Seals$Abund

> hist(A)

First, we define a new variable A and then work with this. The advantage is that
you don’t have to use the Seals$ all the time. Option three is to access the data
via columns of the object Seals:

> A <- Seals[,1]

> hist(A)
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A fourth option is to provide the Seals object as an argument to the function that
you use, e.g.

> lm(Abun ∼ factor(Site), data = Seals)

The data option specifies that R has to use the data in the object Seals for the
linear regression. Yet, a fifth option is to use the attach(Seals) command. This
command tells R to look also inside the object Seals; hence, R will have access to
anything that you put in there. Its advantage is that with one command, you avoid
typing in lots of data preparation commands. In writing a book, it saves space. In
classroom teaching, it can be an advantage too because students don’t have to type
all the $ commands.

However, at this point, the R experts tend to stand up and say that it is all wrong;
they will tell you not to use the attach command. The reason is that you can
attach multiple objects, and misery may happen if multiple objects contain the same
variable names. This may cause an error message (if you are lucky). The other prob-
lem is that you may (accidentally) attach the same object twice. If you then make
changes to a variable (e.g. a transformation), R may use the other (unchanged) copy
during the analysis without telling you! Our advise is not to use the attach com-
mand, and if you decide to use it, be very careful!

1.7.1 Data in a Package

In this book, we use at least 30 different data sets. Instead of copying and pasting
the read.table command for each example and case study, we stored all data in
a package called AED (which stands for Analysing Ecological Data). It is available
from the book website at www.highstat.com. As a result, all you have to do is to
download it, install it (Start R, click on Packages, and select ‘Install package from
local zip file’), and then type

> library(AED)

> data(Seals)

Instead of the Seals argument in the function data, you can use any of the
other data sets used in this book. To save space, we tend to put both commands on
one line:

> library(AED); data(Seals)

You must type the “;” symbol. You can even use a fancy solution, namely

> data(Seals, package = "AED")



Chapter 2
Limitations of Linear Regression Applied
on Ecological Data

This chapter revises the basic concepts of linear regression, shows how to apply
linear regression in R, discusses model validation, and outlines the limitations of
linear regression when applied to ecological data. Later chapters present methods
to overcome some of these limitations; but as always before doing any complicated
statistical analyses, we begin with a detailed data exploration. The key concepts to
consider at this stage are outliers, collinearity, and the type of relationships between
the variables. Failure to apply this initial data exploration may result in an inappro-
priate analysis forcing you to reanalyse your data and rewrite your paper, thesis, or
report.

We assume that the reader is ‘reasonably’ familiar with data exploration and lin-
ear regression techniques. This book is a follow-up to Analysing Ecological Data
by Zuur et al. (2007), which discusses a wide range of exploration and analyt-
ical tools (including linear regression and its extensions), together with several
related case study chapters. Other useful, non-mathematical textbooks containing
regression chapters include Chambers and Hastie (1992), Fox (2002), Maindonald
and Braun (2003), Venables and Ripley (2002), Dalgaard (2002), Faraway (2005),
Verzani (2005) and Crawley (2002, 2005). At a considerable higher mathematical
level, Ruppert et al. (2003) and Wood (2006) are excellent references for linear
regression and extensions. All these books discuss linear regression and show how
to apply it in R. Other good, but not based on R, textbooks include Montgomery and
Peck (1992), Draper and Smith (1998) and Quinn and Keough (2002). Any of the
above mentioned texts using R can be also used to learn R, but we highly recom-
mend the book from Dalgaard (2002) or for a slightly different approach, Crawley
(2005). However, even if you are completely unfamiliar with R, you should still be
able to pick up the essentials from this book and ‘learn it as you go along’. It is not
that difficult and, once exposed to R, you will never use anything else.

Although various linear regression examples are given in this chapter, a com-
plete example, including all R code and aspects like interaction, model selection
and model validation steps, is given in Appendix A.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 2,
C© Springer Science+Business Media, LLC 2009
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2.1 Data Exploration

2.1.1 Cleveland Dotplots

The first step in any data analysis is the data exploration. An important aspect
in this step is identifying outliers (we discuss these later) and useful tools for
this are boxplots and/or Cleveland dotplots (Cleveland, 1993). As an example
of data exploration, we start with data used in Ieno et al. (2006). To identify
the effect of species density on nutrient generation in the marine benthos, they
applied a two-way ANOVA with nutrient concentration as the response variable
with density of the deposit-feeding polychaete Hediste diversicolor (Nereis diver-
sicolor), and nutrient type (NH4-N, PO4-P, NO3-N) as nominal explanatory vari-
ables. The data matrix consists of three columns labelled concentration, biomass,
and nutrient type. The aim is to model Nereis concentration as a function of
biomass and nutrient. The following R code reads the data and makes a Cleveland
dotplot.

> library(AED); data(Nereis)

R commands are case sensitive; so make sure you type in commands exactly as
illustrated. The data are stored in a data frame called Nereis, which is a sort of
data matrix. Information in a data frame can be accessed in various ways. First, we
need to know what is in there, and this is done by typing the following at the R
prompt:

> names(Nereis)

This command gives the names of all variables in the data frame:

[1] "concentration" "biomass" "nutrient"

The following lines of code produce the Cleveland dotplot in Fig. 2.1A.

> dotchart(Nereis$concentration,

ylab = "Order of observations",

xlab = "Concentration", main = "Cleveland dotplot")

The dotchart function makes the Cleveland dotplot. Note that the arguments
of the dotchart function are typed in over multiple rows. When the code runs
over more than one line like this, you should ensure that the last symbol on such a
line is a slash (\) or a comma (,). So, this works as well:

> dotchart(Nereis$concentration, ylab = "Order of \
observations",

xlab =" \
Concentration", main = "Cleveland dotplot")
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Fig. 2.1 A: Cleveland dotplot for Nereis concentration. B: Conditional Cleveland dotplot of Nereis
concentration conditional on nutrient with values 1, 2 and 3. Different symbols were used, and the
graph suggests violation of homogeneity. The x-axes show the value at a particular observation,
and the y-axes show the observations

In a dotchart, the first row in the text file is plotted as the lowest value along
the y-axis in Fig. 2.1A, the second observation as the second lowest, etc. The x-axis
shows the value of the concentration for each observation. By itself, this graph
is not that spectacular, but extending it by making use of the grouping option in
dotchart (for further details type: ?dotchart in R) makes it considerably more
useful, as can be seen from Fig. 2.1B. This figure was produced using the following
command:

> dotchart(Nereis$concentration,

groups = factor(Nereis$nutrient),

ylab = "Nutrient", xlab = "Concentration",

main = "Cleveland dotplot", pch = Nereis$nutrient)

The groups = factor(nutrient) bit ensures that observations from the
same nutrient are grouped together, and the pch command stands for point charac-
ter. In this case, the nutrient levels are labelled as 1, 2 and 3. If other characters are
required, or nutrient is labelled as alpha-numerical values, then you have to make a
new column with the required values. To figure out which number corresponds to a
particular symbol is a matter of trial and error, or looking it up in a table, see, for
example, Venables and Ripley (2002).

Cleveland dotplots are useful to detect outliers and violation of homogeneity.
Homogeneity means that the spread of the data values is the same for all variables,
and if this assumption is violated, we call this heterogeneity. Points on the far end
along the horizontal axis (extremely large or extremely small values) may be consid-
ered outliers. Whether such points are influential in the statistical analysis depends
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on the technique used and the relationship between the response and explanatory
variables. In this case, there are no extremely large of small values for the vari-
able concentration values. The Cleveland dotplot in Fig. 2.1B indicates that we may
expect problems with violation of homogeneity in a linear regression model applied
on these data, as the spread in the third nutrient is considerable smaller than that
in the other two. The mean concentration value of nutrient two seems to be larger,
indicating that in a regression model, the covariate nutrient will probably play an
important role.

2.1.2 Pairplots

Another essential data exploration tool is the pairplot obtained by the R command

> pairs(Nereis)

The resulting graph is presented in Fig. 2.2. Each panel is a scatterplot of two
variables. The graph does not show any obvious relationships between concentration
and biomass, but there seems to be a clear relationship between concentration and
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Fig. 2.2 Pairplot for concentration, biomass and nutrient. Each panel is a scatterplot between two
variables. It is also possible to add regression or smoothing lines in each panel. In general, it does
not make sense to add a nominal variable (nutrient) to a pairplot. In this case, there are only two
explanatory variables; hence, it does not do any harm to include nutrient
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nutrients, as already suggested by the Cleveland dotplot. More impressive pairplots
can be made by using the panel option in pairs. The help file for pairs is obtained
by typing: ?pairs. It shows various examples of pairplot code that gives pairplots
with histograms along the diagonal, correlations in the lower panels, and scatterplots
with smoothers in the upper diagonal panels.

2.1.3 Boxplots

Another useful data exploration tool that should be routinely applied is the boxplot.
Just like the Cleveland dotplot, it splits up the data into groups based on a nominal
variable (for example nutrient). The boxplot of concentration conditional on nutrient
is given in Fig. 2.3. The following code was used to generate the graph:

> boxplot(concentration ∼ factor(nutrient),

varwidth = TRUE, xlab = "nutrient",

main = "Boxplot of concentration conditional on\
nutrient", ylab = "concentration", data = Nereis)

The varwidth = TRUE command ensures that the width of each boxplot is
proportional to the sample size per level. In this case, the sample size per nutrient
(labelled 1, 2, and 3) is about the same.
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Fig. 2.3 Boxplot of concentration conditional on the nominal variable nutrient. The horizontal
line in each box is the median, the boxes define the hinge (25–75% quartile, and the line is 1.5
times the hinge). Points outside this interval are represented as dots. Such points may (or may not)
be outliers. One should not label them as outliers purely on the basis of a boxplot! The width of
the boxes is proportional to the number of observations per class

2.1.4 xyplot from the Lattice Package

As with the Cleveland dotplot and the pairplot, the boxplot shows that there may
be a nutrient effect: higher mean concentration values for nutrient level 2, but also
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Fig. 2.4 Nitrogen concentration in teeth versus age for each of the 11 whales stranded in Scotland.
The graph was made with the xyplot from the lattice package

less spread for nutrient level 3, indicating potential heterogeneity problems later on.
We now show a more advanced data exploration method. As the Nereis data set has
only two explanatory variables, this method is less appropriate for these data, and
therefore we use a different data set.

Just like rings in trees, teeth of an animal have rings, and from these it is possible
to extract information on how chemical variables have changed during the life of the
animal. Mendes et al. (2007) measured the nitrogen isotopic composition in growth
layers of teeth from 11 sperm whales stranded in Scotland. The underlying aim of
the research was to ‘investigate the existence, timing, rate and prevalence of dietary
and/or foraging location shifts that might be indicative of ontogenetic benchmarks
related to changes in schooling behaviour, movements, environmental conditions,
foraging ecology and physiology’ (Mendes et al., 2007).

Figure 2.4 shows an xyplot from the lattice package. The name lattice is used
in R, but in SPLUS it is called a Trellis graph. It consists of a scatterplot of nitrogen
isotope ratios versus age for each whale. Working with lattice graphs is difficult, and
one of the few books on this topic is Sarkar (2008). One of the underlying questions
is whether all whales have similar nitrogen-age relationships, and the graph suggests
that some whales indeed have similar patterns. The R code to generate the graph in
Fig. 2.4 is
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> library(AED); data(TeethNitrogen)

> library(lattice)

> xyplot(X15N ∼ Age | factor(Tooth), type = "l",

xlab = "Estimated age", col = 1,

ylab = expression(paste(deltaˆ{15}, "N")),

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

data = TeethNitrogen)

The xyplot makes the actual graph, and the rest of the code is merely there to
extract the data. The type = "l" and col = 1 means that a line in black colour
is drawn. Note that the l in type stands for lines, not for the 1 from 1, 2, and 3.
But the 1 for col is a number! The complicated bit for the y-label is needed for sub-
scripts, and the strip code is used to ensure that the background colour in the strips
with whale names is white. It can be difficult to figure out this type of information,
but you quickly learn the coding you use regularly. To make some journal editors
happy, the following code can be added before the last bracket to ensure that tick
marks are pointing inwards: scales = list(tck = c (-1, 0). More data
exploration tools will be demonstrated later in this book.

2.2 The Linear Regression Model

In the second step of the data analysis, we have to apply some sort of model, and the
‘mother of all models’ is without doubt the linear regression model. The bivariate
linear regression model is defined by

Yi = α + β × Xi + εi where εi ∼ N (0, σ 2)

The Yi is the response (or dependent) variable, and Xi is the explanatory (or inde-
pendent) variable. The unexplained information is captured by the residuals εi, and
these are assumed to be normally distributed with expectation 0 and variance σ 2.
The parameters α and β are the population intercept and slope and are unknown. In
practice, we take a sample and use this to come up with estimates a and b and con-
fidence intervals. These confidence intervals tell us that if we repeat the experiment
a large number of times, how often the real (fixed and unknown) α and β are in
the interval based on the confidence bands (which will differ for each experiment!).
A typical choice is the 95% confidence interval. In most cases, β (the slope) is of
primary interest as it tells us whether there is a relationship between Y and X.

So, we take a sample of size N and obtain the estimators a and b plus confidence
intervals. And then, we make a statement on the population parameters α and β.
But this is a big thing to do! You may wonder how it is possible that we can do
this. Well, the magic answer is ‘assumptions’. The fact that you take sample data
and use this to make a statement on population parameters is based on a series of
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assumptions, namely, normality, homogeneity, fixed X, independence, and correct
model specification.

The underlying geometric principle of linear regression is shown in Fig. 2.5 (based
on Figs. 5.6 and 5.7 in Zuur et al. (2007), and Fig. 14.4 in Sokal and Rohlf (1995)).
The data used in this graph is from a benthic study carried out by RIKZ in The Nether-
lands. Samples at 45 stations along the coastline were taken and benthic species were
counted. To measure diversity, the species richness (the different number of species)
per site was calculated. A possible factor explaining species richness is Normal Ams-
terdams Peil (NAP), which measures the height of a site compared to average sea
level, and represents a measure of food for birds, fish, and benthic species. A linear
regression model was applied, and the fitted curve is the straight line in Fig. 2.5. The
Gaussian density curves on top of the line show the probability of other realisations
at the same NAP values. Another ‘realisation’ can be thought of as going back into
the field, taking samples at the same environmental conditions, carry out the species
identification, and again determining species richness per site. Obviously, you will
not find exactly the same results. The normality assumption means that for each NAP
value, we have bell-shaped curves determining the probabilities of the (species rich-
ness) values of other realisations or sub-samples. Homogeneity means that the spread
of all Gaussian curves is the same at all NAP values.
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Fig. 2.5 Regression curve for all 45 observations from the RIKZ data discussed in Zuur et al.
(2007) showing the underlying theory for linear regression. NAP is the explanatory variable, R
(species richness) is the response variable, and the third axis labelled ‘P’ shows the probability of
other realisations
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Multiple linear regression is an extension of bivariate linear regression in the sense
that multiple explanatory variables are used. The underlying model is given by

Yi = α + β1 × X1i + β2 × X2i + . . . + βM × X Mi + εi where εi ∼ N (0, σ 2)

There are now M explanatory variables. Visualising the underlying theory as in
Fig. 2.5 is not possible, as we cannot draw a high dimensional graph on paper,
but the same principle applies. Further information on bivariate and multiple linear
regression are discussed in the examples below and in Appendix A.

2.3 Violating the Assumptions; Exception or Rule?

2.3.1 Introduction

One of the questions that the authors of this book are sometimes faced with is:
‘Why do we have to do all this GLM, GAM, mixed modelling, GLMM, and GAMM
stuff? Can’t we just apply linear regression on our data?’ The answer is always in a
‘Yes you can, but. . .’ format. The ‘but. . .’ refers to the following. Always apply the
simplest statistical technique on your data, but ensure it is applied correctly! And
here is a crucial problem. In ecology, the data are seldom modelled adequately by
linear regression models. If they are, you are lucky. If you apply a linear regression
model on your data, then you are implicitly assuming a whole series of assumptions,
and once the results are obtained, you need to verify all of them. This is called
the model validation process. We already mentioned the assumptions, but will do
this again; (i) normality, (ii) homogeneity, (iii) fixed X (X represents explanatory
variables), (iv) independence, and (v) a correct model specification. So, how do
we verify these assumptions, and what should we do, if we violate some, or all of
them? We discuss how to verify these assumptions using five examples later in this
section with each example violating at least one assumption. What should we do if
we violate all the assumptions? The answer is simple: reject the model. But what do
we do if we only violate one of the assumptions? And how much can we violate the
assumptions before we are in trouble? We discuss this later.

2.3.2 Normality

Several authors argue that violation of normality is not a serious problem (Sokal and
Rohlf, 1995; Zar, 1999) as a consequence of the central limit theory. Some authors
even argue that the normality assumption is not needed at all provided the sample
size is large enough (Fitzmaurice et al., 2004). Normality at each X value should
be checked by making a histogram of all observations at that particular X value.
Very often, we don’t have multiple observations (sub-samples) at each X value. In
that case, the best we can do is to pool all residuals and make a histogram of the
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pooled residuals; normality of the pooled residuals is reassuring, but it does not
imply normality of the population data.

We also discuss how not to check for normality as the underlying concept of nor-
mality is grossly misunderstood by many researchers. The linear regression model
requires normality of the data, and therefore of the residuals at each X value. The
residuals represent the information that is left over after removing the effect of the
explanatory variables. However, the raw data Y (Y represents the response variable)
contains the effects of the explanatory variables. To assess normality of the Y data,
it is therefore misleading to base your judgement purely on a histogram of all the Y
data. The story is different if you have a large number of replicates at each X value.
Summarising, unless you have replicated observations for each X value, you should
not base your judgment of normality based on a histogram of the raw data. Instead,
apply a model, and inspect the residuals.

2.3.3 Heterogeneity

Ok, apparently we can get away with a small amount of non-normality. However,
heterogeneity (violation of homogeneity), also called heteroscedasticy, happens if
the spread of the data is not the same at each X value, and this can be checked
by comparing the spread of the residuals for the different X values. Just as in the
previous subsection, we can argue that most of the time, we don’t have multiple
observations at each X value, at least not in most field studies. The only thing we
can do is to pool all the residuals and plot them against fitted values. The spread
should be roughly the same across the range of fitted values. Examples of such
graphs are provided later. In sexual dimorphism, female species may show more
variation than male species (or the other way around depending on species). In
certain ecological systems, there may be more spread in the summer than in the
winter, or less spread at higher toxicated sites, more spread at certain geograph-
ical locations, more variation in time due to accumulation of toxic elements, etc.
In fact, we have seldom seen a data set in which there was no heterogeneity of
some sort. The easiest option to deal with heterogeneity is a data transformation.
And this is where the phrase ‘a mean-variance stabilising’ transformation comes
from.

Many students have criticised us for using graphical techniques to assess homo-
geneity, which require some level of subjective assessment rather than using one of
the many available tests. The problem with the tests reported by most statistical soft-
ware packages, and we will illustrate some of them later, is that they require normal-
ity. For example, Barlett’s test for homogeneity is quite sensitive to non-normality
(Sokal and Rohlf, 1995). We therefore prefer to assess homogeneity purely based
on a graphical inspection of the residuals.

Minor violation of homogeneity is not too serious (Sokal and Rohlf, 1995), but
serious heterogeneity is a major problem. It means that the theory underlying the
linear regression model is invalid, and although the software may give beautiful
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p-values, t-values and F-values, you cannot trust them. In this book, we will discuss
various ways to deal with heterogeneity.

2.3.4 Fixed X

Fixed X is an assumption implying that the explanatory variables are deterministic.
You know the values at each sample in advance. This is the case if you a priori
select sites with a preset temperature value or if you choose the amount of toxin
in a basin. But if you go into the field, take at random a sample, and then measure
the temperature or the toxin concentration, then it is random. Chapter 5 in Faraway
(2005) gives a very nice overview how serious violation of this assumption results
in biased regression parameters. The phrase ‘biased’ means that the expected value
for the estimate parameter does not equal the population value. Fortunately, we can
ignore the problem if the error in determining the explanatory variable is small com-
pared to the range of the explanatory variable. So, if you have 20 samples where the
temperature varies between 15 and 20 degrees Celsius, and the error of your ther-
mometer is 0.1, then you are ok. But the age determination of the whales in Fig. 2.4
may be a different story as the range of age is from 0 to 40 years, but the error on the
age reading may (or may not) be a couple of years. There are some elegant solutions
for this (see the references for this in Faraway (2005)), but in Chapter 7 we (shortly)
discuss the use of a brute force approach (bootstrapping).

2.3.5 Independence

Violation of independence is the most serious problem as it invalidates important
tests such as the F-test and the t-test. A key question is then how do we identify a
lack of independence and how do deal with it. You have violation of independence
if the Y value at Xi is influenced by other Xi (Quinn and Keough, 2002). In fact,
there are two ways that this can happen: either an improper model or dependence
structure due to the nature of the data itself. Suppose you fit a straight line on a data
set that shows a clear non-linear pattern between Y and X in a scatterplot. If you plot
the residuals versus X, you will see a clear pattern in the residuals: the residuals of
samples with similar X values are all positive or negative. So, an improper model
formulation may cause violation of independence. The solution requires a model
improvement, or a transformation to ‘linearise the relationship’. Other causes for
violation of independence are due to the nature of the data itself. What you eat now
depends on what you were eating 1 minute ago. If it rains at 100 m in the air, it will
also rain at 200 m in the air. If we have large numbers of birds at time t, then it is
likely that there were also large numbers of birds at time t – 1. The same holds for
spatial locations close to each other and sampling pelagic bioluminescence along
a depth gradient. This type of violation of independence can be taken care of by
incorporating a temporal or spatial dependence structure between the observations
(or residuals) in the model.
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The case studies later in the book contain various examples of both scenarios, but
for now we look at a series of examples where some of these important assumptions
have been violated.

2.3.6 Example 1; Wedge Clam Data

Figure 2.6 shows a coplot of biomass (labelled as AFD which stands for ash free dry
weight) of 398 wedge clams (Donax hanleyanus) plotted against length for six dif-
ferent months (Ieno, unpublished data). The data used in this section were measured
on a beach in Argentina in 1997. An initial scatterplot of the data (not shown here)
showed a clear non-linear relationship, and therefore, both AFD and length were
log-transformed to linearise the relationship. Note this transformation is only neces-
sary if we want to apply linear regression. As an alternative, the untransformed data
can be analysed with additive modelling (Chapter 3). The coplot in Fig. 2.6 indicates
a clear linear relationship between AFD and length in all months, and it seems sen-
sible to apply linear regression to model this relationship. Due to different stages of
the life cycle of wedge clams, the biomass-length relationship may change between
months, especially before and after the spawning period in September–October and
February–March. This justifies adding a length–month interaction term. This model
is also known as an analysis of covariance (ANCOVA). The following R code was
used for the coplot (Fig. 2.6) and the linear regression model.
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Fig. 2.6 Coplot of the
wedge clam data during the
spring and summer period.
(The data were taken on the
southern hemisphere.) The
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> library(AED); data(Clams)

> Clams$LNAFD <- log(Clams$AFD)

> Clams$LNLENGTH <- log(Clams$LENGTH)

> Clams$fMONTH <- factor(Clams$MONTH)

> library(lattice)

> coplot(LNAFD ∼ LNLENGTH | fMONTH, data = Clams)

> M1 <- lm(LNAFD ∼ LNLENGTH * fMONTH, data = Clams)

> drop1(M1,test = "F")

The drop1 command compares the full model with a model in which the inter-
action is dropped, and an F-test is used to compare the residual sum of squares of
both the models (Appendix A):

Single term deletions

Model: LNAFD ∼ LNLENGTH * fMONTH

Df Sum of Sq RSS AIC F value Pr(F)

<none> 6.36 -1622.35

LNLENGTH:fMONTH 5 0.23 6.58 -1618.47 2.7385 0.01906

On the third line of this output (labelled as none), we have the output of the full
model, and the last line shows the output from the model without the interaction.
Note that this model is nested within the full model. The F-statistic shows that
the interaction is significant at the 5% level. However, before trusting the values
obtained by the F-statistic and use the ‘magic’ 5% as rejection level, we need to be
confident that all model assumptions are valid. Hence, we enter the next stage of the
analysis, the model validation.

2.3.6.1 Model Validation

Standard model validation graphs are (i) residuals versus fitted values to ver-
ify homogeneity, (ii) a QQ-plot or histogram of the residuals for normality, and
(iii) residuals versus each explanatory variable to check independence, see Fig. 2.7.
We also need to check whether there are any influential observations. The following
R code was used to generate Fig. 2.7.

> op <- par(mfrow = c(2, 2), mar = c(5, 4, 1, 2))

> plot(M1, add.smooth = FALSE, which = 1)

> E <- resid(M1)

> hist(E, xlab = "Residuals", main = "")

> plot(Clams$LNLENGTH, E, xlab = "Log(Length)",

ylab = "Residuals")

> plot(Clams$fMONTH, E, xlab = "Month",

ylab = "Residuals")

> par(op)
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Fig. 2.7 Model validation graphs. A: Fitted values versus residuals (homogeneity). B: Histogram
of the residuals (normality). C: Residuals versus length (independence). D: Residuals versus month

The first line specifies a graphical window with four panels and a certain amount
of white space around each panel. The last command par(op) sets the graphi-
cal settings back to the default values. There seems to be minor evidence of non-
normality (Fig. 2.7B), and more worrying, the spread in the residuals is not the same
at all length classes and months (Fig. 2.7A, C, D). In month 3, there is less spread
than in other months. A and C of Fig. 2.7 are similar in this case, but if we had
a larger number of explanatory variables, these panels would no longer share this
similar appearance.

The residuals play an essential part in the model validation process. Residuals are
defined as observed values minus fitted values (we call these the ordinary residuals).
However, it is also possible to define other types of residuals, namely standardised
residuals and Studentised residuals. In Appendix A, we discuss the definition of the
standardised residuals. These have certain theoretical advantages over the ordinary
residuals, and it better to use these in the code above. Studentised residuals are
useful for identifying influential observations. They are obtained by fitting a linear
regression model using the full data set, and the same regression model on a data
set in which one observation is dropped (in turn), and predicting the value of the
dropped observation (Zuur et al., 2007). We do not use Studentised residuals here.
However, if you do a good data exploration and deal with outliers at that stage, then
ordinary, standardised, and Studentised residuals tend to be very similar (in terms
of patterns).
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Instead of a visual inspection, it is also possible to apply a test for homogene-
ity. Sokal and Rohlf (1995) describe three such tests, namely the Barlett’s test for
homogeneity, Hartley’s Fmax test and the log-anova, or Scheffé-Box test. Faraway
(2005) gives an example of the F-test. It uses the ratio of variances. Panel 2.7C
suggests that the observations for log(Length) less than 2.275 have a different
spread than those larger than 2.275. The following code applies the F-ratio test, and
the output is given immediately after the code.

> E1 <- E[Clams$LNLENGTH <= 2.75]

> E2 <- E[Clams$LNLENGTH > 2.75]

> var.test(E1, E2)

F test to compare two variances data: E1 and E2

F = 0.73, num df = 161, denom df = 235, p-value = 0.039

alternative hypothesis: true ratio of variances is not

equal to 1

95 percent confidence interval: 0.557 0.985

sample estimates: ratio of variances: 0.738

The null hypothesis (H0) in this test is that the ratio of the two variances is equal
to 0, and the test suggests rejecting it at the 5% level. However, p = 0.04 is not very
convincing. On top of this, the choice for 2.275 is rather arbitrary. We can easily
fiddle around with different cut-off levels and come up with a different conclusion.
We could also use the Fmax to test whether residuals in different months have the
same spread (see page 397 in Sokal and Rohlf, 1995). We will address the same
question with the Bartlett test for homogeneity. The null hypothesis is that variances
in all months are the same. The following code and output shows that we can reject
the null hypothesis at the 5% level.

> bartlett.test(E, Clams$fMONTH)

Bartlett test of homogeneity of variances

data: E and MONTH

Bartlett's K-squared = 34.28, df = 5, p-value = <0.001

The problem with the Bartlett test is that it is rather sensitive to non-normality;
hence, one should make histograms of residuals per month. Results are not presented
here, but the R command hist(E[Clams$MONTH = = 12]) gives a bimodal
histogram.

The conclusion of the linear regression (or ANCOVA) model is that there is a sig-
nificant relationship between biomass, length, and month with a weak but significant
interaction between the length and the month. However, with a p-value of 0.02 for
this interaction term, we would have preferred to see no patterns at all in the residu-
als. Both the tests and graphical output, gave us some reasons to doubt the suitability
of this model for these data. In Chapter 4, we discuss extensions of the linear regres-
sion model that can be used to test whether we need different variances per month.
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2.3.7 Example 2; Moby’s Teeth

Figure 2.4 showed nitrogen isotope ratios in teeth of stranded whales. One of which
became famous and attracted newspaper headlines when it stranded in Edinburgh,
Scotland, and was nicknamed ‘Moby the whale’. The graph in Fig. 2.4 indi-
cates that Moby’s isotope ratios increased with age, and a linear regression was
applied to model this pattern. The following code was used to access the data,
rename the object with a very long name (TeethNitrogen) into something much
shorter, apply linear regression on Moby’s data, and make the validation graphs in
Fig. 2.8.

> library(AED); data(TeethNitrogen)

> TN <- TeethNitrogen

> M2 <- lm(X15N ∼ Age, subset = (TN$Tooth == "Moby"),

data = TN)

> op <- par(mfrow = c(2, 2))

> plot(M2, add.smooth = FALSE)

> par(op)

Figure 2.8 is the typical graphical output produced by the plot command in R.
Based on the QQ-plot in panel B, the residuals look normally distributed (if the
points are in a line, normality can be assumed). Panel D identifies potential and
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Fig. 2.8 Model validation graphs obtained by applying a linear regression model on the teeth data
from Moby. Panel A and C show residuals versus fitted values; note the clear pattern! Panel B is a
QQ-plot for normality, and Panel D shows the standardised residuals versus leverage and the Cook
statistic is superimposed as contour plots. In this case, the Cook values are small and cannot be
clearly seen
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influential observations. It is a scatterplot of leverage against residuals. Leverage
measures whether any observation has extreme values of the explanatory variables.
If there is only one explanatory variable, then a Cleveland dotplot or boxplot will
identify such points. However, an observation may have a combination of values of
explanatory variables that make it unique in terms of ‘environmental’ conditions.
None of the data exploration methods mentioned so far will detect this. If such
a point has a ‘large’ influence on the linear regression model, we may decide to
remove it. And this is measured by the Cook distance (a leave-one-out measure of
influence), which is superimposed with contour lines in panel D. We will return
to the Cook distance later (Appendix A) as the default output of R is not the best
way to present the Cook distance. In this case, there are no observations with a
Cook distance larger than 1, which is the threshold value upon one should take
further action (Fox, 2002). Summarising, leverage indicates how different an indi-
vidual observation is compared to the other observations in terms of the values of
the explanatory variables; the Cook distance tells you how influential an observation
is on the estimated parameters.

Figure 2.8A shows residuals versus fitted values. Violation of homogeneity can
be detected if this panel shows any pattern in the spread of the residuals. Panel
C is based on the same theme. However, in panel C, the residuals are square-root
transformed (after taking the absolute values) and weighted by the leverage. Both
panels A and C can be used to assess homogeneity. The spread seems to be the same
everywhere; however, panel A shows a clear problem: violation of independence.
There are in fact two violations to deal with here. The first one can be seen better
from Fig. 2.9. It shows the observed values plotted against age with a fitted linear
regression curve added. There are groups of sequential residuals that are above and
below the regression line.

The graph was obtained by

> N.Moby <- TN$X15N[TN$Tooth == "Moby"]

> Age.Moby <- TN$Age[TN$Tooth == "Moby"]
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Fig. 2.9 Observed nitrogen
isotope ratios plotted versus
age for Moby the whale. The
line is obtained by linear
regression
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> plot(y = N.Moby, x = Age.Moby,

xlab = "Estimated age Moby",

ylab = expression(paste(deltaˆ{15}, "N Moby")))

> abline(M2)

To keep the code for the plot command simple, we defined the variables
N.Moby and Age.Moby. The abline command draws the fitted regression
curve. Applying an additive model (Chapter 3) or adding more covariates may solve
the misfit. The other form of dependence is due to the nature of these data; high
nitrogen isotope ratios at a certain age may be due to high nitrogen values at younger
ages. To allow for this type of dependence, some sort of auto-correlation structure
on the data is needed, and this is discussed in Chapters 5, 6, and 7.

The relevant numerical output obtained by the summary(M2) command is
given by

Estimate Std. Error t-value p-value

(Intercept) 11.748 0.163 71.83 <0.001

Age.Moby 0.113 0.006 18.40 <0.001

Residual standard error: 0.485 on 40 degrees of freedom

Multiple R-Squared: 0.894, Adjusted R-squared: 0.891

F-statistic: 338.4 on 1 and 40 DF, p-value: < 0.001

The output shows the estimated intercept and slope (plus standard errors, t-values
and p-values). We also get information on R2 and the adjusted R2 (the latter one can
be used to select the best model if there are any non-significant terms in the model),
the square root of the variance (residual standard error), and the F-statistic (which
is testing the null hypothesis whether all slopes, one is this case, are equal to zero).
The estimated model is given by

yi = 11.748 + 0.113 × agei

The estimated slope and intercept are significantly different from 0 at the 5%
level. The model explains 89% of the variation; the estimator for σ is equal to
s = 0.486. But the problem is that we still have to reject this model because there is
a clear violation of independence. Solutions will be given in Chapters 6 and 7.

2.3.8 Example 3; Nereis

In the third example, we present the results of a linear regression model applied
on the Nereis data, presented earlier in this chapter. The concentration is modelled
as a function of nutrient, biomass, and their interaction. This can also be called a
2-way ANOVA with interaction. The following R code accesses the data, defines
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Fig. 2.10 Model validation graphs for the Nereis data showing heterogeneity. Residuals are plotted
versus biomass and nutrient

the explanatory variables biomass and nutrient as factors, applies linear regression,
and plots the validation graphs in Fig. 2.10. Note that homogeneity is violated!

> library(AED); data(Nereis)

> Nereis$fbiomass <- factor(Nereis$biomass)

> Nereis$fnutrient <- factor(Nereis$nutrient)

> M3 <- lm(concentration ∼ fbiomass * fnutrient,

data = Nereis)

> drop1(M3, test = "F")

> op <- par(mfrow = c(1, 2))

> plot(resid(M3) ∼ Nereis$fbiomass, xlab = "Biomass",

ylab = "Residuals")

> plot(resid(M3) ∼ Nereis$fnutrient,

xlab = "Nutrient", ylab = "Residuals")

> par(op)

The numerical output obtained by the drop1 command is printed below
and shows that the biomass-nutrient interaction term is significant at the 5%
level.

Single term deletions
Model: concentration ∼ fbiomass * fnutrient

Df Sum of Sq RSS AIC F value Pr(F)
<none> 13.630 -23.746
fbiomass:fnutrient 8 11.553 25.183 -12.121 3.1785 0.0099

However, the boxplot of (i) residuals versus nutrient and (ii) residuals ver-
sus biomass in Fig. 2.10 shows a clear violation of homogeneity. Applying a
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transformation on concentration may solve this problem. The disadvantage of a
transformation is that we are changing the type of relationship between response
and explanatory variables. So, again we need to reject the linear regression model for
these data.

2.3.9 Example 4; Pelagic Bioluminescence

In Gillibrand et al. (2007), pelagic bioluminescence along a depth gradient in the
northeast Atlantic Ocean is analysed. Figure 2.11 shows an xyplot from the lattice
package. Each panel represents a station. The underlying questions are (i) how to
model the bioluminescent–depth relationship and (ii) how to deal with the data of
difference stations. The following code was used to read the data and make the lattice
panel.

> library(AED); data(ISIT)

> ISIT$fStation<- factor(ISIT$Station)

> library(lattice)

> xyplot(Sources∼ SampleDepth | fStation, data= ISIT,

xlab= "Sample Depth", ylab= "Sources",

strip= function(bg= 'white', ...)

strip.default(bg= 'white', ...),

panel= function(x, y) {
panel.grid(h= -1, v= 2)

I1<- order(x)

llines(x[I1], y[I1], col= 1)})

You can see this code is slightly more complicated than used for Fig. 2.4. In this
code, we used a panel function that automatically splits up the data by station. When
R enters this panel function, the x and the y variables are the data for one particular
station. We then have a range of options in the way we can display this x and y data.
First, we add a grid using the panel.grid command. If you don’t like the grid,
just remove this command. The I1 <- order (x) determines the order of age
as we did not sort the data before importing into R. Finally, we added lines between
points with sequential ages. Omitting the order command and removing the [I1]
in the llines function produces a spaghetti plot.

There is no point in applying a linear regression model with Sources as the
response variable and Depth and Station as explanatory variables (plus an inter-
action between them) because the relationships are not linear and the variation per
station differs. Perhaps it is better to consider station as a random effect (Chapter 5).
Another problem is that depth can be seen as a spatial gradient. Hence, there may be
spatial correlation along the depth gradient. In Chapter 5, we discuss random effect
models, and in Chapter 7 spatial correlation for smoothing models. A full analysis
of this data set is presented in Chapter 17.
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Fig. 2.11 Pelagic bioluminescence (labelled as Sources) along a depth gradient in the northeast
Atlantic Ocean. Each panel represents a station

2.4 Where to Go from Here

The data exploration should filter out any typing mistakes (typos), identify possible
outliers and the need for a data transformation, and provide some ideas about the
follow up analyses. As for typos, these should obviously be corrected before contin-
uing with any analysis, but do not apply a transformation on the response variable
yet unless there are strong reasons to do so. Some of the methods discussed in later
chapters may be able to deal with (groups) of extreme observations or heterogene-
ity. Many books will tell you to routinely apply a data transformation to linearise
the relationship. Well, if you are particular fond on linear regression then yes, but
(generalised) additive (mixed) modelling is especially designed to model non-linear
relationships. Even heterogeneity, as for example encountered in Fig. 2.1B can be
dealt with (as will be explained in Chapter 4); so you do not need to apply a transfor-
mation to stabilise the mean-variance relationship, provided you are willing to read
the rest of this book. The only thing we cannot solve with any of the techniques dis-
cussed in later chapters is observations with extreme explanatory variables. If this
happens for your data, then a transformation on the explanatory variable(s) could
well be justified at this stage.
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The original aim of this chapter was to simply illustrate the linear regression
model for an ecological data set and discuss the numerical and graphical output.
However, in preparing this book, we had access to about 15 data sets, and in Zuur
et al. (2007), we had access to a further 20 data sets. In none of these real data
sets could we find a non-trivial example for a linear regression model for which
all assumptions held. This clearly identifies the limitation of linear regression for
analysing ecological data. Hence, our choice of the title of this chapter.

So, what can we do? The problem of heterogeneity can be solved by either
allowing for different variances in the linear regression model (using generalised
least squares estimation) or using a different distribution and model structure (Pois-
son, negative binomial and Gamma distributions in GLM); the dependence prob-
lem requires the use of models that allow for more flexibility than regression (e.g.
smoothing methods) and a model for the error structure (e.g. temporal, spatial cor-
relation, or along another gradient like age or depth). We will also need to consider
nested data and random effects. Taken together, all these techniques lead to mixed

Count and
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Chapter13
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Fig. 2.12 Overview of all the chapters in this book. Linear regression is discussed in Appendix A.
Additive modeling, generalised least squares (GLS), and mixed modelling techniques are presented
in Chapters 4, 5, 6, and 7. Chapter 8 contains an explanation of the Poisson, negative binomial,
Bernoulli, binomial, and zero-truncated distributions. GLM and GAM models are discussed in
Chapters 9, 10, and 11, and finally, Chapters 12 and 13 contain GEE, GLMM, and GAMM. Asso-
ciated case studies are printed outside the triangle. Chapter 23 contains an application of Markov
Chain Monte Carlo (MCMC), which can be used as an alternative estimation technique or if the
correlation structure is more complicated than the R functions for mixed modeling, GLMM and
GAMM can cope with
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modelling approach, and if combined with GLM and GAM, to generalised linear
mixed modelling (GLMM) and generalised additive mixed modelling (GAMM).

Chapter 4 shows how we can deal with heterogeneity in linear regression and
smoothing models, random effects for nested data are introduced in Chapter 5, and
temporal and spatial correlation structures are discussed in Chapters 6 and 7. In
Chapter 8, we introduce different distributions for count data, binary data, propor-
tional data, and zero inflated count data. These are then used in Chapters 9, 10,
and 11. Finally, Chapters 12 and 13 discuss how we can incorporate correlation
structures and random effects in models for count data, binary data, and propor-
tional data. See Fig. 2.12 for a schematic overview.

Before reading on, we strongly advise to read Appendix A as it provides a more
detailed discussion on linear regression. It is essential that you are familiar with all
steps discussed in this appendix.



Chapter 3
Things Are Not Always Linear; Additive
Modelling

3.1 Introduction

In the previous chapter, we looked at linear regression, and although the word linear
implies modelling only linear relationships, this is not necessarily the case. A model
of the form Yi = α + β1 × Xi + β2 × Xi

2 + εi is a linear regression model, but
the relationship between Yi and Xi is modelled using a second-order polynomial
function. The same holds if an interaction term is used. For example, in Chapter 2,
we modelled the biomass of wedge clams as a function of length, month and the
interaction between length and month. But a scatterplot between biomass and length
may not necessarily show a linear pattern.

The word ‘linear’ in linear regression basically means linear in the parameters.
Hence, the following models are all linear regression models.

• Yi = α + β1 × Xi + β2 × Xi
2 + εi

• Yi = α + β1 × log(Xi) + εi

• Yi = α + β1 × (Xi × Wi) + εi

• Yi = α + β1 × exp(Xi) + εi

• Yi = α + β1 × sin(Xi) + εi

In all these models, we can define a new explanatory variable Zi such that we
have a model of the form Yi = α + β1 × Zi + εi. However, a model of the form

Yi = α + β1 × X1i × eβ2×X2i +β3×X3i + εi

is not linear in the parameters. In Chapter 2, we also discussed assessing whether the
linear regression model is suitable for your data by plotting the residuals against fit-
ted values, and residuals against each explanatory variable. If in the biomass wedge
clam example, the residuals are plotted against length, and there are clear patterns,
then you have a serious problem. Options to fix this problem are as follows:

• Extend the model with interactions terms.
• Extend the model with a non-linear length effect (e.g. use length and length to

the power of two as explanatory variables).

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 3,
C© Springer Science+Business Media, LLC 2009
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• Add more explanatory variables.
• Transform the data to linearise the relationships. You can either transform the

response variables or the explanatory variables. See, for example, Chapter 4 in
Zuur et al. (2007) for guidance on this. An interesting discussion with arguments
against transformations can be found in Keele (pg. 6–7, 2008). One of the argu-
ments is that a transformation affects the entire Y – X relationship, whereas
maybe the relationship is partly linear and also partly non-linear along the X
gradient.

Now suppose you have already added all possible explanatory variables, and
interactions, but you still see patterns in the graph of residuals against individual
explanatory variables, and you do not want to transform the variables. Then you
need to move on from the linear regression model, and one alternative is to use
smoothing models, the subject of this chapter. These models allow for non-linear
relationships between the response variable and multiple explanatory variables and
are also called additive models. They are part of the family of generalised additive
models (GAM) that we discuss in Chapters 8, 9, and 10, and an additive model can
also be referred to as a GAM with a Gaussian distribution (and an identity link, but
this is something we will explain in Chapter 9).

References on additive modelling, or more generally on GAM, in R, are
Chambers and Hastie (1992), Bowman and Azzalini (1997), Venables and Ripley
(2002), Faraway (2006), and Keele (2008). More advanced books are Hastie and
Tibshirani (1990), Schimek (2000), Ruppert et al. (2003) or Wood (2006). Other
books on GAM, but without R code are Fox (2000), Quinn and Keough (2002), and
Zuur et al. (2007), among others. The ‘must cite’ books are Hastie and Tibshirani
(1990) and Wood (2006). The Keele (2008) is an ‘easy to read’ book, though it aims
at the social scientist. The Zuur et al. (2007) book has various case studies, showing
applications of GAMs on various types of data, including time series. Its supporting
website at www.highstat.com contains the required R code.

3.2 Additive Modelling

The linear regression model using only one explanatory variable is given by

Yi = α + β × Xi + εi where εi ∼ N (0, σ 2) (3.1)

The relationship between Yi and Xi is summarised by the parameter β. In additive
modelling, we use a smoothing function to link Yi and Xi. Figure 3.1A shows a scat-
terplot of pelagic bioluminescence along a depth gradient in the northeast Atlantic
Ocean for a particular station (number 16). These data were introduced in Chapter 2
and the graph shows a non-linear pattern. One approach to model these data is to
try to linearise the relationship between the two variables by applying a square root,
or logarithmic, transformation, and then applying a linear regression. Although this
approach may work for the data from this particular station, it will not work for data



3.2 Additive Modelling 37

Depth

S
ou

rc
es

Depth

lo
(D

ep
th

, 
sp

an
 =

 0
.5

)

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

0
10

30

–1
0

10
3050

0
10

30
50

Depth

S
ou

rc
es

A 

C 

B 

Fig. 3.1 A: Scatterplot of pelagic bioluminescence versus depth gradient for cruise 16. B: Esti-
mated LOESS curve and pointwise 95% confidence bands obtained by the gam function in the
gam package. C: Fitted values obtained by the LOESS smoother and observed data

of all stations in this data set, especially those showing a non-monotonic decreas-
ing source-depth relationship (e.g. stations 6–10, see Fig. 2.11). We therefore need
something that can cope with non-linear patterns, for example, the GAM.

3.2.1 GAM in gam and GAM in mgcv

The additive model fits a smoothing curve through the data. There are as many
smoothing techniques as there are roads to Rome. In R, there are two main packages
for GAM: The gam package written by Hastie and Tibshirani and the mgcv package
produced by Wood. Each package has its own charms. Readers familiar with the
classical textbook from Hastie and Tibshirani (1990) may prefer the gam package
as it follows the theory described in the book. Estimation of smoothers is done using
a method called the back-fitting algorithm (a simple but robust way to estimate one
smoother at a time). The GAM in mgcv uses splines and these require slightly more
mathematical understanding than the methods in gam.

The main advantage of GAM in the gam package is its simplicity; it is easy to
understand and explain. The main advantage of GAM in mgcv is that it can do cross-
validation and allows for generalised additive mixed modelling (GAMM) including
spatial and temporal correlations as well as nested data and various heterogeneity
patterns. GAMM will be discussed later in this book. Cross-validation is a process
that automatically determines the optimal amount of smoothing.
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3.2.2 GAM in gam with LOESS

Instead of going straight into the mathematical background of GAM, we show how
to run it and explain what it does with help of an example. The following R code
was used to generate Fig. 3.1A:

> library(AED); data(ISIT)

> op <- par(mfrow = c(2, 2), mar = c(5, 4, 1, 2))

> Sources16 <- ISIT$Sources[ISIT$Station == 16]

> Depth16 <- ISIT$SampleDepth[ISIT$Station == 16]

> plot(Depth16, Sources16, type = "p")

We access the variables directly from the ISIT object by using the $ symbol. The
additive model applied on the source (response variable Yi) and depth (explanatory
Xi) variable is

Yi = α + f (Xi ) + εi where εi ∼ N (0, σ 2) (3.2)

Note that the only difference between models (3.1) and (3.2) is the replacement
of β × Xi by the smoothing curve f(Xi). However, it is fundamentally important to
understand the difference. The linear regression model gives us a formula and the
relationship between Yi and Xi is quantified by an estimated regression parameter
plus confidence intervals. In a GAM, we do not have such an equation. We have
a smoother, and the only thing we can do with it, is plot it.1 This does not mean
that we cannot predict from this model; we can, but not with a simple equation. The
smoother is the curve in Fig. 3.1B. The dotted lines are 95% point-wise confidence
bands. For the moment, it is sufficient to know that the curve is a LOESS smoother
obtained with the gam package. We will explain later what the abbreviation LOESS
means. The R code is given below:

> library(gam)

> M1 <- gam(Sources16 ∼ lo(Depth16, span = 0.5))

> plot(M1, se = TRUE) #Fig. 3.1B

The gam package does not come with the base installation of R, and you will
need to download and install it. The plot command in the code above gives the
LOESS smoother in Fig. 3.1B. To obtain a graph with fitted and observed values
(Fig. 3.1C), use the following code:

1This is not entirely true as we will see later. The smoothers used in this chapter consist of a
series of local regression-type models, which do allow for prediction. We just don’t get one overall
equation.
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> M2 <- predict(M2, se = TRUE)

> plot(Depth16, Sources16, type = "p")

> I1 <- order(Depth16)

> lines(Depth16[I1], M2$fit[I1], lty = 1)

> lines(Depth16[I1], M2$fit[I1] + 2 * M2$se[I1], lty = 2)

> lines(Depth16[I1], M2$fit[I1] - 2 * M2$se[I1], lty = 2)

> par(op)

The predict command creates an object containing two variables: fitted values
and standard errors. These can be accessed by typing M2$fit and M2$se. The
order command avoids a spaghetti plot as the data were not sorted by depth. The
par(op) sets the graphical parameters back to default values.

3.2.2.1 LOESS Smoothing

LOESS smoothing is discussed in several textbooks, e.g. Cleveland (1993), Hastie
and Tibshirani (1990), Fox (2000), Zuur et al. (2007), and Keele (2008) among
many others. Here, we only give a short, conceptual explanation, and we strongly
advise that you consult Hastie and Tibshirani (1990) if you decide to work with the
GAM from the gam package. The principle of LOESS smoothing is illustrated in
Fig. 3.2.

Suppose we have a target value of depth = 1500 m. Choose a window around this
target value of a certain size, let us say 500 m on both sides of the target value so
the window goes from 1000 to 2000 m. All the observations inside this window are
plotted as black dots, the ones outside the window as open circles. The aim is now to
obtain a value for the number of sources at the target value (denoted by the triangle).
Multiple options exist; we can take the mean value of the number of sources of all
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depth (denoted by the
triangle). A window around
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(denoted by the dotted lines)
and all points in this window
(the black dots) are used in
the local linear regression
analysis
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the points inside the window or the median. Alternatively, we can apply a linear
regression using only the black points and predict the number of sources at depth =
1500 m from the resulting equation. Or we can apply a weighted linear regression,
where the weights are determined by the distance (along the horizontal direction) of
the observations from the target value. If we use the linear regression option (also
called local linear regression), we get the thick linear regression line in Fig. 3.2.
Using the underlying equation for this line, we can easily predict the sources at the
target depth of 1500 m, which is 27.2. Repeating this whole process for a sequence
of depth values (e.g. from the smallest to the largest depth value, with a total of
100 intermediate equidistant values) and each time storing the predicted value is
called LOESS smoothing. In a statistical context, the abbreviation LOESS stands for
local regression smoother, which now makes sense. If weights are used in the local
regression, we talk about local weighted linear regression abbreviated as LOWESS.
Instead of a linear regression, it is also possible to use polynomial models of order
p; a typical value for p is two. You may see the name local polynomial regression in
the literature for this.

The R function to use is loess (or lo). By default, it fits a local polynomial
model of order two, but you if you use as option degree = 1, it fits a local linear
regression. Confusingly, the function loess is actually doing local weighted linear
regression (see its help file obtained by typing ?loess). R also has a routine that
is called lowess, which is an older version of loess. The function loess has
better support for missing values and has different default settings. Keele (2008)
shows that the differences between LOESS and LOWESS are marginal.

The process outlined above produces a similar curve as the smoothing curve in
Fig. 3.1. The only difference between the smoothing curve in Fig. 3.1 and the one
produced by the approach above is the size of the window (resulting in a less smooth
curve in Fig. 3.2).

There are two problems associated with moving a window along the depth gradi-
ent: the size of the window (also called span width) and what happens at the edges.
There is not much you can do about the edges, except to be careful with the inter-
pretation of the smoother at the edges. The size of the window is a major headache.
Instead of specifying a specific size (e.g. 500 m), it is expressed as the percentage
of the data inside the window. The command in R

> lo(Depth, span = 0.5)

means that the size of the window is chosen so 50% of the data is inside each win-
dow. It is the default value. If this value is chosen as 1, we obtain a nearly straight
line; setting it to a very small value gives a smoother that joins every data point. So,
is there any point in changing the span width in Fig. 3.1? Note that the sources at the
depth range around 1000 m show groups of points being under- and over-fitted. So,
perhaps we should decrease the span a little bit, and try 0.4 or 0.3. But how do you
assess the optimal span width? One option is trial and error. Figure 3.3 shows the
smoother for the ISIT data of station 16. It seems that the smoother obtained with
span = 0.1 over-fits the data (this is called under-smoothing). On the other extreme,
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Fig. 3.3 LOESS smoothers for different span values. The solid line is the LOESS smoother and
the dotted lines are 95% confidence bands. A visual inspection of the fitted lines and observed
values indicates that a span of 0.2 seems to be optimal. The R code to make this graph is about two
pages and is therefore presented on the book website

the model with span = 1 shows a clear misfit (this is called over-smoothing). It
seems that the smoother obtained with span = 0.2 follows the pattern of the data
reasonably well.

Finding the optimal span width is also a matter of bias – variance tradeoff. The
smoother obtained with span = 0.1 has only a few data points in each window for
the local regression; hence, the uncertainty around the predicted value at the target
value will be large (and as a result the confidence bands around the smoothers are
large). But the fit will be good! On the other hand, a smoother with a span of 0.9
or 1 will have small variances (lots of data are used to estimate the Y value at each
target point), but the fit is not good.

Another way to find the optimal amount of smoothing is inspecting residual
graphs. If there is still a pattern in the residuals, it may be an option to increase
the span width. Yet, another option is to use the Akaike Information Criterion
(AIC); see also Appendix A. In this case, the model with a span of 0.15 has the
lowest AIC.

The first two options, visual inspection of smoothers and residuals, sound sub-
jective, though with common sense they work fine in practice. It is also possible
to apply automatic selection of the amount of smoothing, but instead of present-
ing this approach for the LOESS smoother, we will discuss this using the GAM in
the mgcv package. Automatic estimation of the amount of smoothing has not been
implemented (at the time of writing this book) in the GAM function in the gam
package. This provides a good motivation for using the mgcv package!
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Fig. 3.4 A: Residuals versus fitted values. B: Residuals versus Depth. C: Histogram of residuals.
The panels show that there are residual patterns, heterogeneity and non-normality

Hastie and Tibshirani (1990) show how the LOESS smoother can be written in
simple matrix algebra, mimicking the matrix algebra of linear regression, and then
give a justification for using hypothesis testing procedures that provide F-statistics
and p-values. But just as in linear regression, we need to apply a whole series
of model validation tests: homogeneity, normality, fixed X, independence, and no
residual patterns. The same graphs can (and should) be used; see Fig. 3.4, where
it can be seen from panels A and B that there are patterns in the residuals and the
residual spread is smaller for deeper depths. The patterns may disappear if we use a
span of 0.4 or 0.2. But instead of going this route, we apply GAM with the routines
from the mgcv package in the next section (and remaining part of this book) as it is
considerably more flexible.

3.2.3 GAM in mgcv with Cubic Regression Splines

Before explaining anything about GAM from mgcv, we show how to run it and
show that it produces very similar results to results from the gam package. You can
then decide whether it is worth your while digging a bit deeper into the underly-
ing mathematics of splines, which are slightly more complicated than the LOESS
smoother! Figure 3.5 contains the same graphs as in Fig. 3.1, except that we used
the GAM from mgcv

The following R code was used to generate Fig. 3.5. As both packages
use the same function gam, it may be wise to restart R; alternatively, type
detach("package:gam"). This avoids R choosing the wrong gam function.



3.2 Additive Modelling 43

Depth

S
ou

rc
es

Depth

s(
D

ep
th

,8
.8

2)

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

0
10

30

10
–1

0
30

50
0

10
30

50

Depth

S
ou

rc
es

A 

C 

B 

Fig. 3.5 A: Scatterplot of pelagic bioluminescence versus depth gradient for cruise 16. B: Esti-
mated smoothing curve (cubic regression spline) and point-wise 95% confidence bands. C: Fitted
values and observed data

> library(AED); data(ISIT)

> library(mgcv)

> op <- par(mfrow = c(2, 2), mar = c(5, 4, 1, 2))

> Sources16 <- ISIT$Sources[ISIT$Station == 16]

> Depth16 <- ISIT$SampleDepth[ISIT$Station == 16]

> plot(Depth16, Sources16, type = "p")

> M3 <- gam(Sources16 ∼ s(Depth16, fx = FALSE, k=-1,
bs = "cr"))

> plot(M3, se = TRUE)

> M3pred <- predict(M3, se = TRUE, type = "response")

> plot(Depth16, Sources16, type = "p")

> I1 <- order(Depth16)

> lines(Depth16[I1], M3pred$fit[I1], lty=1)
> lines(Depth16[I1], M3pred$fit[I1]+2*M3pred$se[I1],lty=2)
> lines(Depth16[I1], M3pred$fit[I1]-2*M3pred$se[I1],lty=2)

This is nearly the same code as before, except it uses the GAM from the mgcv
package. This package is part of the base distribution; so you do not have to down-
load anything, but the code to run the gam function is slightly different. The format
is now similar to that of linear regression (Chapter 2). The expression Y ∼ s(X)
means that a smoothing function is used for the explanatory variable X. The fx =
FALSE, k = –1 bit means that the amount of smoothing is not fixed to a preset
value; hence, cross-validation is used to estimate the optimal amount of smoothing.
We will explain later what cross-validation is. The bs = "cr" code tells R that a
cubic regression spline should be used. A cubic regression spline is slightly more
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Fig. 3.6 A: Residuals versus fitted values using the gam function in mgcv. B: Residuals versus
Depth. C: Histogram of residuals. The panels show that there are no residual patterns (indepen-
dence), but there is heterogeneity (differences in spread)

complicated to understand than a LOESS smoother and a technical explanation is
given in the next section. For now, it suffices to know that for the cubic regression
spline method, the X gradient (depth) is divided into a certain number of intervals.
In each interval, a cubic polynomial (this is a model of the form Yi = α + β1 ×
Xi + β2 × Xi

2 + β3 × Xi
3) is fitted, and the fitted values per segment are then

glued together to form the smoothing curve. The points where the intervals con-
nect are called knots. To obtain a smooth connection at the knots, certain conditions
are imposed. These conditions involve first- and second-order derivates and require
high-school mathematics to understand. The gam function in mgcv allows for other
types of splines, but for most data sets, the visual differences are small.

This method, again, gives F-statistics and p-values, and as before, we need to
check the assumptions on data characteristics. The validation plots for this example
are presented in Fig. 3.6 and show that the residual patterns have disappeared (except
for the heterogeneity). The reason for this is that mgcv has produced a less smooth
curve due to the cross-validation. The R code that was used to create Fig. 3.6 is
identical as that for Fig. 3.4 and is not shown again.

3.3 Technical Details of GAM in mgcv∗

This section gives a more technical discussion on regression splines (hence the ∗ in
the section title) and some other aspects of GAM in the mgcv package. It is heavily
based on Chapters 3 and 4 in Wood (2006), but at a considerably lower mathematical
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level. We advise readers to have a look at his chapters after reading this section, and
to avoid confusion, we have used the same mathematical notation as Wood (2006),
where possible.

The family of splines is rather large, e.g. cubic splines, B-splines, natural splines,
thin-splines, and smoothing splines. Here, we discuss a few of them.

We mentioned in the previous section that for a cubic polynomial, the x-axis is
divided into various segments, and on each segment, a cubic regression spline is
fitted. The word cubic refers to 3. In a more general context, we can consider any
order for the polynomial. Recall that the smoother is given by the function f (Xi) in

Yi = α + f (Xi ) + εi where εi ∼ N (0, σ 2) (3.3)

We now give an expression for the function f(Xi) so that it can be written as a
linear regression model. This is done by using a ‘basis’ for f(Xi). This means that
f(Xi) is built up in basic components, called the basis functions bj(Xi), such that:

f (Xi ) =
∑p

j=1
β j × b j (Xi ) (3.4)

This may look magic to many readers, but the principle is fairly simple. Suppose
that p = 4. This gives

f (Xi ) = β1 × b1(Xi ) + β2 × b2(Xi ) + β3 × b3(Xi ) + β4 × b4(Xi ) (3.5)

Ok, this may still look magic, but let us assume for the moment that b1(Xi) = 1,
b2(Xi) = Xi, b3(Xi) = Xi

2, and b4(Xi) = Xi
3. This results in

f (Xi ) = β1 × β2 × Xi + β3 × X2
i + β4 × X3

i (3.6)

This is a cubic polynomial, and it can produce a wide range of possible shapes,
depending on the values β1, β2, β3, and β4. Six examples of such shapes are given
in Fig. 3.7. We took fixed values for Xi between 0 and 1 (with equidistance values),
randomly generated some values for β1, β2, β3, and β4, and each time calculated
the value of the function f using the expression in Equation (3.6).

The problem is that in reality, we do not know the values β1, β2, β3, and β4,
and the shapes of the function f in Fig. 3.7 are not flexible enough to model more
complicated patterns. Let us solve these two problems. Note that we do know the
values of Xi, as it is a measured explanatory variable.

Suppose we divide the depth gradient into four segments (identified by the dotted
lines in Fig. 3.8), and on each segment, we fit the model in Equation (3.6) using
ordinary least squares (OLS). The fitted curves obtained by this approach are given
in Fig. 3.8. At least, we now know the betas per segment (thanks to OLS), and
because we used multiple segments, more complicated patterns than in Fig. 3.7 can
be fitted. So, these two problems are solved.
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Fig. 3.8 Illustration of fitting a cubic polynomial on four segments of data using the ISIT data
from station 19. We arbitrarily choose four segments along the depth gradient. The dotted lines
mark these segments, and the line in each segment is the fit from the cubic polynomial model. R
code to create this graph can be found on the book website

The problem with Fig. 3.8 is that, if we omit the dotted lines, any editor or ref-
eree will wonder why the line has gaps, and it seems to have discontinuities at
three points (where the lines come together). A cubic regression spline ensures that
the line will look smooth at the points where the individual lines (from the seg-
ments) connect. This is done with first-order and second-order derivatives. And here
is where things get technical. If you are interested, you may read on or you can skip
the next subsection; it is not essential for using GAMs.
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3.3.1 A (Little) Bit More Technical Information
on Regression Splines

In the previous paragraph, we ended with the statement that the cubic regression
spline fits a third-order polynomial on segments of data, and where it connects the
resulting fitted lines, it ensures that at the connection points (also called knots), the
connections are smooth. This requires some high-school mathematics. It involves
first-order and second-order derivatives. It can be shown that this affects the defi-
nition of the bjs in Equation (3.4), see Wood (2006). Before showing how the bjs
look, we need to define the position of the knots (points along the x-axis where
segments are defined). In Fig. 3.7, the knots are at 1665, 2732, and 3799 m. They
were obtained by determining the maximum depth (4866 m) minus the minimum
depth (598 m) and dividing this by 4 to obtain the segment width (= 1067 m). Once
you have the segment width, you can easily calculate the position of the knots. The
first knot is at 598 + 1067, the second at 598 + 2 × 1067, and the third at 598 +
3 × 1067. Let the vector x∗ contain these knot positions, making x∗ = (1665, 2732,
3799). The only catch is that the formulae presented below are defined for gradients
scaled between 0 and 1. Obviously, this process also influences the values of x∗,
which means they become x∗ = (0.25, 0.5, 0.75); but to understand the underlying
principle, it is not relevant that the gradient is scaled or not.

We are now in a position to specify how the bjs looks for a cubic regression
spline. They become:

b1(Xi )=1

b2(Xi )=Xi

b3(Xi )=R(Xi , x∗
1 )

b4(Xi )=R(Xi , x∗
2 )

(3.7)

The notation x1
∗ refers to the first element of x∗, x2

∗ to the second element, etc.
The form of R(Xi, z) is rather intimidating, and it is given in Wood (2006). We
decided to print it here as well, but the computer calculates it for you.

R(X, z) = 1

4
×

((
z − 1

2

)2

− 1

12

)
×

((
X − 1

2

)2

− 1

12

)
−

1

24
×

((
|X − z| − 1

2

)4

− 1

2

(
|X − z| − 1

2

)2

+ 7

240

)

The computer fills in the knot values of z = 0.25, or 0.5, or 0.75 and calculates
the values of R for given values of the covariate X. Summarising, instead of using
a basis of the form b1(Xi) = 1, b2(Xi) = Xi, b3(Xi) = Xi

2, and b4(Xi) = Xi
3, we use

more complicated ones that involve R(Xi, x∗), and all that this does is ensure that at
the knots, the smoothers are neatly connected.
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Substituting Equation (3.4) into (3.3) results in the following expression for the
additive model.

Yi = α +
∑p

j=1
β j × b j (Xi ) + εi where εi ∼ N (0, σ 2) (3.8)

Recall that the bjs are known values determined by the definitions in Equation
(3.7) and depend on the number and the values of the knots. This means that the
expression in Equation (3.8) forms a linear regression model, and the regression
parameters β j can be estimated by ordinary least squares. The number of regression
parameters is equal to the number of knots plus four (for cubic bases).

In a natural cubic regression spline, a linear regression model is fitted in the outer
two segments. This avoids spurious behaviour of the smoother at the edges.

The next question is how many knots to use. Figure 3.9 shows the effect of the
number of knots on the smoothness of the smoother. We used the data from transect
19 as it shows a more non-linear pattern than the data for transect 16. The number
of knots is defined as the number of splits (indicated by a vertical line) and the two
endpoints. The lower left panel shows the smoother if we use two segments (three
knots), the panel next to it three segments, etc. Clearly, the more knots we use, the
less smooth the curve becomes.

Just as for the LOESS smoother, we can choose the ‘optimal’ amount of knots
based on a visual comparison of the smoothers. It seems that the smoother with 6
knots follows the pattern of the data reasonably well. Using more knots does not
seem to change much. It is also possible to use the AIC (Eilers and Marx, 1996).
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Fig. 3.9 Smoothing curves obtained by cubic regression splines using 3 knots, (lower left panel),
4 knots, 5 knots, etc., and 10 knots (upper right panel). Both end points also count as knots. The
vertical lines show the position of the knots. The thick line in each panel is the smoother, and the
dots the observed data for transect 19. The more knots used, the more variation in the smoother.
R code to calculate the smoothing curves can be found in Wood (2006), and extended R code to
present the graphs in an xyplot from the lattice package is on the book website
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Keele (2008) gives as general recommendation to use 3 knots if there are less than
30 observations and 5 knots if there are more than 100 observations.

As to the placement of the knots, this is typically done by the software using
quartiles and equidistant positions.

3.3.2 Smoothing Splines Alias Penalised Splines

Because the model in Equation (3.8) can be written as a linear regression model,
it is tempting to use hypothesis testing procedures or backwards selection methods
to find the optimal number of knots. After all, linear regression implies that we can
find the parameters β j by minimising the sum of squares:

S =
∑n

i=1
(Yi − μi )

2

where μi is the fitted value for observation i, and i = 1, . . ., 789 (there are 789
observations). A typical mathematical notation for this is

S =
∑n

j=1
(Yi − μi )

2 = ‖Y − μ‖2 = ‖Y − X × β‖2

The notation || || stands for the Euclidean norm, Y contains all the observed data
in vector format, β all the parameters in vector format, and X all the bjs. It looks
intimidating, but it is nothing more than some matrix notation for the residual sum
of squares in linear regression. This type of matrix notation for linear regression can
be found in many statistical textbooks, e.g. Montgomery and Peck (1992) or Draper
and Smith (1998).

However, Wood (2006) argues that it is unwise to go the route of hypothesis test-
ing and backwards selection to obtain the optimal number of knots for a regression
spline. Instead, smoothing splines (also called penalised splines) are used. These are
obtained by finding the parameters β (and therefore the smoothers) that minimise the
following criteria.

‖Y − Xβ‖2 + λ

∫
f ′′(x)2dx (3.9)

The second part of this equation is a penalty (hence the name penalised least
squares and penalised smoothers) and is new. It contains λ and an integral over
the second-order derivatives. Remember that the second-order derivatives of the
smoothing function f, denoted by f ′′, tell you how smooth a curve is. A high value of
f ′′ means that the smoother f is highly non-linear, whereas a straight line (the perfect
smooth curve) has a second-order derivative of 0. So, if λ is very large, the penalty
for having a non-smooth curve is large, and the resulting smoother will be a straight
line. On the other hand, if λ is small, then there is a low penalty for non-smoothness,
and we are likely to end up with a considerably less smooth curve.
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We started with the question of how to find the optimal amount of smoothing,
and it is still not answered. Instead, we have obtained a different way of quan-
tifying the amount of smoothing. We are now no longer looking for the optimal
number of knots. Instead, our new aim is find the optimal amount of smoothing by
choosing a fixed and large number of knots (and keep them fixed during the anal-
ysis) and by focusing the analysis on finding the optimal value for λ.2 The word
‘optimal’ means we want to minimise the expression in Equation (3.9), where the
integral measures the amount of wiggliness of the smoother, which is then con-
trolled by the parameter λ. It is just a different approach to tackle the same prob-
lem, albeit a better one according to Wood (2006); based on mathematics, the cubic
smoothing spline gives the best possible fit with the least amount of error. Min-
imising the expression in Equation (3.9), also called penalised least squares, is just
much simpler, faster, and more robust than hypothesis testing for the number of
knots.

So, how do we find the optimal value of λ? Before addressing this question, we
look at the effects of changing the value of λ on the smoother. Figure 3.10 shows
the cubic regression spline for λ = 10e–6, λ = 10e–5, λ = 10e–4 up to λ = 10. As
might be expected, the larger the value of λ, the more linear the smoother. Changing
the number of knots has a considerably smaller effect than changing λ.
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Fig. 3.10 Smoothing curve for different values of λ. The lower left panel shows the estimated
smoother obtained by minimising the expression in Equation (3.9) for λ = 10e–6, the upper left
panel for λ = 10e–2, and the upper right panel for λ = 10. R code to calculate the smoothing
curves can be found in Wood (2006), and modified code to present the graphs in an xyplot from
the lattice package is on the book website

2Keele (pg. 69, 2008) shows an example in which the fits of two smoothing splines with the same
amount of smoothing (λ) are compared; one smoother uses four knots and the other uses sixteen
knots; the difference between the curves is minimal.
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Now that we have seen the effect of changing λ, we can ask the original question
again: ‘What is the optimal amount of smoothing?’, or even better: ‘What is the opti-
mal value for λ?’ This question is answered with a process called cross-validation
and is explained below.

3.3.3 Cross-Validation

To obtain the smoothers in Fig. 3.10, we chose values for λ and then minimised the
expression in Equation (3.9). Now, we consider the minimisation of this function if
both β and λ are unknown.

The function f(Xi) is for the population, and its estimator (based on a sample) is
written as:

f̂ (Xi )

The subtle difference is the hat ˆ on f, which denotes that it is an estimator. The
estimator needs to be estimated to be as close as possible to the real value, and one
criterion to judge this is (Wood, 2006)

M = 1

n

n∑

i=1

( f (Xi ) − f̂ (Xi ))
2

If we would know f(Xi), we could just choose a λ such that M is as small as
possible. The problem is that f(Xi) is unknown. Therefore, the strategy is to replace
M by ‘something’ that can be calculated and minimise this ‘something’ as a function
of λ. There are different options for the ‘something’ bit, and here is where things like
cross-validation (CV), generalised cross-validation (GCV), unbiased risk estimator
(UBRE), or Mallow’s Cp pop up. You will see these things in the numerical output of
the GAM from the mgcv package if you apply automatic selection of the amount of
smoothing. Let us start explaining how cross-validation, also called ordinary cross-
validation (OCV), works. Define the OCV score as

V0 = 1

n

n∑

i=1

(Yi − f̂ [−i](Xi ))
2

The notation [–i] means that the smoother is calculated using all observations
except for observation i. Observation i is dropped, the smoother is estimated using
the remaining n – 1 observations, the value for observation i is predicted from the
estimated smoother, and the difference between the predicted and real value is cal-
culated. This process is then repeated for each observation in turn, resulting in n
prediction residuals. As always, residuals are squared and added up, which gives
V0. Wood (2006) shows that the expected value of V0 is approximately equal to the
expected value of M plus σ 2:

E[V0] ≈ E[M] + σ 2
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If the aim is to find a λ that minimises M, then minimising V0 is a reasonable
approach. The process of minimising V0 is called ordinary cross-validation. How-
ever, for a large data set, this is a time consuming process as we have to repeat
the analysis n times. Luckily, a mathematical shortcut exists to calculate V0 in one
analysis! The new equation for V0 is

V0 = 1

n

n∑

i=1

(Yi − f̂ (Xi ))
2/(1 − Aii)

2

The Aii are the diagonal elements of the so-called influence matrix. Explaining
what exactly this is requires a certain degree of matrix algebra and the interested
reader is referred to Section 4.5.2 of Wood (2006). However, instead of working
with V0, we use a slightly modified version, namely, the generalised cross validation
(GCV). The 1 – Aii bit is replaced by something that involves the trace of I – A, and
the justification for this requires fairly complex matrix algebra. It suffices to know
that GCV is a modified version of OCV with computational advantages.

To illustrate the process, we calculated GCV for a large range of values for λ

(Fig. 3.11). The lowest GCV value is obtained for λ = 0.000407 (we took this from
the numerical output underlying the graph). Hence, the smoother in the third panel
(from the left) at the bottom of Fig. 3.10 is close to the optimal smoother.

It is advisable not to follow blindly the results of the cross-validation. Viola-
tion of collinearity and independence and application of cross-validation on small
(< 50) data sets can cause trouble (e.g. over-smoothing). It may be wise to verify
the cross-validation results with smoothers in which the amount of smoothing is
selected manually (or modify the results from the optimal model a little bit).

Instead of providing the output of the cross-validation in terms of λ, the gam
function in the mgcv package uses a term called the effective degrees of freedom
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Fig. 3.11 GCV score
plotted versus λ. The optimal
smoother has λ = 0.000407.
R code to produce this graph
is given on the book website
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(edf). This is a value between 0 and infinity and is a sort of mathematical transfor-
mation of λ. The higher the edf, the more non-linear is the smoothing spline.

In the cross-validation process, we assumed that the residual variance σ 2 is
unknown. The UBRE approach minimizes a slightly different criterion, and it works
well if σ 2 is known. Its underlying formulae are identical to Mallow’s Cp.

Another issue is the actual estimation of the smoothing spline and λ. Both require
iterative numerical algorithms. We can choose λ and find the smoothing spline by
minimizing the expression in Equation (3.9) and put the generalised cross-validation
procedure on top of this to find optimal λ. This is called outer iteration. The alterna-
tive is to do it the other way around: put the generalised cross-validation inside the
iteration process of minimising the expression in Equation (3.9). This is called per-
formance iteration. Probably you don’t want to know these numerical details; they
only become an issue if you get convergence problems and want to try different
settings.

3.3.4 Additive Models with Multiple Explanatory Variables

Equation (3.2) showed an additive model with one explanatory variable. The same
model can easily be extended to two explanatory variables:

Yi = α + f1(Xi ) + f2(Zi ) + εi where εi ∼ N (0, σ 2) (3.10)

The functions f1(Xi) and f2(Zi) are smoothing functions of the explanatory vari-
ables Xi and Zi respectively. Both functions can be written as in Equation (3.4). Just
as the model with one explanatory variable was written as a linear regression model;
so the model in Equation (3.10) is written as a linear regression model. Its form is
exactly the same as in (3.9), except that the matrix X now also contain information
on the second smoother. This also means that we can have hybrid models of the
form

Yi = α + f1(Xi ) + β × Zi + factor(Wi ) + εi where εi ∼ N (0, σ 2) (3.11)

Examples of interaction in smoothers are given in the case study chapters, and an
introductory example is discussed in the next section.

3.3.5 Two More Things

Before we give an example, there are two more things we need to discuss: degrees of
freedom of a smoother and other types of smoothers. As to other type of smoothers,
in the previous section, we discussed the cubic regression spline. Recall that this was
a smoother that fits third order polynomials on segments of data, and to ensure a nice
looking curve with no sudden jumps at the knots, certain conditions were imposed.
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These conditions resulted in a basis system with rather intimidating expressions of
the form

f (Xi ) =
∑p

j=1
β j × b j (Xi )

There is actually a large collection of related smoothers, and Chapter 4 in Wood
(2006) gives a detailed mathematical explanation on different types of smoothers.
We do not repeat the mathematical detail here. The main difference between these
smoothers is the definition of the bjs, and also a few differ with respect to the opti-
misation criterion defined in Equation (3.9).

A useful smoother is the cyclic cubic regression spline. It ensures that the value
of the smoother at the far left point of the gradient is the same as at the far right
point of the gradient. This comes in handy if you use a smoother for month (with
12 values) or a smoother for day of the year; it wouldn’t make sense to have a big
jump between the January value and the December value for the month smoother.
Shrinkage smoothers are also useful; they can have 0 amount of smoothing. This
means that if you do a backwards selection to find the optimal model, all smoothers
with 0 amount of smoothing can be dropped simultaneously from the model.

The thin plate regression spline is yet another smoother, one that apparently does
quite well (except for larger data sets). The thin plate regression spline involves
higher order derivates in the integral in Equation (3.9). In practise, the difference
between cubic regression splines, thin plate regression splines, B-splines, P-splines,
etc., is rather small.

The final point we want to discuss in this section is the amount of smoothing for
smoothing splines. If a model has two smoothers, say

Yi = α + f1(Xi ) + f2(Zi ) + εi

then these two smoothers have the form

f1(Xi ) =
∑p

j=1
β j × b j (Xi ) and f2(Zi ) =

∑p

j=1
γ j × b j (Zi )

We mentioned this earlier in this section. Using two smoothers instead of one
smoother has an effect on the definitions of the Y, X, and β in Equation (3.9), but in
essence the form stays the same. The optimisation criterion with the penalty for the
wiggliness becomes

‖Y − X × β‖2 + λ1

∫
f ′′
1 (x)2dx + λ2

∫
f ′′
2 (x)2dx (3.12)

This looks rather intimidating, but all it does is allow for different amounts of
wiggliness per smoothing spline. As a result, some smoothers can be smooth (large
λj), whereas others are not (small λj). Hence, the values of the λjs determine the
amount of smoothing. To get these λjs, the optimisation criterion in Equation (3.12)
can be written in matrix notation as
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‖Y − X × β‖2 + β′ × S × β (3.13)

This looks a little bit friendlier, but the average reader may still be utterly con-
fused by this stage. But you need not be too concerned as the rules for filling in
the elements of S are given in Wood (2006). Now we come to the reason why we
explained all of this detail. The amount of smoothing of a smoother is not expressed
in terms of the λjs, as you would expect, but as effective degrees of freedom for a
smoother. A high value (8–10 or higher) means that the curve is highly non-linear,
whereas a smoother with 1 degree of freedom is a straight line. You can think about
it as a calibration parameter. Technically, the matrix S, which depends on the λs,
is involved in determining the effective degrees of freedom (edf) and it mirrors the
algebra underpinning linear regression.

We now give two examples, and once we are more familiar with the graphical
and numerical output of GAMs, we discuss how much trust we can place in the
p-values coming out of the anova and summary commands.

3.4 GAM Example 1; Bioluminescent Data for Two Stations

Earlier in this section, we used bioluminescent data, obtained from one particular
station. A xyplot from the lattice package was given in Chapter 2, showing the
data from all 19 stations along each depth gradient. In this section, we combine the
data from two stations and show how GAM can be used to analyse the data. We
start by presenting the data in a graph, see Fig. 3.12. The patterns in both graphs are
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Fig. 3.12 Bioluminescent data for stations 8 and 13. Sources are plotted against depth. The axes
limits were set to be equal
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similar (decreasing pattern along depth), but there are also clear differences. The
question that now arises is whether we can model the data with one smoother or
perhaps we need two smoothers, one for each station? To answer this, we need to fit
a model with one smoother and then a model with two smoothers and compare them
with each other. We start with a GAM that only contains one smoother, go over the
graphical and numerical output, and then return to the question of choosing the best
model.

The R code used to create the graph is given below.

> library(AED); data(ISIT)

> S8 <- ISIT$Sources[ISIT$Station == 8]

> D8 <- ISIT$SampleDepth[ISIT$Station == 8]

> S13 <- ISIT$Sources[ISIT$Station == 13]

> D13 <- ISIT$SampleDepth[ISIT$Station == 13]

> So <- c(S8, S13); De <- c(D8, D13)

> ID <- rep(c(8, 13), c(length(S8), length(S13)))

> mi <- max(min(D8), min(D13))

> ma <- min(max(D8), max(D13))

> I1 <- De > mi & De < ma

> op <- par(mfrow = c(1, 2))

> plot(D8[I1], S8[I1], pch = 16, xlab = "Depth",

ylab = "Sources", col = 1, main = "Station 8",

xlim = c(500, 3000), ylim = c(0, 40))

> plot(D13[I1], S13[I1], pch = 16, xlab = "Depth",

ylab = "Sources", col = 1, main = "Station 13",

xlim = c(500, 3000), ylim = c(0, 40))

> par(op)

The first part of the code accesses the data, extracts the relevant data (Sources
and SampleDepth) from stations 8 and 13, concatenates them in a long vector So
and De using the concatenate command c, creates a vector that identities which row
corresponds to a certain station using the rep (repeat) command, and determines
the common depth ranges for both stations (the min and max commands). These
data are then plotted in two panels on the same graphical window (see the par
command). The [I1] bit in the plot command ensures that we only use those data
with the same depth ranges.

The underlying model for a GAM with one smoother is given by

Sourcesi = α + f (Depthi ) + factor(Stationi ) + εi εi ∼ N (0, σ 2) (3.14)

Station is a nominal explanatory variable with two levels, and depth is a continu-
ous explanatory variable. The index i runs from 1 to 75. To apply this GAM model
in the mgcv package, use the following code.
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> library(mgcv)

> M4 <- gam(So ∼ s(De) + factor(ID), subset = I1)

> summary(M4)

> anova(M4)

The subset = I part is merely used to ensure that we use observations within
the same depth ranges. The library command loads the mgcv package. The argu-
ment within the gam function is similar to linear regression; So (sources of both
stations) is modelled as a smoothing function (using the s function) of De (con-
catenated depth data of both stations) and the nominal variable ID (identifying the
station). Both the summary and anova commands provide useful numerical out-
put. The summary output is as follows.

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.198 1.053 18.236 < 2e-16

factor(ID)13 -12.296 1.393 -8.825 6.86e-13

Approximate significance of smooth terms:

edf Est.rank F p-value

s(De) 4.849 9 10.32 7.37e-10

R-sq.(adj) = 0.695 Deviance explained = 71.9%

GCV score = 38.802 Scale est. = 35.259 n = 75

The explained deviance (R2) is 71.9%, the variance of the residuals is 35.26,
the smoother for depth is significant at the 5% level, the estimated degrees for the
smoother is 4.8, the intercept has a value of 19.2, and station 13 is 12.3 units lower
than station 8. The output from the anova command is more compact and is useful
if the model contains nominal variables with more than two levels as it gives one
p-value for all the levels using an F-test. It is given below.

Parametric Terms:

df F p-value

factor(ID) 1 77.88 6.86e-13

Approximate significance of smooth terms:

edf Est.rank F p-value

s(De) 4.849 9.000 10.32 7.37e-10

In practice, both the summary and anova commands would be used. The
plot (M4) command produces the fitted smoother in Fig. 3.13. To get the fitted
values for observations from station 8, we use

Sourcesi = 19.2 + f (Depthi ) + εi εi ∼ N (0, 5.92) (3.15A)

And for observations of station 13 we use

Sourcesi = 19.2 + f (Depthi ) − 12.3 + εi εi ∼ N (0, 5.92) (3.15B)
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Fig. 3.13 Estimated
smoothing curve. The x-axis
shows the values of depth
(vertical lines) and the y-axis
the contribution of the
smoother to the fitted values.
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The values 19.2 and 12.3 can be subtracted to give a new intercept of 6.9. In
both cases, the smoothing function f(Depthi) is the solid curve in Fig. 3.13. The
mgcv package has several useful tools to visualise the results. The following two
commands produce the 3-dimensional plot in Fig. 3.14.

fa
ct

or
(ID

)

De

linear predictor

Fig. 3.14 Three-dimensional graph showing the fitted values for both stations. The graph shows
the effect of the nominal variable ID (representing station)
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> par(mar = c(2, 2, 2, 2))

> vis.gam(M4, theta = 120, color = "heat")

The par command adjusts the white space around the figure and the vis.gam
function visualises what the gam is doing; it produces two parallel smoothing curves
with different intercepts. The theta option changes the angle the window is viewed
from.

Another useful tool is the gam.check (M4) command. It produces graphical
diagnostics for the model; see Fig. 3.15. These can be used to (i) assess normality
(the QQ-plot and the histogram), (ii) homogeneity (residuals versus fitted values,
(also called the linear predictor for the Gaussian distribution with identity link – see
Chapter 7)), and (iii) model fit (fitted values versus observed values). In this case, the
results in this graph do not look very promising. There are clear patterns in the right
two panels. Before concluding that more complicated models (e.g. additive mixed
modelling) are needed, we should first try to extend the current model with more
covariates, or as in this case, add an interaction term between depth and station.
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Fig. 3.15 Validation tools for the GAM model that contains one smoother for depth and a nom-
inal variable ID (= station). The QQ-plot and the histogram are used to assess normality and the
residuals versus fitted values homogeneity. The response against fitted values should ideally show
a straight line

3.4.1 Interaction Between a Continuous and Nominal Variable

Recall that the model in Equation (3.14) assumes that both stations have the same
depth-source relationship. However, the scatterplots in Fig. 3.12 clearly indicate that
there are differences in this relationship per station. The term factor(ID) in the
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GAM is only adding or subtracting a constant value to the smoother; it does not
allow for a change in the source-depth relationship. In a GAM, interaction is not the
same interaction we know from linear regression. To understand this, we first write
down the R code required for the ‘interaction’ in the mgcv package. There are two
ways of doing this. The first option is as follows.

> M5<-gam(So ∼ s(De)+

s(De, by = as.numeric(ID == 13)) +

factor(ID), subset = I1)

> anova(M5)

Parametric Terms:

df F p-value

factor(ID) 1 573.6 <2e-16

Approximate significance of smooth terms:

edf Est.rank F p-value

s(De) 8.073 9.000 98.88 <2e-16

s(De):as.numeric(ID == 13) 6.696 9.000 48.39 <2e-16

The s(De) part applies a smoother along depth for all data points. Hence, it
represents the overall depth effect at both stations. The second smoother along depth
contains a by argument. The as.numeric is used to convert the vector with TRUE
(an observation is from station 13) and FALSE (it is not from station 13) into a
vector with ones (station 13) and zeros (not from station 13). This smoother is then
only using the observations for which there is a 1 in the by command. In this case,
the second depth smoother represents the deviation at station 13 from the overall
source–depth relationship. The output from the anova indicates that the second
depth smoother is highly significant. Hence, there are different depth patterns at each
station. To see what the model is doing, both smoothers are plotted in Fig. 3.16. The
smoother in the left panel represents the overall source–depth relationship, and the
right panel the deviation from this at station 13. Hence, for station 13, you need to
add up both the smoothers, and add the contribution from the factor to get the fitted
values. Comparing Figs. 3.12 and 3.16 should give some clues what the second
smoother (obtained with the by command) is doing; it is adjusting the pattern along
the depth gradient for the second station.

The graphical results obtained by the gam.check(M5) command are given in
Fig. 3.17 and looks considerably better than in Fig. 3.15, especially the right two
panels. However, the variation for larger fitted values (nearer the surface) seems
to be larger than for the smaller fitted values (at deeper depths). Biologically, this
makes sense, but it does violate the homogeneity assumption. Tools to solve this for
these data are discussed in case study 17.

But which of the models is better? Although this question can be readily
answered in favour of the second model based on the model validation plots (com-
pare Figs. 3.15 and 3.17), it would be nice if we could also compare the models using
a test or selection criteria as the graphical evidence may not always be as clear as it
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Fig. 3.16 Estimated smoothing curves for the model that contains one depth smoother for both
stations (left panel) and a depth smoother using the by command, representing the deviation at
station 13 (right panel)
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is in this case. There are many ways of doing this. The first option is with the Akaike
Information Criteria (AIC), which measures goodness of fit and model complexity.
The lower the AIC, the better the model fits the data. The AIC can be obtained by
the commands AIC(M4) and AIC(M5) and gives the values 488.56 and 345.26,
respectively, clearly favouring the second model. A nearly identical option is to use
the generalised cross validation score, indicated by GCV in the output and obtained
by the summary command. For the first model, it is 38.80 and for the second model
(not presented above) it is 6.03, giving the same conclusion as using the AIC. The
third option is to use the F-statistic and associated p-value for the smoother using
the by option, obtained by summary(M5). These values are not presented here, but
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give p < 0.001. Yet, another option is to compare the model with and without the
second smoother and apply an F-test (Wood, 2006). This is done with the command

> anova(M4, M5, test = "F")

Analysis of Deviance Table

Model 1: So ∼ s(De) + factor(ID)

Model 2: So ∼ s(De) + s(De, by = as.numeric(ID == 13))

+ factor(ID)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 68.1507 2402.90

2 58.2309 272.94 9.91 2129.96 45.80 < 0.001

The results of this test confirm earlier results. Interpretation of all these tests and
resulting p-values should be done with care as these p-values are ‘approximate’.
Don’t be too confident with a p-value of 0.04. We will discuss this aspect further in
Section 3.6.

Instead of fitting a model that contains one smoother for depth for all stations,
and one that represents the deviation at station 13, it is also possible to fit a GAM
with one smoother for the data of station 8, and one smoother for the data of sta-
tion 13; both smoothers would use the by option in this case. The R code is as
follows.

> M6 <- gam(So ∼ s(De, by = as.numeric(ID == 8)) +

s(De, by = as.numeric(ID == 13)) +

factor(ID), subset = I1)

Application of this type of models is discussed in various case study chapters.
Models constructed with the by command are also called variable coefficient mod-
els (Hastie and Tibshirani, 1990). Their general statistical model formulation is
given by

Yi = α + f1(X1i ) + f2(X2i ) × X3i + εi

Yi is the response variable, α the intercept, f1(X1i) is a smoother, and the values
of the smoother f2(X2i) are multiplied with the values of X3i. Note that we are not
multiplying X2i itself with X3i, but the smoother. Hence, the equations for the models
in M5 and M6 are, respectively,

M5 : Sourcesi = α + f1(Depthi ) + f2(Depthi ) × ID13,i + εi

M6 : Sourcesi = α + f1(Depthi ) × ID8,i + f2(Depthi ) × ID13,i + εi

The variable ID8,i is 1 if an observation is from station 8 and 0 else. The variable
ID13,i is 1 if an observation is from station 13 and 0 else.
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3.5 GAM Example 2: Dealing with Collinearity

The previous example was relatively simple as there were only two explanatory
variables. This makes the model selection process relatively simple; just compare
the model with and without the interaction term (obtained by the by option). Now
we consider an example that contains considerably more explanatory variables.
As explanatory variables increase, it becomes important to avoid using collinear
explanatory variables in GAM. If you do use explanatory variables that are highly
correlated with each other, using GAMs becomes a rather confusing experience.
Data exploration tools to identify collinearity are discussed in Appendix A and can
also be found in Zuur et al. (2007).

In this section, we show how confusing GAM becomes if you ignore this step
of avoiding correlated explanatory variables. We use a plant vegetation data set for
illustration. Sikkink et al. (2007) analysed grassland data from a monitoring pro-
gramme from two temperate communities in Montana, USA: Yellowstone National
Park and National Bison Range. The aim of the study was to determine whether the
biodiversity of these bunchgrass communities changed over time and if they did,
whether the changes in biodiversity relate to specific environmental factors. Here,
we use the Yellowstone National Park data. Sikkink et al. (2007) quantified bio-
diversity using species richness to summarise the large number of species: ninety
species were identified in the study. Richness is defined as the different number of
species per site. The data were measured in eight different transects and each tran-
sect was measured repeatedly over time with time intervals of about four to ten
years. For the moment, we ignore the temporal aspects of the data. And, instead of
using all 20 or so explanatory variables, we use only those explanatory variables that
Sikkink et al. (2007) identified as important. Figure 3.18 shows a scatterplot of all
the variables used in this section. The response variable is species richness for the
64 observations, and the explanatory variables are rock content (ROCK), litter con-
tent (LITTER), bare soil (BARESOIL), rainfall in the fall (FallPrec), and maximum
temperature in the spring (SprTmax). The correlation between ROCK and LITTER
is reasonably high with a Pearson correlation of –0.7.

The following R code was used to run a GAM on these data. We ignore the fact
that a Poisson distribution might be more appropriate, and that there are temporal
aspects in this data set.

> library(AED); data(Vegetation)

> library(mgcv)

> M7 <- gam(Richness ∼ s(ROCK, bs = "cs") +

s(LITTER, bs = "cs") + s(BARESOIL, bs = "cs") +

s(FallPrec, bs = "cs") + s(SprTmax, bs = "cs"),

data = Vegetation)

The only new bit, compared to the previous section, is the bs = "cs" part.
It ensures that a regression spline with shrinkage is applied. Shrinkage means that
a smoother can have 0 degrees of freedom. All smoothers that have 0 degrees of
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Fig. 3.18 Scatterplot of richness (response variable), rock content, litter content, baresoil, rainfall
in the fall, and maximum temperature in the spring for the vegetation data set. The upper panels
show scatterplots with a smoother added to visualise the patterns, and the lower panels contain
the Pearson correlation coefficients. The font of the correlation coefficient is proportional to its
estimated value. The code to produce this graph is given on the book website and is based on code
presented in the help file of the pairs function

freedom can be dropped simultaneously from the model. The relevant output from
the anova(M7) command is presented below, and shows that this is not happening.

Approximate significance of smooth terms:

edf Est.rank F p-value

s(ROCK) 1.750 4.000 4.634 0.00367

s(LITTER) 1.865 4.000 2.320 0.07376

s(BARESOIL) 4.167 9.000 2.991 0.00820

s(FallPrec) 4.699 9.000 2.216 0.04150

s(SprTmax) 5.103 9.000 3.508 0.00286

Not all terms are significant at the 5% level, and the estimated smoothing curves,
with the wide confidence bands for some of the terms confirm this (Fig. 3.19). We
can now do two things: either leave the model as it is or apply a backwards selection
approach to find the optimal model. We prefer to use a model with only significant
terms; so we go for the second option. We can either use a selection criterion like
the AIC or CGV in a stepwise backwards selection process, like in linear regression
or use hypothesis testing procedures. The first approach is better than the second,
but the second approach takes less time; it drops the least significant term, refits the
model, and continues this process until all terms are significant. If you do this, you
end up with a GAM that only contains smoothing terms of ROCK, BARESOIL,
and SprTmax: the estimated smoothing curves are presented in Fig. 3.20. The shape
of the smoothers suggest that the higher the rock content, the lower the species
richness, and the same relationship applies to bare soil.



3.5 GAM Example 2: Dealing with Collinearity 65

0 10 20 30 40 50 60

–4
–2

0
2

ROCK

s(
R

O
C

K
,1

.7
5)

10 20 30 40 50

–4
–2

0
2

LITTER

s(
LI

T
T

E
R

,1
.8

7)

0 10 20 30 40

–4
–2

0
2

BARESOIL

s(
B

A
R

E
S

O
IL

,4
.1

7)

20 40 60 80 100 120 140

–4
–2

0
2

FallPrec

s(
F

al
lP

re
c,

4.
7)

10 12 14 16

–4
–2

0
2

SprTmax

s(
S

pr
T

m
ax

,5
.1

)

Fig. 3.19 Estimated smoothing curves for the GAM model containing all explanatory variables
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Fig. 3.20 Estimated smoothing curves for the optimal GAM model
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The smoother for maximum temperature is rather difficult to interpret. During the
model selection process it took various different shapes. This may indicate that the
smoother for SprTmax may represent patterns that are actually due to other vari-
ables. Draper and Smith (1998) discuss various tools in linear regression analysis to
identify the presence of collinearity. One of their recommendations is to see whether
slopes change radically if a term is omitted as this is an indication for the presence of
collinearity. Although we do not have slopes here, the amount of smoothing (or bet-
ter: the associated degrees of freedom) for SprTmax did show considerable changes
during the selection process (from 4 to 8 edf). This is probably caused by collinearity.

3.6 Inference*

In the previous section, the software gave us p-values for smoothers (these were
derived from F-tests). There is a little catch here; these p-values are approximate
and should be used with care.

The principle behind confidence intervals in GAM is relatively simple, and fol-
lows linear regression. A multiple linear regression model is given by

Yi = α + β1 × X1i + · · · + βq × Xqi + εi

Using matrix algebra, this can also be written as

Y = X × β + ε

The vector Y contains all observed data, the matrix X all q explanatory variables
and its first column contains only ones (for the intercept), β contains all regression
parameters (including the intercept α), and ε all the residuals εi. Using this notation,
the ordinary least square estimator for β can be found using

b̂ = (X × X)−1 × X′ × Y

If you are not familiar with matrix algebra, then this may look intimidating, but
this solution can be found in most statistical textbooks. Once you have the estimated
regression parameters, the fitted values are given

Ŷ = X × b̂ = X × (X × X)−1 × X′ × Y = H × Y

The reason that we show all this matrix algebra is because of H × Y. H is also
called the hat matrix, and it plays an important role as it goes straight into equations
for standard errors of predicted values, and it is also used to determine degrees of
freedom.

The LOESS smoother and the polynomial and cubic regression splines are all
local regression models, and in fact, can all be written in exactly the same form as
the linear regression model:

*Means that it is difficult and that it can be skipped upon first reading.



3.7 Summary and Where to Go from Here? 67

Ŷ = S × Y

Instead of using an H, we used a matrix S. Depending on the type of smoother, the
computer software will fill in the elements of S. An example can be found in Section
7.4 in Zuur et al. (2007) for a moving average smoother. Because polynomial and
cubic regression splines are linear regression models, we can follow exactly the
same theory as in linear regression. Hence, the variance of the fitted values are given
by

var(Ŷ) = σ 2 × S × S′

where σ 2 is the variance of the Yi. This all follows immediately from linear regres-
sion theory. The matrix S and its trace are then used to calculate degrees of freedom
and residual degrees of freedom.

Recall that we decided to work with the smoothing splines (or penalised splines).
Broadly speaking, the same approach can be followed, although the matrix S is now
more complex, see Keele (pg. 75, 2008). Basically, the solution of Equation (3.13)
is again of the form

f̂ = S × Y

but this S is more complicated compared to regression splines as it is also a function
of λ. The way S is used in the calculation of confidence bands, degrees of free-
dom, etc., is nearly the same, though. The ‘nearly’ bit refers to the fact the p-values
behave reasonable well for smoothing splines with known degrees of freedom, but
if these are estimated (e.g. using cross-validation), they can be misleading. This is
because the uncertainty due to estimating the λs is neglected. Wood (2006) men-
tioned that based on limited simulation experience, the p-values close to 0.05 can
be around half of their correct value when the null hypothesis is true. This means
that smoothers with p-values smaller than 0.001 can be trusted, and we can also
trust the p-value if it is 0.2, 0.5, or 0.8. It is the smoother with a p-value of 0.02,
0.03, 0.04, or 0.05 that gives trouble. The same holds for F-tests comparing nested
GAMs. If this is a serious issue for your data, then you could do bootstrapping to get
better p-values. Chapter 8 in Keele (2008) gives a nice introduction, and a detailed
algorithm is presented in Davison and Hinkley (1997). When writing this chapter,
we were tempted to add a bootstrapping example; however, it would only duplicate
Chapter 8 from Keele (2008).

3.7 Summary and Where to Go from Here?

In this chapter, we started with LOESS smoothers. Recall that a weighted linear (or
quadric) regression model is applied on all data in a window around the target value.
The amount of smoothing is determined by the size of the window, also called the
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span width. We then introduced splines; simple linear splines, quadratic and cubic
splines. The gradient is divided in segments using a certain number of knots, and a
linear, quadratic, or cubic polynomial model is fitted on the data in each segment.
Certain conditions are imposed ensuring a smooth connection at the edges. Finally,
smoothing splines are introduced as the best option. It minimises the penalised least
squares criterion. Table 3.1 summarises all smoothers.

In Section 3.6, we discussed that the p-values thrown at you by the software
are approximate for smoothing splines. You can safely make biological statements
based on smoothers with a p-value of 0.001 (or smaller) or a p-value of 0.1 (or
larger), but be very careful with smoothers for which p is just below the magical
0.05 level. If you really want to say something about such smoothers, apply boot-
strapping.

Some of the problems encountered for linear regression can also cause trouble in
additive modelling, e.g. violation of independence, heterogeneity, and nested data.
In fact, we have been cheating in most GAM examples presented in this chapter.
For example, we used vegetation data that were measured repeatedly over time.
The analysis carried out assumes (implicitly) that there is no correlation between
observations made at the same transect. The lags between two observations at the
same transect is approximately 4–10 years.

The same holds for the bioluminescent data; measurements at the surface may
be related to measurements at deeper depths, simply because particles tend to move
down from the surface to the bottom of the ocean. It is like rain; if it rains at 100 m, it

Table 3.1 Summary of all smoothers discussed in Chapter 3

Relevant options for
Name of smoother What is it? smoothing

LOESS Weighted linear regression on a
window around the target value.
Move target value.

Size of the span

Simple linear regression
spline

Gradient is divided in segments
using knots. Fit bivariate linear
regression model on each
segment.

Number and location of
knots

Quadratic and cubic
regression splines

Gradient is divided in segments
using knots. Fit a quadratic or
cubic polynomial on each
segment, and ensure a smooth
connection at the knots.

Number of knots, location
of knots, and degree of
polynomial

Smoothing splines (alias
penalised splines)

Gradient is divided in a large
number of segments. Fit a cubic
polynomial model on each
segment, and ensure a smooth
connection at the knots.
Minimise the penalised sum of
squares in Equation (3.9).

Use large number of knots.
Find optimal value of λ
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will probably also rain at 50 m. Hence, there is also a correlation issue here. On top
of this, we noticed that there is violation of homogeneity along the depth gradient
(more variation towards the surface). Then there is another issue if we analyse data
of all 19 stations; these are nested data. Data from the same station may be more
similar than data from different stations.

All these issues (heterogeneity, nested data, and correlation) are addressed in
Chapters 4, 5, 6, and 7.



Chapter 4
Dealing with Heterogeneity

This chapter, and the following three chapters, discuss solutions to the problems
introduced in Chapters 2 and 3: heterogeneity, nested data, temporal correlation,
and spatial correlation. We use both the linear regression model and the additive
model as starting points. Figure 4.1 shows an overview of the methods we discuss
in Chapters 4, 5, 6, and 7. In all these chapters, the model consists of a fixed term
and a random term. The fixed term describes the response variable Y as a function
of the explanatory variables via α + β1 × X1 + . . . + βq × Xq in linear regression
or α + f1(X1)+. . .+ fq(Xq) in additive modelling. This part of the model is described
in Appendix A and Chapter 3. The random part contains components that allow
for heterogeneity, nested data (random effects), temporal correlation, spatial corre-
lation, and a real random term. It is also possible to have a combination of these
components.

If the random part only contains the real random term, we are back to linear
regression or additive modelling. If it allows for nested data, the resulting model is
called a mixed effects model. If it only allows for heterogeneity, we call it a gener-
alised least squares (GLS) model. This is essentially a weighted linear regression.
GLS is the subject of this chapter. It is tempting to call the whole equation in Fig. 4.1
mixed effects modelling (or just mixed modelling), even if it only contains the het-
erogeneity bit, but strictly speaking this is wrong. However, as software routines for
GLS, auto-correlation and nested data can all use the same R package, and some-
times the same routines, then it is easy to get confused about names.

We closely follow Chapter 5 in Pinheiro and Bates (2000), and the first 5 chap-
ters of Verbeke and Molenberghs (2000). We also made extensive use of Diggle
et al. (2002).We strongly recommend these books, as they provide a good technical
explanation and a more unified overview of mixed modelling techniques than we
have provided, albeit at a much higher mathematical level. Another good ecological
source for the linear mixed model is Schabenberg and Pierce (2002), but it does not
contain R code.

For the additive mixed modelling, Ruppert et al. (2003) and Wood (2006) are
some of the few available books. But again, these are rather technical.

If you are willing to read non-ecological textbooks, we strongly recommend West
et al. (2006), as it contains a series of case studies. However, a basic familiarity

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 4,
C© Springer Science+Business Media, LLC 2009
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Y = fixed part + random part
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Fig. 4.1 Outline of the different methodologies discussed in Chapters 4, 5, 6, and 7. The fixed
part consists of the explanatory variables as we know from linear regression or additive modelling.
The random part consists of a real random term and terms that allow for heterogeneity, nested
data (random effects), temporal correlation, or spatial correlation. The subject of this chapter is
heterogeneity

with linear mixed modelling is recommended as their first chapter summarises
the underlying theory rather quickly. Other useful books, but mainly focussed on
economics and social science are Goldstein (2003), Raudenbush and Bryk (2002),
Snijders and Bosker (1999), and at a higher mathematical level, Jiang (2007).

The confusing aspects of most of these books are the wide range of different
names and underlying mathematical notation. Mixed modelling, multilevel analysis,
hierarchical linear models, and repeated measurements are just a few of the names
that all refer to the same set of models.

4.1 Dealing with Heterogeneity

4.1.1 Linear Regression Applied on Squid

Several examples in Chapters 2 and 3 showed residual spread varying per stratum
(level) of a nominal variable, or increasing or decreasing along an explanatory vari-
able. For example, the spread in pelagic bioluminescent data (Chapter 2) decreased
at deeper depths, and both the Hediste diversicolor and wedge clam data sets (Chap-
ter 2) showed different residual spread per stratum for some of the variables (month,
biomass, nutrient). This violates the homogeneity of variance assumption, one of
the most important assumptions of linear regression and additive modelling. Ignor-
ing this problem may result in regression parameters with incorrect standard errors,
and an F statistic no longer F distributed and the t statistic not following a t distribu-
tion. This invalidates the statistics used in Chapters 2 and 3 for assessing statistical
significance (Wooldridge, 2006). In this section, we provide several solutions to het-
erogeneity. The easiest solution is a data transformation, but we try to avoid this for
as long as possible. In our view, heterogeneity is interesting ecological information
that you should not throw away, just because it is statistically inconvenient. With a
‘little’ bit of extra mathematical effort, heterogeneity can be incorporated into the
models and can provide extra biological information.

To illustrate the methods, we use data published by Smith et al. (2005), who
looked at seasonal patterns in reproductive and somatic tissues in the squid Loligo
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forbesi. They used several variables on female and male squid, but in this chapter,
we only use the dorsal mantle length (in mm) and testis weight from 768 male squid.
The aim is to model the testis weight as a function of the dorsal mantle length (DML)
and the month recorded. The idea behind the original analysis was to investigate
the role of endogenous and exogenous factors affecting sexual maturation, more
specifically to determine the extent to which maturation is size-related and seasonal.
Further biological information can be found in Smith et al. (2005). Our starting point
is a linear regression model of the form (in words):

Testisweighti = intercept + DMLi + Monthi + DMLi:Monthi

+ residualsi
(4.1)

Month is used as a nominal variable (with 12 levels) and is DML fitted as a
continuous variable. The notation ‘:’ is used for the interaction between DML and
Month. Previous work on the related species Loligo vulgaris showed graphically that
maturity was a function of both size and season, and that size-at-maturity differed
between seasons (Raya et al., 1999). The index i runs from 1 to 768. The crucial
assumption in Equation (4.1) is that the residuals are normally distributed with a
mean of 0 and the variance is σ 2. In mathematical notation

εi ∼ N (0, σ 2)

where εi are the residuals. The important thing is that var(εi) = σ 2. The following
R code loads the data, applies linear regression, and produces the validation graphs
in Fig. 4.2. Note that there is a clear violation of homogeneity.

> library(AED); data(Squid)

> Squid$fMONTH <- factor(Squid$MONTH)

> M1 <- lm(Testisweight ∼ DML * fMONTH, data = Squid)

> op <- par(mfrow = c(2, 2), mar = c(4, 4, 2, 2))

> plot(M1, which = c(1), col = 1, add.smooth = FALSE,

caption = "")

> plot(Squid$fMONTH, resid(M1), xlab = "Month",

ylab = "Residuals")

> plot(Squid$DML, resid(M1), xlab = "DML",

ylab = "Residuals")

> par(op)

The DML * fMONTH fits the main terms DML and MONTH (as a factor) and the
interaction between these two variables (‘∗’ replaces the ‘:’ from the word equation
to denote interaction). Alternatively, code that does the same is DML + fMONTH +
DML:fMONTH. This keeps the notation similar to the one we used in Equation (4.1).
By default, the plot command produces four graphs (see Chapter 2), but the
which = c (1) ensures that only the residuals versus fitted values are plot-
ted. We decided not to add a smoothing curve (add.smooth = FALSE)
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Fig. 4.2 A: Residuals versus fitted values. B: Residuals versus month. Because month is a nom-
inal variable, boxplots are produced. C: Residuals versus DML. Panel A shows that there is clear
violation of heterogeneity. Panels B and C were made to detect why there is heterogeneity

and omit the caption (caption = ""). All other commands are discussed in
Chapters 2 and 3.

The numerical output (not shown here) shows that all regression parameters
are significantly different from 0 at the 5% level. The problem is that we can-
not trust these results as we are clearly violating the homogeneity assumption
(note the cone shape pattern of the residuals in Fig. 4.2A). This means that the
assumption that the residuals are normally distributed with mean 0 and vari-
ance σ 2 is wrong. However, in this case, the homogeneity clearly has an identi-
fiable structure; the larger the length (DML), the larger the variation (Fig. 4.2C).
So, instead of assuming that the residuals have variance var(εi) = σ 2, it might
make more sense to assume that var(εi) increases when DMLi increases. We
can implement this in various mathematical parameterisations, and we discuss
these next.

4.1.2 The Fixed Variance Structure

The first option is called the fixed variance, it assumes that var(εi) = σ 2 × DMLi,
and as a result we have

εi ∼ N (0, σ 2 × DMLi ) i = 1, . . . , 768 (4.2)
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Such a variance structure allows for larger residual spread if DML increases. And
the good news is that there are no extra parameters involved! Technically, this model
is fitted using the generalised least squares (GLS) method, and the technical aspects
of this method are discussed later in this chapter. To fit a GLS in R, the function gls
from the nlme package can be used. The variance structure (and any of the others
we discuss later) can be selected by specifying the weights arguments in the gls
function. In fact, running the gls code without a weights option, gives you the
same linear regression model already seen in Equation (4.1). The following R code
applies the linear regression model in (4.1) and also the GLS with the fixed variance
structure in Equation (4.2). The reason we refitted the linear regression model in
Equation (4.1) with the gls function was to avoid a warning message in the anova
comparison.

> library(nlme)
> M.lm <- gls(Testisweight ∼ DML * fMONTH, data=Squid)
> vf1Fixed <- varFixed(∼DML)
> M.gls1 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf1Fixed, data = Squid)
> anova(M.lm, M.gls1)

The command varFixed (∼DML) ensures a variance that is proportional to
DML, and it needs to be specified via the weights argument in the gls function.
Finally, the anova command gives

Model df AIC BIC logLik

M.lm 1 25 3752.084 3867.385 -1851.042

M.gls1 2 25 3620.898 3736.199 -1785.449

The models are not nested; so no log-likelihood ratio test statistic is given, but the
AIC clearly favours the model with the fixed variance in Equation (4.2). Note that
both models have the same number of parameters! You can also use the command
AIC(M.lm, M.gls1).

4.1.3 The VarIdent Variance Structure

Now, just for a moment, we will forget about the residual spread increasing for larger
DML values. So instead of recognising from Fig. 4.2C that the spread increases for
larger DML values, we now realise from Fig. 4.2B that the spread also differs per
month. To incorporate this pattern into the model, it is better to slightly change the
indices used in the model notation:

Testisweightij = intercept + DMLij + Month j + DMLij:Month j + residualsij (4.3)

Testisweightij is the testis weight of the ith observation in month j. This is exactly
the same model as in Equation (4.1); we have only changed notation of the indices.
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However, the new notation makes it easier to formulate the variance structure with
different spread per stratum:

εi j ∼ N (0, σ 2
j ) j = 1, . . . , 12 (4.4)

So, we now have var(εij) = σ j
2, and each month is allowed to have a different

variance. The following code implements different variances per stratum for month
and applies the anova comparison.

> vf2 <- varIdent(form= ∼ 1 | fMONTH)

> M.gls2 <- gls(Testisweight ∼ DML*fMONTH, data =Squid,
weights = vf2)

> anova(M.lm, M.gls1, M.gls2)

The output of the anova command is given by:

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls1 2 25 3620.898 3736.199 -1785.449
M.gls2 3 36 3614.436 3780.469 -1771.218 2 vs 3 28.46161 0.0027

We have decreased the font size of the numerical output to ensure it fits the
page. The first two lines in the output are the same as above. The AIC of the model
using the different variances per month is lower. You can also use the command
AIC(M.lm, M.gls1, M.gls2).

Notice that due to the variance structure in Equation (4.4), we now have to esti-
mate 11 more parameters. We discuss below why it is not 12. We also get a log likeli-
hood ratio comparing the variance structures in Equations (4.2) and (4.4). However,
as these models are not nested, it is better not to use the log likelihood ratio. How-
ever, comparing models (4.1) and (4.4) does make sense as they are both nested.
The null-hypothesis is

H0 : σ 2
1 = σ 2

2 = σ 2
3 = . . . = σ 2

12

with the alternative that they are not equal to each other. The R code to carry out
this test and the resulting output is given below.

> anova(M.lm, M.gls2)

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls2 2 36 3614.436 3780.469 -1771.218 1 vs 2 159.6479 <.0001

You can see the log likelihood ratio test indicates that the model with differ-
ent variances per month is better, allowing us to reject the null hypothesis that all
variances are the same. The summary(M.gls2) command gives the different
variances (along with lots of other information).
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> summary(M.gls2)

...

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | fMONTH

Parameter estimates:

2 9 12 11 8 10 5 7 6 4

1.00 2.99 1.27 1.50 0.98 2.21 1.63 1.37 1.64 1.42

1 3

1.95 1.97

...

Residual standard error: 1.27

The numbers under the months (2, 9, 12, etc.) are multiplication factors. They
show the ratio with the estimated residual standard error (1.27), the estimator for σ .
Let us call this estimator s; hence, s = 1.27. One multiplication factor is set to 1 (in
this case month 2). In month 9, the variance is 2.99 × s, in month 12 it is 1.27 ×
s, etc. You can also change the nominal variable fMONTH and set January to the
baseline. Note that months 9 and 10, and 3 have the highest ratios indicating that in
these months there is more residual variation.

If you have two nominal explanatory variables, say month and location, and the
spread differs for all stratum, then you can use varIdent(form= ∼ 1|fMONTH
* factor(LOCATION)). But we don’t have location information for the squid
data.

So, which option is better: different spread per month or different spread along
DML? If in Fig. 4.2A, the smaller fitted values are from months with less spread
and the larger fitted values are from months with higher spread, then using different
variances per month makes more sense. The following code produces a graph like
Fig. 4.2A and colours observations of the same month:

> plot(M.lm,which = c(1), col = Squid$MONTH,

add.smooth = FALSE, caption = "")

The col = Squid$MONTH part ensures that observations of the same month
have the same colour. This approach works here because MONTH is coded with
values 1–12. If you coded it as ‘January’, ’February’, etc. then you would need to
make a new vector with values 1, 2, 3, etc.; see, for example, Dalgaard (2002) on
how to do this. Although not presented here, the graph does not show any clear
grouping.

Let us try to understand what is really going on. The R code below makes
a coplot (explained in Chapter 2) of the residuals versus DML, conditional on
month for the linear regression model in Equation (4.1). The resulting coplot
is given in Fig. 4.3. The residual variation differs per month, but in some
months (e.g. 3, 9, and 10) the residual spread also increases for larger DML val-
ues. So, both are influential: residual spread is influenced by both month and
length!
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Fig. 4.3 Coplot of residuals obtained by the linear regression model in Equation (4.1) versus DML
conditional on month. The lower left panel corresponds to month 1, the lower right to month 4, and
the upper right to month 12. Note that some months show clear heterogeneity, and others do not.
Sample size may also be an issue here!

> E <- resid(M.lm)

> coplot(E ∼ DML | fMONTH, data = Squid)

Before discussing how to combine both types of variation (variation linked with
DML and variation linked with Month), we introduce a few more variance struc-
tures. In all these structures, the variance of the residuals is not necessarily equal to
σ 2, but is a function of DML and/or month.

An explanatory variable that is used in the variance of the residuals is called a
variance covariate. The trick is to find the appropriate structure for the variance
of εij. The easiest approach to choosing the best variance structure is to apply the
various available structures in R and compare them using the AIC or to use biolog-
ical knowledge combined with some informative graphs like the coplot. Some of
the variance functions are nested, and a likelihood ratio test can be applied to judge
which one performs better for your data.

4.1.4 The varPower Variance Structure

So far, we have looked at the varFixed and varIdent variance structures.
Next we look at the ‘power of the covariate’ variance structure. It uses the R
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function varPower. For the squid data, a potential power of the covariate variance
structure is

εi j ∼ N (0, σ 2 × |DMLij |2δ) (4.5)

Hence, var(εij) = σ 2 × |DMLij|2δ . The variance of the residuals is modelled as
σ 2, multiplied with the power of the absolute value of the variance covariate DML.
The parameter δ is unknown and needs to be estimated. If δ = 0, we obtain the
linear regression model in Equation (4.1), meaning (4.1) and (4.5) are nested, and
therefore the likelihood ratio test can be applied to judge which one is better. For
δ = 0.5 and a variance covariate with positive values, we get the same variance
structure as specified in Equation (4.2). But if the variance covariate has values
equal to 0, the variance of the residuals is 0 as well. This causes problems in the
numerical estimation process, and if the variance covariate has values equal to zero,
the varPower should not be used. For the squid data, all DML values are larger
than 0 (DML is length); so it is not a problem with this example. The following R
code implements the varPower function.

> vf3 <- varPower(form =∼ DML)

> M.gls3 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf3, data = Squid)

The AIC of this model is 3473.019, which is the lowest value so far (the lower
the AIC the better the model). The summary command gives the value of δ = 1.75.
It is also possible to allow multiple variables in the form argument. This extension
makes it possible to model an increase in spread for larger DML values, but only in
certain months! The structure for the residuals is now

εi j ∼ N (0, σ 2 × |DMLij |2δ) (4.6)

Hence, var(εij) = σ 2 × |DMLij|2δj. The following R code implements this vari-
ance structure.

> vf4 <- varPower(form =∼ DML | fMONTH)

> M.gls4 <- gls(Testisweight ∼ DML * fMONTH,

data = Squid, weights = vf4)

The anova command gives an AIC of 3407.51, now making it the best model
so far. The parameters δj can be obtained using the summary command, and are

Variance function:
Structure: Power of variance covariate, dif-ferent strata
Formula: ∼DML | factor(MONTH)
Parameter estimates:

2 9 12 11 8 10 5 7 6
1.73 1.79 1.73 1.75 1.62 1.79 1.75 1.67 1.75
4 1 3
1.71 1.70 1.72
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So, instead of having one δ, we now have twelve of them (δj, j = 1, . . ., 12).
There is little variation between the estimated values of δj, but keep in mind they
are multiplied by two, before being used to take the power. It is also possible to set
the δj for some months equal to an a priori chosen value and keep it fixed. This is
handy if you know or want to test whether the spread along DML in some months is
constant (e.g. in month 4, as suggested by the coplot in Fig. 4.3). This can be done
with the fixed option in varPower (see page 210 in Pinheiro and Bates (2000)
and the help file of varPower). The AIC can be used to judge whether fixing or
not fixing is better.

4.1.5 The varExp Variance Structure

If the variance covariate can take the value of zero, the exponential variance structure
is a better option. It uses the varExp function in R, and for the squid data, a possible
exponential variance structure is

var(εi j ) = σ 2 × e2δ×DMLi (4.7)

This structure models the variance of the residuals as σ2 multiplied by an expo-
nential function of the variance covariate DML and an unknown parameter δ. If δ =
0, this gives the variance structure of model (4.1). There are no restrictions on δ or
DML. This structure also allows a decrease of spread for DML values if δ is neg-
ative. As before, we can allow for different δ per month. The R code to implement
the exponential variance structure is

> vf5 <- varExp(form =∼ DML)

> M.gls5 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf5, data = Squid)

The AIC of this model is 3478.15, which is slightly higher than for model
M.gls3. Using varExp(form =∼ DML | fMONTH) does the same trick as for
model M.gls4, and allows the spread in DML to differ per month. Again, it is
possible to fix some of the δjs.

4.1.6 The varConstPower Variance Structure

Another variance structure is the constant plus power of the variance covari-
ate function, and it is implemented in the function varConstPower. It is
defined by

var(εi j ) = σ 2 × (δ1 + |DMLij |δ2 )2 (4.8)
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This function looks rather complicated. If δ1 = 1 and δ2 = 0, we are back to the
linear regression model in Equation (4.1). If not, then the variance is proportional to
a constant plus the power of the variance covariate DML. According to Pinheiro and
Bates (2000), this variance structure works better than the varExp if the variance
covariate has values close to zero. To use this variance structure in R, use

> vf6 <- varConstPower(form =∼ DML)

> M.gls6 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf6, data = Squid)

Its AIC is 3475.02. Again, we can allow for different δ1s and δ2s per stratum of
a nominal variable (e.g. MONTH). Such a model is fitted in R by

> vf7 <- varConstPower(form =∼ DML | fMONTH)

> M.gls7 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf7, data = Squid)

The AIC of this model is 3431.51. The associated variance structure is given by

var(εi j ) = σ 2 × (δ1 j + |DMLij |δ2 j )2 (4.9)

The only difference with the variance in Equation (4.8) is the index j ( j = 1, . . .,
12) from δ1 and δ2. Again, it is possible to set the δ1s and δ2s to a preset value for
particular months and keep it fixed during the estimation process.

4.1.7 The varComb Variance Structure

The last variance structure we discuss is the combination of variance structures
using the varComb function. With this variance structure, we can allow for both an
increase in residual spread for larger DML values as well as a different spread per
month. This variance structure is of the form:

var(εi j ) = σ 2
j × e2δ×DMLij (4.10)

Note that σ has an index j running from 1 to 12, allowing for different spreads per
month. Additionally, the variance increases for larger DML values. This is a com-
bination of varIdent and varExp. The following R code applies this variance
structure and gives the AIC of all models applied so far.

> vf8 <- varComb(varIdent(form =∼ 1 | fMONTH) ,

varExp(form =∼ DML) )

> M.gls8 <- gls(Testisweight ∼ DML * fMONTH,

weights = vf8, data = Squid)
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> anova(M.lm, M.gls1, M.gls2, M.gls3, M.gls4,
M.gls5, M.gls6, M.gls7, M.gls8)

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls1 2 25 3620.898 3736.199 -1785.449
M.gls2 3 36 3614.436 3780.469 -1771.218 2 vs 3 28.461 0.0027
M.gls3 4 26 3473.019 3592.932 -1710.509 3 vs 4 121.417 <.0001
M.gls4 5 37 3407.511 3578.156 -1666.755 4 vs 5 87.507 <.0001
M.gls5 6 26 3478.152 3598.066 -1713.076 5 vs 6 92.641 <.0001
M.gls6 7 27 3475.019 3599.544 -1710.509 6 vs 7 5.133 0.0235
M.gls7 8 49 3431.511 3657.501 -1666.755 7 vs 8 87.507 <.0001
M.gls8 9 37 3414.817 3585.463 -1670.409 8 vs 9 7.306 0.8367

The model allowing for an increase in spread for larger DML values (which
is allowed to differ per month), M.gls4, has the lowest AIC and is therefore
selected as the optimal model. Note that the tests above depend on the order
in the anova command. If you are only after the AIC, you better use the
command:

> AIC(M.lm, M.gls1, M.gls2, M.gls3, M.gls4,

M.gls5, M.gls6, M.gls7, M.gls8)

This command only gives the AICs of the models. The anova (M.gls4) com-
mand shows that the interaction is highly significant. Testing fixed terms in the
model is further discussed in Section 4.2.

4.1.8 Overview of All Variance Structures

Table 4.1 shows all the applied variance structures and their names. As well as these
functions, you can also specify your own variance structure; see pg. 214 in Pinheiro
and Bates (2000). Instead of using a covariate in the variance structure, we can use
the fitted values of the model, which allows the spread in residuals to increase (or
decrease) for larger fitted values.

Table 4.1 Various
variance structures used in
this section. The table
follows Pinheiro and Bates
(2000)

Name of the
function in R What does it do?

VarFixed Fixed variance
VarIdent Different variances per stratum
VarPower Power of the variance covariate
VarExp Exponential of the variance covariate
VarConstPower Constant plus power of the variance

covariate
VarComb A combination of variance functions
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If the variance covariate has large values (e.g. larger than 100), numerical insta-
bilities may occur; exp(100) is rather large! In such cases, it is better to rescale the
variance covariate before using it in any of the variance structures. For example, we
could have used DML/max(DML) or express it in meters instead of millimetres in
the variance functions. The unscaled DML can still be used in the fixed part of the
model.

Remember from Appendix A, that two models are called nested if one model
can be obtained from the other model by setting specific parameters equal to zero.
The same definition also applies to variance structures. For example, the variance
structure of the linear regression model in Equation (4.1) is nested within most of
the other models. However, one of the exceptions is the linear regression model and
the varFixed structure.

In this case, we cannot obtain the homogeneous residual variance from the linear
regression model by setting a specific parameter in the varFixed model equal to
zero. To see this, compare the following two variance structures:

εi ∼ N (0, σ 2) εi ∼ N (0, σ 2 × DMLi )

The first variance structure is from the linear regression model and the second
one from the varFixed. We cannot obtain the variance structure on the left from
the right one, unless DML is equal to 1 for all observations. Compare this with the
linear regression model and the varPower structure:

εi ∼ N (0, σ 2) εij ∼ N (0, σ 2 ×|DMLij|2δ j )

By setting all δjs equal to zero in the right variance structure, we obtain the
left variance structure; hence, these are nested variance structures. Note that the
varIdent is nested in the varPower structure! And nested models mean that
we can apply the likelihood ratio test.

To test certain types of heterogeneity, we can apply the log likelihood ratio test.
For example, for model (4.1) and the optimal variance structure in (4.6), we can type
anova (M.lm, M.gls4), which gives:

Model df AIC BIC logLik Test L.Ratio p-value
M.lm 1 25 3752.084 3867.385 -1851.042
M.gls4 2 37 3407.511 3578.156 -1666.755 1 vs 2 368.5728 <.0001

The log likelihood ratio statistic is 368.57, indicating that the variance structure
in (4.6) is considerably better than the constant variance in the linear regression
model (4.1). Hence, the varPower option provides a significantly better variance
structure than the one used for the linear regression model in (4.1). In a paper,
you would write this as L = 368.57 (df = 12, p < 0.001). This model compar-
ison provides a better testing procedure for homogeneity than those presented in
Chapter 2.
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4.1.8.1 Which One to Choose?

So, which variance structure should you choose, and how do you decide which one
is best? If the variance covariate is a nominal variable, the choice is simple; use
varIdent. In our example, it allowed modelling different residual variation for
the testis weight per month.

The underlying variance structure imposed by varIdent is relatively easy to
understand, but the difference between the variance structured modelled by the
varFixed, varPower, varExp, and varConstPower functions are more dif-
ficult to explain. All four variance structures allow for an increase (or decrease) in
residual variation for the testis weight data along a continuous variance covariate
like DML (an explanatory variable in this case).

But, the varFixed is rather limited, as it assumes that the variance of the resid-
uals is linearly related to a variance covariate. This causes problems if the variance
covariate takes non-positive values or where the linear relationship requirements
between variation and the variance covariate is too stringent.

In practise, it may be better to use the varPower, varExp, or
varConstPower functions, which allow for more flexibility than the varFixed.
So, how to choose between these three? The difference between them is the math-
ematical parameterisation of the variance function. The varPower should not be
used if the variance covariate takes the value of zero. In this case, this is not an issue
as DML (length) is always larger than zero. But it may be an issue with variance
covariates like temperature or height compared to a baseline, etc.

However, finding the right variance structure for a variance covariate like DML,
which is always non-zero, is more a matter of trial and error, and the best choice
is judged through using tools like the AIC. Another important aspect is biological
knowledge. If you know a priori that there is a certain type of heterogeneity in
your data, then you can greatly speed up the selection process by including this
information!

4.1.9 Graphical Validation of the Optimal Model

For graphical model validation, we can use two types of residuals: (i) residu-
als calculated as observed minus fitted values (also called ordinary residuals) and
(ii) normalised residuals. We start with the first one. The following R code extracts
the residuals and plots them in a coplot (Fig. 4.4). Note that these residuals still
show heterogeneity, but this is now allowed (because the residual variation differs
depending on the chosen variance structure and values of the variance covariate).
Hence, these residuals are less useful for the model validation process.

> E1 <- resid(M.gls4)

> coplot(E1 ∼ DML | fMONTH,

ylab = "Ordinary residuals", data = Squid)
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Fig. 4.4 Ordinary residuals (observed minus fitted values) versus DML conditional on month for
the optimal model. These residuals are allowed to have a cone effect

You should use standardised residuals instead of the ordinary residuals for the
model validation. These are obtained by calculating the observed minus the fitted
values and then dividing by the square root of the variance. These residuals are
therefore obtained from

εi j =
Testisweightij − Fitted valuesij√

σ 2 × |DMLij |2δ j
(4.11)

Plotting these residuals should not show any heterogeneity. If there is any het-
erogeneity, then further model improvement is required. Luckily, we don’t have to
program Equation (4.11) as the standardised residuals can be obtained using an R
function.

The following R code extracts the standardised residuals, and makes a coplot,
(Fig. 4.5) where there is no clear evidence of heterogeneity.

> E2 <- resid(M.gls4, type = "normalized")

> coplot(E2 ∼ DML | fMONTH, data = Squid,

ylab = "Normalised residuals")
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Fig. 4.5 Coplot of standardised residuals versus DML conditional on month for the optimal model.
There is no evidence of heterogeneity

The option type = "normalized" ensures that E2 contains the standard-
ised residuals.

4.2 Benthic Biodiversity Experiment

4.2.1 Linear Regression Applied on the Benthic Biodiversity Data

In this section, we provide another example of a linear regression model for statisti-
cally heterogeneous data. Based on experimental protocols developed in Emmerson
and Raffaelli (2000), Emmerson et al. (2001), Solan and Ford (2003), and Ieno
et al. (2006), among others, replicate mesocosm experiments (using plastic ice
containers) were carried out. Benthic macrofaunal single and/or multiple species
(biodiversity) were manipulated in a multi-patch environment, and the release of
ammonium (NH4-N), nitrate (NOx-N) and phosphate (PO4-P) concentrates were
recorded from the sediment (ecosystem processes).

The data used for the specific example shown below relies on both published data
(Ieno et al., 2006) and unpublished data (Oceanlab, University of Aberdeen). The
experiment examines the effect of macrofauna density (Hediste diversicolor, Poly-
chaeta), and habitat heterogeneity on sediment nutrient release. Figure 4.6 shows
the experimental set up.
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Fig. 4.6 Photograph showing the experimental set up. One nutrient is measured per container

At the start of the experiment, each container was filled with homogenised sedi-
ment from mudflats on the Ythan estuary (Scotland, UK). The macrofaunal biomass
(H. diversicolor) was fixed across the following levels (0, 0.5, 1, 1.5, and 2 g), and
replicated within each biomass level (n = 3). The response variable is the concen-
tration of a particular nutrient.

To study the effect of habitat heterogeneity, the previous procedure was repeated
for algae-enriched sediment. This gave 36 observations per nutrient, 18 enriched,
and 18 non-enriched. Because there are three nutrients, the data set contains 108
samples (containers).

We can either analyse the data for each nutrient separately or combine all the
data and analyse it all at the same time. The latter option is applied here as it allows
us to test for interactions between nutrients and treatment levels (note that the nutri-
ents were not measured in the same container; so there are no pseudo-replication
problems).

To analyse the concentration data from all three nutrients, we need to concatenate
the 36 observations from each nutrient, resulting in a response variable of length 108
(36 × 3), one continuous explanatory variable (biomass), and two nominal explana-
tory variables: enrichment (with or without algae), and a variable identifying the
nutrient with the levels NH4-N, NO3-N, and PO3-P.

There is, however, a major problem with the statistical analysis of the combined
data. Due to the nature of the variables, we expect massive differences in variation
in concentrations per nutrient and enrichment combination. This is illustrated in
Fig. 4.7, which shows a boxplot for each nutrient–enrichment combination. Note
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Fig. 4.7 Boxplot of concentrations for NH4, NO3 and PO3. The first two boxplots on the left hand
side are for enriched and non-enriched NH4 concentrations

that the samples enriched with algae and with NH4, have higher concentrations and
show more variation.

An initial linear regression analysis, using biomass, enrichment and nutrient, with
all the two-way interactions, and the three-way interaction as explanatory variables
clearly showed serious violation of homogeneity, as can be seen from Fig. 4.8.

A log10(Concentration + 0.5) transformation was applied, but the enrichment ×
NO3 combination still had lower variation than the other combinations. We, there-
fore, cannot easily obtain homogeneity with a data transformation. And, as we men-
tioned in Chapter 2, we want to avoid data transformations whenever possible. So,
instead of transforming the data, we will allow for different variances by using GLS.
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The following R code was used to make Figs. 4.7 and 4.8.

> library(AED); data(Biodiversity);

> Biodiv <- Biodiversity #Saves some space

> Biodiv$fTreatment <- factor(Biodiv$Treatment)

> Biodiv$fNutrient <- factor(Biodiv$Nutrient)

> boxplot(Concentration ∼
fTreatment * fNutrient, data = Biodiv)

> M0 <- lm(Concentration ∼
Biomass * fTreatment * fNutrient,

data = Biodiv)

> plot(M0, which = c(1), add.smooth = FALSE)

The library and data commands are used to load the data. The variables
Treatment and Nutrient are converted into factors, and the rest is basic code for a
boxplot (Chapter 2) and linear regression (Appendix A).

4.2.2 GLS Applied on the Benthic Biodiversity Data

As with the squid data, we have to investigate why there is heterogeneity in these
benthos data. Biological knowledge suggests that treatment and nutrient levels, pos-
sibly both, may be driving the heterogeneity. A scatterplot of biomass versus con-
centration did not show any clear increase or decrease in spread. This indicates that
the potential variance covariates are nutrient and/or enrichment. The following R
code assumes you have already loaded the data. It first applies the linear regression
model again with the gls command, and then the three GLS models with different
variance covariates are fitted.

> library(nlme)

> f1 <- formula(Concentration ∼ Biomass * fTreatment *
fNutrient)

> M0 <- gls(f1, data = Biodiv)

> M1A <-gls(f1, data = Biodiv, weights = varIdent(

form =∼ 1 | fTreatment * fNutrient))

> M1B <-gls(f1, data = Biodiv,

weights = varIdent(form =∼ 1 | fNutrient))

> M1C <-gls(f1, data = Biodiv,

weights = varIdent(form =∼ 1 | fTreatment))

The first model M0 is the linear regression model without any variance covari-
ates. The second model M1A uses one variance term per nutrient–enrichment com-
bination. And the third and fourth models use as variance covariates, nutrient and
enrichment, respectively. The models have all main terms, two-way interactions,
and the three-way interaction term as a fixed component. The anova command can
be used to compare the models.
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> anova(M0, M1A, M1B, M1C)

Model df AIC BIC logLik Test L.Ratio p-value
M0 1 13 534.5203 567.8569 -254.2602
M1A 2 18 330.1298 376.2881 -147.0649 1 vs 2 214.39054 <.0001
M1B 3 15 380.0830 418.5482 -175.0415 2 vs 3 55.95320 <.0001
M1C 4 14 439.7639 475.6647 -205.8819 3 vs 4 61.68087 <.0001

The AIC of the model with both nutrient and enrichment as variance covariates
(M1A) is by far the best model, as judged by the AIC and BIC. Note that not all the
likelihood ratio tests make sense (not all comparisons are from nested models). The
plot(M1A, col = 1) command plots the standardised residuals versus fitted
values. The graph is not shown here, but there is no sign of heterogeneity.

The commands anova(M1A) and summary(M1A) give information of the
significance of the fixed explanatory variables (the three-way interaction, etc.).
Results are not given here, but both functions show that the three-way interaction is
not significant.

4.2.3 A Protocol

The problem is that we have still not discussed all aspects of model selection.
This requires knowledge of things like maximum likelihood (ML) estimation and
restricted maximum likelihood estimation (REML), and we discuss these in more
detail in the next chapter. For the moment, we present them in a rather abstract
manner and justify them later in Chapter 5. So to fully understand the differences
between ML and REML, you need to read Chapter 5. In Chapter 5, the protocol
for model selection in mixed modelling is explained (and justified) in detail, but the
same protocol applies for GLS and is introduced in less detail below.

1. Start with a linear regression model that contains as many explanatory vari-
ables and their interactions as possible. The residuals of this model are assumed
to be normally distributed with mean 0 and variance σ 2. Investigate whether
the homogeneity assumptions are valid by plotting the standardised residuals
versus fitted values and by plotting the standardised residuals versus each indi-
vidual explanatory variable. Any sign of variation in residual patterns is an indi-
cation of heterogeneity and means you have to go on to step 2. If you do not see
any clear violation of homogeneity, there is no need to continue to step 2; just
continue with a model selection on the explanatory variables (Appendix A). It
should be noted that the graphical assessment of heterogeneity is difficult for
small data sets.

2. For formal model comparison, repeat step 1 using the gls function from the
nlme package. Do not specify any special variance structure yet and ensure that
REML estimation is used (the default estimation method). You will get exactly
the same estimated values, t-values and p-values as in step 1. The reason for



4.2 Benthic Biodiversity Experiment 91

this step is that the anova command cannot compare objects obtained by the
functions lm and gls. A call to the gls function without any extra options is
a linear regression.

3. Depending on the graphical model validation in step 1, choose an appropriate
variance structure. It helps to plot residuals versus fitted values and use different
colours and symbols for different nutrients and/or enrichment levels (for our
particular example). In the previous section, a wide range of residual variance
structures was introduced.

4. Fit a new gls model with the selected variance covariance structure selected
in step 3. Ensure that REML estimation is used, which is done with gls(. . .,
method = "REML"), and that you use the same selection of explanatory
variables. This is now called the fixed part of the model, and the residuals are
called the random part. We will first try to find the optimal random structure
using as many explanatory variables in the fixed part as possible.

5. Compare the new GLS model with the earlier results using the AIC, BIC, or
likelihood ratio test. If the new model is better, extract the normalised resid-
uals, and inspect these for homogeneity (using the same tools as in step 1).
If the homogeneity assumption is not valid for the normalised residual of
the model obtained in step 4, then go to step 6. If it is valid, then go to
step 7.

6. If the residuals still show heterogeneity, go to step 4, and choose another resid-
ual variance structure. If you keep iterating between steps 4, 5, and 6, either
try improving the fixed component (using for example additive modelling), try
a different distribution (e.g. Poisson or negative binomial), consider a transfor-
mation on the response variable as a last resort, or conclude that your residual
spread is not related to any of the measured covariates.

7. You are now half way. You have found the optimal residual variance struc-
ture using REML estimation. Now it is time to find the optimal fixed com-
ponent. Or stated differently, which explanatory variables are significant, and
which are not. You have three tools to find the optimal fixed component: the t-
statistic, the F-statistic, and the likelihood ratio test. The t-statistics are obtained
with the summary command, and the F-statistic with the anova command.
Both functions are applied on one model, e.g. by typing summary(M1A) or
anova(M1A). Ensure that REML estimation is used in the gls command.
Remember the anova command is doing sequential testing. This is useful for
testing the significance of the highest interaction term, but not for the other
terms in the model. It is also of less use if you only have main terms as the
order of the variables is of importance in sequential testing. The problem with
the t-statistic is that it should not be used to assess the significance of a nominal
variable with more than two levels (e.g. nutrient). The third option is the likeli-
hood ratio test. You need to specify a full model and a nested model (Appendix
A). Both models need ML estimation (and the same random structure, but you
already selected these in step 5). This approach is conceptually probably the
easiest to work with, but it can be time consuming.
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8. Apply any of the model selection tools described in step 7, and stop once all
terms are significant.

9. Reapply the model that was found in step 8, and refit it with REML estimation.
Apply a graphical model validation, checking for homogeneity (see step 1),
normality, and independence. If no problems are highlighted, go to step 10. If
problems are identified, return to step 8, and consider adding non-significant
terms to see if this improves the model validation graphs.

10. Present the results in a table and try to understand what it all means in terms of
ecology.

We demonstrated steps 1–7 for the benthic biodiversity data earlier in this chapter
and now continue with this example for the remaining steps in the protocol just
described.

4.2.4 Application of the Protocol on the Benthic Biodiversity Data

The anova(M1A) command gives the following output.

Denom. DF: 96

numDF F-value p-value

(Intercept) 1 205.73781 <.0001

Biomass 1 1.22179 0.2718

fTreatment 1 14.62895 0.0002

fNutrient 2 1.57754 0.2118

Biomass:fTreatment 1 0.26657 0.6068

Biomass:fNutrient 2 4.17802 0.0182

fTreatment:fNutrient 2 121.57149 <.0001

Biomass:fTreatment:fNutrient 2 1.09043 0.3402

An explanation of the nominator and denominator degrees of freedom is delayed
until Chapter 5. Here, we focus on the value of the F-statistic and its p-value. The
anova function applies sequential testing. This means that the p-values will change
if you change the order of the main terms or the order of the two-way interactions. In
this example, it is only the last term that is of real interest as it shows the significance
of the three-way interaction term (you can’t change the order of this term). In this
case, it is not significant at the 5% level. This means that we can drop the three-way
term and refit the model.

Refitting the model with the main terms and all three two-way terms gives exactly
the same anova table as above, except for the last line. The problem is that we
cannot assess the significance of the Biomass × Treatment term, and the biomass ×
Nutrient term, due to the order how they were put in. Obviously, we could apply
three models, ensure each time that a different two-way term is the last, and deselect
the least significant two-way interaction.



4.2 Benthic Biodiversity Experiment 93

The second model selection approach (using hypothesis testing) is based on
the t-statistic, but we do not want to use this option as nutrient has three lev-
els. One level will be used as baseline, and the p-values from the t-statistic will
only tell us whether the second and third nutrients are different from the baseline
nutrient.

The third model selection approach (using hypothesis testing) is based on
comparing nested models. Let us go back a step and test the significance of the
three-way interaction term again. We compare the full model (with the three-way
interaction term) with a model that does not contain the three-way interaction term
using the likelihood ratio test. Both models need ML estimation. The R code for
this is as follows.

> M2A1 <- gls(Concentration ∼ Biomass + fTreatment +
fNutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient +
Biomass:fTreatment:fNutrient,
weights = varIdent(form =∼ 1 |

fTreatment * fNutrient),
method = "ML", data = Biodiv)

> M2A2 <- gls(Concentration ∼ Biomass + fTreatment +
Nutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient,
weights=varIdent(form =∼ 1 |

fTreatment * fNutrient),
method = "ML", data = Biodiv)

The output of the anova (M2A1, M2A2) command is given below.

Model df AIC BIC logLik Test L.Ratio p-value
M2A1 1 18 321.0648 369.3432 -142.5324
M2A2 2 16 319.4653 362.3794 -143.7327 1 vs 2 2.400507 0.3011

The anova command also indicates that the three-way interaction can be
dropped. In the next step of the model selection, we have to find a p-value for each
two-way interaction. This is done as follows. Use model M2A2 as the starting point
and drop each of the two-way interactions in turn, and use the anova command
to obtain a p-value. Also consider whether any of the main terms can be dropped.
The rule is that if an interaction term is included, then all the associated main terms
should be included as well, and are not a candidate for dropping. However, if you
have the main terms A, B, C, and the interaction A × B, then the two terms that can
be potentially dropped are A × B and also C!

This whole process is rather time consuming and you will want to think twice
before adding four-way interactions! It was our intention to put the code for this
example online, but all our book reviewers asked us to include it in the text of the
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book. Perhaps they are right, and you should see this at least once in your life. So,
take a deep breath, and read on!

4.2.4.1 Round 1 of the Backwards Selection

The following code drops each two-way interaction and applies a likelihood ratio
test.

> vfOptim <- varIdent(form =∼ 1 | fTreatment*fNutrient)
> #Assess significance of all 3 2-way interactions
> #Full model
> M3.Full <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> #Drop Biomass:fTreatment
> M3.Drop1 <- gls(Concentration∼

Biomass + fTreatment + fNutrient +
Biomass:fNutrient +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> anova(M3.Full, M3.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop1 2 15 319.3730 359.6050 -144.6865 1 vs 2 1.907680 0.1672

>
> #Drop Biomass:fNutrient
> M3.Drop2 <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
fTreatment:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)

> anova(M3.Full, M3.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop2 2 14 323.2165 360.7664 -147.6083 1 vs 2 7.751179 0.0207

>
> #Drop fTreatment:fNutrient
> M3.Drop3 <- gls(Concentration ∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient,
weights = vfOptim,
method = "ML", data = Biodiv)
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> anova(M3.Full, M3.Drop3)
Model df AIC BIC logLik Test L.Ratio p-value

M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop3 2 14 403.3288 440.8786 -187.6644 1 vs 2 87.86346 <.0001

So, we dropped each two-way interaction term in turn, applied the likeli-
hood ratio test, and obtained p-values. Clearly, the two way interaction term
Biomass:fTreatment is not significant at the 5% level and should be dropped.
You can make the code above a bit friendlier using the update command. The
following code produces exactly the same results.

> #Alternative coding with same results
> fFull <- formula(Concentration∼

Biomass + fTreatment + fNutrient +
Biomass:fTreatment +
Biomass:fNutrient + fTreatment:fNutrient)

> M3.Full <- gls(fFull, weights = vfOptim,
method = "ML", data = Biodiv)

> #Drop Biomass:fTreatment
> M3.Drop1<-update(M3.Full, .∼. - Biomass:fTreatment)
> anova(M3.Full, M3.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop1 2 15 319.3730 359.6050 -144.6865 1 vs 2 1.907680 0.1672

> #Drop Biomass:fNutrient
> M3.Drop2 <- update(M3.Full, .∼. - Biomass:fNutrient)
> anova(M3.Full, M3.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop2 2 14 323.2165 360.7664 -147.6083 1 vs 2 7.751179 0.0207

> #Drop fTreatment:fNutrient
> M3.Drop3<-update(M3.Full, .∼. - fTreatment:fNutrient)
> anova(M3.Full,M3.Drop3)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 16 319.4653 362.3794 -143.7327
M3.Drop3 2 14 403.3288 440.8786 -187.6644 1 vs 2 87.86346 <.0001

As you can see, this gives the same results. The advantage of the update com-
mand is that the code is shorter, but you it also makes it easier to lose track what
exactly you are fitting.

4.2.4.2 Round 2 of the Backwards Selection

Whichever coding you use, we need to drop the term Biomass:fTreatment.
This means that the new full model is

> #New full model

> M4.Full <- gls(Concentration∼
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Biomass + fTreatment + fNutrient +

Biomass:fNutrient + fTreatment:fNutrient,

weights = vfOptim,

method = "ML", data = Biodiv)

From this model, you can drop two of the two-way interaction terms. No main
terms can be dropped yet. We will use the update command again and try to avoid
turning this chapter into something that looks like a telephone book.

>#Drop Biomass:fNutrient
> M4.Drop1 <- update(M4.Full, .∼. -Biomass:fNutrient)
> anova(M4.Full, M4.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 15 319.3730 359.6050 -144.6865
M4.Drop1 2 13 321.7872 356.6549 -147.8936 1 vs 2 6.414148 0.0405

> #Drop fTreatment:fNutrient
> M4.Drop2<-update(M4.Full, .∼. -fTreatment:fNutrient)
> anova(M4.Full, M4.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 15 319.3730 359.6050 -144.6865
M4.Drop2 2 13 404.8657 439.7335 -189.4329 1 vs 2 89.49272 <.0001

A p-value of 0.04 for the Biomass:fNutrient interaction is not impressive,
especially not with a series of hypothesis tests. So, we decided to drop it as well and
continue with the following full model.

4.2.4.3 Round 3 of the Backwards Selection

The new full model is

> #New full model

> M5.Full <- gls(Concentration ∼
Biomass + fTreatment + fNutrient +

fTreatment:fNutrient,

weights = vfOptim, method = "ML",

data = Biodiv)

We can drop the fTreatment:fNutrient interaction term, but also the
main term Biomass.

> #Drop fTreatment:fNutrient
> M5.Drop1 <-update(M5.Full, .∼.-fTreatment:fNutrient)
> anova(M5.Full, M5.Drop1)

Model df AIC BIC logLik Test L.Ratio p-value
M5.Full 1 13 321.7872 356.6549 -147.8936
M5.Drop1 2 11 406.7950 436.2985 -192.3975 1 vs 2 89.00786 <.0001
> #Drop Biomass
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> M5.Drop2 <- update(M5.Full, .∼. -Biomass)
> anova(M5.Full, M5.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M5.Full 1 13 321.7872 356.6549 -147.8936
M5.Drop2 2 12 321.2595 353.4450 -148.6297 1 vs 2 1.472279 0.225

The biomass term is not significant and can be dropped.

4.2.4.4 Round 4 of the Backwards Selection

The new full model is

> M6.Full<-gls(Concentration ∼ fTreatment + fNutrient+

fTreatment:fNutrient,

weights = vfOptim, method = "ML",

data = Biodiv)

The only term that can be dropped is the interaction term.

> M6.Drop1<-update(M6.Full, .∼. -fTreatment:fNutrient)
> anova(M6.Full, M6.Drop2)

Model df AIC BIC logLik Test L.Ratio p-value
M6.Full 1 12 321.2595 353.4450 -148.6297
M6.Drop1 2 10 406.0323 432.8536 -193.0161 1 vs 2 88.77283 <.0001

The interaction term fTreatment:fNutrient is highly significant, so no
further terms can be dropped.

4.2.4.5 The Aftermath

We applied the process of comparing nested models several times, and ended up
with a model containing Nutrient, Enrichment, and their interaction. The two-
way interaction term was significant. We reapplied this model with REML esti-
mation (step 9). Normality and homogeneity can safely be assumed (see Fig. 4.9).
Figure 4.9 was created with the following R code.

> MFinal <- gls(Concentration ∼ fTreatment * fNutrient,

weights = vfOptim, method = "REML",

data = Biodiv)

> E <- resid(MFinal, type = "normalized")

> Fit <- fitted(MFinal)

> op <- par(mfrow = c(1, 2))

> plot(x = Fit, y = E,

xlab = "Fitted values", ylab = "Residuals",

main = "Residuals versus fitted values")

> identify(Fit, E)

> hist(E, nclass = 15)

> par(op)
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Fig. 4.9 Residuals versus fitted values and a histogram of the residuals (denoted by E) for the
optimal GLS model that contains Nutrient, Enrichment, and their interaction

The gls command refits the model with REML, the resid command extracts
the normalised residuals, the object Fit are the fitted values, the plot command
plots the fitted values versus the residuals, and the hist command makes a his-
togram with 15 bars. The identify command allows us to identify the observa-
tion with the large residual (observation 26). We will return to this observation in a
moment.

Assuming that everything is ok, we can now proceed to step 10 and present the
relevant output of the final model using the summary(MFinal) command.

Generalized least squares fit by REML
Model: Concentration ∼ fTreatment + fNutrient + fTreatment:fNutrient

Data: Biodiv
AIC BIC logLik

327.9174 359.4171 -151.9587

Variance function:
Structure: Different standard deviations per stratum
Formula: ∼1 | fTreatment * fNutrient
Parameter estimates:
NoAlgae*NO3 Algae*NO3 NoAlgae*NH4 Algae*NH4 NoAlgae*PO3 Algae*PO3

1.00000 0.50104 1.33233 8.43635 0.48606 1.10733
Coefficients:

Value Std.Error t-value p-value
(Intercept) 15.78139 1.629670 9.683792 0
fTreatmentNoAlgae -14.69763 1.649868 -8.908365 0
fNutrientNO3 -15.66972 1.632542 -9.598358 0
fNutrientPO3 -13.36137 1.643649 -8.129089 0
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fTreatmentNoAlgae:fNutrientNO3 16.86929 1.663956 10.138067 0
fTreatmentNoAlgae:fNutrientPO3 12.95293 1.666324 7.773353 0

Residual standard error: 0.8195605
Degrees of freedom: 108 total; 102 residual

The AIC and BIC are model selection tools, and there is little to say about them
at this point as we have passed the model selection stage. The information on the
different standard deviations (multiplication factors of σ ) is interesting, as it shows
the different variances (or better: the ratio with the standard error) per treatment–
nutrient combination. The estimated value for σ is 0.819. Note that the combination
enrichment with algae and NH4 has the largest variance, namely (8.43 × 0.819)2.

The estimated regression parameters, standard errors, t-values, p-values, and
other relevant information are given as well. Note that all terms are significantly
different from 0 at the 5% level. To understand what the model is trying to tell us,
it can be helpful to consider a couple of scenarios and obtain the equations for the
fitted values or just graph the fit of the model. The easiest way of doing this is

> boxplot(predict(MFinal) ∼ fTreatment * fNutrient,

data = Biodiv)

This only works because all the explanatory variables are nominal. The resulting
graph is shown in Fig. 4.10 and clearly shows that the observations exposed to algae
treatment and NH4 enrichment have the highest values. This explains why the inter-
action term is significant. Unfortunately, at the time of writing, the predict.gls
function (which is the one used to obtain the predicted values) does not give stan-
dard errors for predicted values. To obtain the 95% confidence bands around the
fitted values, you need to use equations similar to those used for linear regression

Algae.NH4 NoAlgae.NH4 Algae.NO3 NoAlgae.NO3 Algae.PO3 NoAlgae.PO3
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Fig. 4.10 Fitted values for the optimal model. Note the high values for the algae–NH4 combination
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Fig. 4.11 Normalised residuals versus treatment–nutrient combination. Note the effect of the
outlier for the algae–NO3 combination. This is observation 26

(Appendix A), but this requires some ugly R programming. Alternatively, you can
do some bootstrapping.

Before you happily write your paper using these results, there is one final point
you should know. Figure 4.11 shows a boxplot of normalised residuals versus the
treatment–nutrient combination. Note the effect of observation 26! We suggest that
you repeat the entire analysis without this observation. If this was an email, we
would now add a � as this obviously means a lot of extra work!. You will need to
remove row 26 from the data, or add subset = –26 to each gls command. The
first option is a bit clumsy, but avoids any potential error messages in the validation
graphs (due to different data sizes).



Chapter 5
Mixed Effects Modelling for Nested Data

In this chapter, we continue with Gaussian linear and additive mixed modelling
methods and discuss their application on nested data. Nested data is also referred to
as hierarchical data or multilevel data in other scientific fields (Snijders and Boskers,
1999; Raudenbush and Bryk, 2002).

In the first section of this chapter, we give an outline to mixed effects models
for nested data before moving on to a formal introduction in the second section.
Several different types of mixed effects models are presented, followed by a sec-
tion discussing the induced correlation structure between observations. Maximum
likelihood and restricted maximum likelihood estimation methods are discussed in
Section 5.6. The material presented in Section 5.6 is more technical, and you need
only skim through it if you are not interested in the mathematical details. Model
selection and model validation tools are presented in Sections 5.7, 5.8, and 5.9.
A detailed example is presented in Section 5.10.

5.1 Introduction

Zuur et al. (2007) used marine benthic data from nine inter-tidal areas along the
Dutch coast. The data were collected by the Dutch institute RIKZ in the summer of
2002. In each inter-tidal area (denoted by ‘beach’), five samples were taken, and the
macro-fauna and abiotic variables were measured. Zuur et al. (2007) used species
richness (the number of different species) and NAP (the height of a sampling station
compared to mean tidal level) from these data to illustrate statistical methods like
linear regression and mixed effects modelling. Here, we use the same data, but from
a slightly different pedagogical angle. Mixed modelling may not be the optimal
statistical technique to analyse these data, but it is a useful data set for our purposes.
It is relatively small, and it shows all the characteristics of a data set that needs a
mixed effects modelling approach.

The underlying question for these data is whether there is a relationship between
species richness, exposure, and NAP. Exposure is an index composed of the follow-
ing elements: wave action, length of the surf zone, slope, grain size, and the depth
of the anaerobic layer.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 5,
C© Springer Science+Business Media, LLC 2009
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As species richness is a count (number of different species), a generalised linear
model (GLM) with a Poisson distribution may be appropriate. However, we want
to keep things simple for now; so we begin with a linear regression model with the
Gaussian distribution and leave using Poisson GLMs until later. A first candidate
model for the data is

Rij = α + β1 × NAPij + β2 × Exposurei + εij εij ∼ N (0, σ 2) (5.1)

Rij is the species richness at site j on beach i, NAPij the corresponding NAP value,
Exposurei the exposure on beach i, and εij the unexplained information. Indeed,
this is the familiar linear regression model. The explanatory variable Exposure is
nominal and has two1 classes. However, as we have five sites per beach, the richness
values at these five sites are likely to be more related to each other than to the
richness values from sites on different beaches. The linear regression model does
not take this relatedness into account. The nested structure of the data is visualised
in Fig. 5.1.

Many books introduce mixed effects modelling by first presenting an easy to
understand technique called 2-stage analysis, conclude that it is not optimal, and
then present the underlying model for mixed effects modelling by combining the
2 stages into a single model (e.g. Fitzmaurice et al., 2004). This is a useful way
to introduce mixed effects modelling, and we also start with the 2-stage analysis
method before moving onto mixed effects modelling.

Beach 1 Beach 2 Beach 9

RIKZ data

Site 1
Site 2

Site 5

Site 4
Site 3

Site 1
Site 2

Site 5

Site 4
Site 3

Site 1
Site 2

Site 5

Site 4
Site 3

....................

Fig. 5.1 Set up of the RIKZ data. Measurements were taken on 9 beaches, and on each beach 5
sites were sampled. Richness values at sites on the same beach are likely to be more similar to each
other than to values from different beaches

1Originally, this variable had three classes, but because the lowest level was only observed on one
beach, we relabeled, and grouped the two lowest levels into one level called ‘a’. The highest level
is labeled ‘b’.
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5.2 2-Stage Analysis Method

In the first step of the 2-stage analysis method, a linear regression model is applied
on data of one beach. It models the relationship between species richness and NAP
on each beach using

Rij = α + βi × NAPij + εij j = 1 , . . . , 5 (5.2)

This process is then carried out for data of each beach in turn. In a more abstract
matrix notation, we can write the model for the data of beach i as

⎛

⎜⎜⎜⎜⎝

Ri1

Ri2

Ri3

Ri4

Ri5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi1

1 NAPi1

1 NAPi1

1 NAPi1

⎞

⎟⎟⎟⎟⎠
×

(
α

βi

)
+

⎛

⎜⎜⎜⎜⎝

εi1

εi2

εi3

εi4

εi5

⎞

⎟⎟⎟⎟⎠
⇔ Ri = Zi × βi + εi (5.3)

Ri is now a vector of length 5 containing the species richness values of the 5
sites on beach i: Ri1 to Ri5. The first column of Zi contains ones and models the
intercept, and the second column contains the five NAP values on beach i. The
unknown vector βi contains the regression parameters (intercept and slope) for beach
i. This general matrix notation allows for different numbers of observations per
beach as the dimension of Ri, Zi, and εi can easily be adjusted. For example, if
beach i = 2 has 4 observations instead of 5, Z2 contains 4 rows and 2 columns, but
we still obtain an estimate for the intercept and slope. In this case, Equation (5.3)
takes the form

⎛

⎜⎜⎝

Ri1

Ri2

Ri3

Ri5

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi5

⎞

⎟⎟⎠ ×
(

α

βi

)
+

⎛

⎜⎜⎝

εi1

εi2

εi3

εi5

⎞

⎟⎟⎠

The model in Equation (5.3) is applied on data of each beach, resulting in nine
estimated values for the slope and intercept. The following loop gives the results in
the R software.

> library(AED); data(RIKZ)

> Beta <- vector(length = 9)

> for (i in 1:9){
Mi <- summary(lm(Richness ∼ NAP,

subset = (Beach==i), data=RIKZ))
Beta[i] <- Mi$coefficients[2, 1]}

The subset option in the linear regression function lm ensures that data from
each beach are analysed in a particular iteration of the loop. The last line in the loop
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extracts and stores the slope for NAP for each regression analysis. The estimated
betas can be obtained by typing Beta in R:

-0.37 -4.17 -1.75 -1.24 -8.90 -1.38 -1.51 -1.89 -2.96

Note that there are considerably differences in the nine estimated slopes for NAP.
Instead of the loop in the code above, you can also use the lmList command
from the nlme package to produce the same results. This option also gives a nice
graphical presentation of estimated intercepts and slopes (Pinheiro and Bates, 2000).

In the second step, the estimated regression coefficients are modelled as a func-
tion of exposure.

β̂i = η + τ × Exposurei + bi i = 1, . . . , 9 (5.4)

This is ‘just’ a one-way ANOVA. The response variable is the estimated slopes
from step 1, Exposure is the (nominal) explanatory variable, τ is the corresponding
regression parameter, η is the intercept, and bi is random noise. The matrix notation
for this is below. It looks intimidating, but this is only because exposure is a factor
with levels 0 and 1. Level 0 is used as the baseline. The model in Equation (5.4) is
written in matrix notation as
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.37
−4.17
−1.75
−1.24
−8.90
−1.38
−1.51
−1.89
−2.96

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 1
1 1
1 0
1 1
1 1
1 0
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
(

η

τ

)
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

b4

b5

b6

b7

b8

b9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔ β̂i = Ki × γ + bi i = 1, . . . , 9

(5.5)

The vector γ contains the intercept η and slope τ and is not the same thing as βi.
The following R code was used to apply this model.

> fExposure9 <- factor(c(0, 0, 1, 1, 0, 1, 1, 0, 0))

> tmp2 <- lm(Beta ∼ fExposure9))

As we already mentioned, this linear regression model is also called a one-way
analysis of variance (ANOVA). The results of the anova command are not pre-
sented here, but it shows that the p-value for exposure is 0.22, indicating that there
is no significant exposure effect on the nine slopes.

The two formulae of the 2-stage approach are repeated in Equation (5.6).

Ri = Zi × βi + εi

β̂i = Ki × γ + bi

(5.6)
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It is common to assume that the residuals bi are normally distributed with mean 0
and variance D. The second step of the two-stage analysis can be seen as an analysis
of a summary statistic; in this case, it is the slope representing the strength of the
relationship between species richness and NAP on a beach. The two-stage analysis
has various disadvantages. Firstly, we summarise all the data from a beach with one
parameter. Secondly, in the second step, we analyse regression parameters, not the
observed data. Hence, we are not modelling the variable of interest directly. Finally,
the number of observations used to calculate the summary statistic is not used in the
second step. In this case, we had five observations for each beach. But if you have
5, 50, or 50,000 observations, you still end up with only one summary statistic.

5.3 The Linear Mixed Effects Model

5.3.1 Introduction

The linear mixed effects model combines both the earlier steps into a single model.

Ri = Xi × β + Zi × bi + εi (5.7)

As before, Ri contains the richness values for beach i, i = 1, . . . , 9. There are two
components in this model that contain explanatory variables; the fixed Xi × β term
and the random Zi × bi term. Because we have a fixed and a random component,
we call the model a mixed effects model. We discuss later how to fill in the Xi and
Zi. In this case, the Zi × bi component represents the Richness–NAP effect for
each beach; each beach is allowed to have a different Richness–NAP relationship
because there is an index i attached to b. There is no index attached to the parameter
β; hence, it is for all beaches. Xi and Zi are design matrices of dimension ni × p
and ni × q, respectively, where ni is the number of observations in Ri (the number
of observations per beach), p the number of explanatory variables in Xi, and q the
number of explanatory variables in Zi.

Many textbooks on linear mixed effects modelling are orientated towards medical
science, where i is typically denoted as ‘subject’ because it represents a patient
or person. The component Zi × bi is then the subject specific or random effect
and Xi × β the overall or fixed component. The matrices Xi and Zi may, or may
not, contain the same explanatory variables. This depends on what type of model is
fitted. Because the model in Equation (5.7) forms the basis of much of the material
to come, we present it one more time, but now with all the assumptions.

Yi = Xi × β + Zi × bi + εi

bi ∼ N(0, D)

εi ∼ N(0,ΣΣΣi )

b1, · · · bN, ε1, · · · , εN independent

(5.8)
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This model is also called the Laird and Ware model formulation after a paper
by these two authors in 1982. It is fundamentally important that you understand the
model formulation, and therefore we give three examples before continuing with
more details. These are the random intercept model, the random intercept and slope
model, and the random effects model.

5.3.2 The Random Intercept Model

Suppose we model species richness as a linear function of NAP where the intercept
is allowed to change per beach. Within linear regression, we can model this as

Rij = α + β1 × Beachi + β2 × NAPij + εij (5.9)

Beachi is a factor with nine levels, and the first level is used as baseline. The
price we pay for including this term is eight regression parameters (which will cost
8 degrees of freedom). However, perhaps we are not interested in knowing the exact
nature of the beach effect. In that case, eight regression parameters is a high price!
One option is to use beach as a random effect. This means that we include a beach
effect in the model, but we assume that the variation around the intercept, for each
beach, is normally distributed with a certain variance. A small variance means that
differences per beach (in terms of the intercept) are small, whereas a large variance
allows for more variation. Such a mixed effects model is defined as follows.

⎛

⎜⎜⎜⎜⎝

Ri1

Ri2

Ri3

Ri4

Ri5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi4

1 NAPi5

⎞

⎟⎟⎟⎟⎠
×

(
α

β

)
+

⎛

⎜⎜⎜⎜⎝

1
1
1
1
1

⎞

⎟⎟⎟⎟⎠
×bi +

⎛

⎜⎜⎜⎜⎝

εi1

εi2

εi3

εi4

εi5

⎞

⎟⎟⎟⎟⎠
⇔ Ri = Xi ×β+Zi ×bi

(5.10)

In this example, five observations are taken on each beach, hence ni = 5 for
all i. Therefore, Zi is a matrix of dimension 5 × 1 containing only ones. Now let
us have a look at the assumptions. The first assumption is that the random effects
bi are normally distributed: N(0, d2). The second assumption is that the errors εi

(containing the five errors εi1 to εi5) are normally distributed with covariance matrix
Σi. The easiest option is to assume

Σi = σ 2 ×

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

0 1 0 · · · ...
... 0 1 0

...
...

... 0 1 0
0 · · · · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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In general, the elements of Σi do not depend on i, but this may not always be the
case (Verbeke and Molenberghs, 2000; Pinheiro and Bates, 2000). In Chapter 4, we
discussed various methods to incorporate heterogeneity into the model, and these
will influence the structure of Σi. But for the moment, we ignore these methods. To
apply the random intercept model in R, we need the following code.

> library(nlme)

> RIKZ$fBeach <- factor(RIKZ$Beach)

> Mlme1 <- lme(Richness ∼ NAP, random = ∼1 | fBeach,

data = RIKZ)

> summary(Mlme1)

The mixed effects model is applied using the function lme, which stands for
linear mixed effects model. The difference with the lm command for linear regres-
sion is that in the lme function, we need to specify the random component. The
∼1 |fBeach bit specifies a random intercept model. The argument on the right
hand side of the ‘|’ sign is a nominal variable. The relevant output from the
summary command is given below.

Linear mixed-effects model fit by REML

AIC BIC logLik

247.48 254.52 -119.74

Random effects:

Formula: ∼1 | fBeach

(Intercept) Residual

StdDev: 2.944 3.059

Fixed effects: Richness ∼ NAP

Value Std.Error DF t-value p-value
(Intercept) 6.58 1.09 35 6.00 <0.001

NAP -2.56 0.49 35 -5.19 <0.001

The first part of the output gives the AIC and BIC. Their definitions and examples
on how to use them are given later in this chapter. For the moment, it is sufficient to
know that we are using them just as in linear regression to help with model selection.
The remaining part of the output is split up in random effects and fixed effects. The
residual variance σ 2 is estimated as 3.052 = 9.30, and the variance for the random
intercept d2 is estimated as 2.942 = 8.64. We should not say that d = 2.94, as d is a
population parameter, and the value of 2.94 is an estimator for it. It is better to put a
hat on d, and say that the estimated value for d is

d̂ = 2.94.
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Fig. 5.2 Fitted values obtained by mixed effects modelling. The thick line represents the fitted
values for the population and is specified by 6.58 – 2.56 × NAPi, whereas the other lines are
obtained by Xi × β + Zi × bi. Numbers represent the beaches

The fixed effects part shows that the intercept α is 6.58 and the slope β is –2.56
(again, we should put hats on parameters as both are estimators). Both parameters
are significantly different from 0 at the 5% level. We discuss later how degrees of
freedom are obtained.

All this information may look wonderful but what does it mean? The best way
to answer this is to plot the fitted values. This raises the question: What are the
fitted values? There are two options. We can either consider Xi × β as the fitted
values (again, we should put a hat on the β), which is 6.58 – 2.56 × NAPi or use
Xi × β + Zi × bi as the fitted values. Both types of fitted values are presented in
Fig. 5.2.

The thick line represents the fitted line obtained by the fixed component
6.58 – 2.56 NAPi, also called the population model. The other lines are obtained by
adding the contribution of bi for each beach i to the population fitted curve. Hence,
the random intercept model implies one average curve (the thick line) that is allowed
to be shifted up, or down, for each beach by something that is normally distributed
with a certain variance d2. If d2 is large, the vertical shifts will be relative large. If
d2 = 0, all shifts are zero and coincide with the thick line. The following R code
was used to generate Fig. 5.2.

> F0 <- fitted(Mlme1, level = 0)

> F1 <- fitted(Mlme1, level = 1)

> I <- order(RIKZ$NAP); NAPs <- sort(RIKZ$NAP)

> plot(NAPs, F0[I], lwd = 4, type = "l",

ylim = c(0, 22), ylab = "Richness", xlab = "NAP")
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> for (i in 1:9){
x1 <- RIKZ$NAP[RIKZ$Beach == i]

y1 <- F1[RIKZ$Beach == i]

K <- order(x1)

lines(sort(x1), y1[K])

}
> text(RIKZ$NAP, RIKZ$Richness, RIKZ$Beach, cex = 0.9)

The fitted command takes as argument the object from the function lme
plus a level argument. The level = 0 option means that we take the fitted values
obtained by the population model, whereas level= 1 gives the within-beach fitted
values. The order and sort commands avoid spaghetti plots, and the loop draws
the nine lines in the same plot as the population curve.

5.3.3 The Random Intercept and Slope Model

The model in Equation (5.10) allows for a random shift around the intercept result-
ing in fitted lines parallel to the population fitted line (Fig. 5.2). This immediately
raises the question whether we can use the same trick for the slope. The answer is
yes, but before showing the model and the R code, we first discuss why we want to
do this.

Suppose that the relationship between species richness and NAP is different on
each beach. This implies that we need to include a NAP–Beach interaction term
to the model. Such a model is specified by: Ri = factor(Beach) + NAP × fac-
tor(Beach). This is a linear regression model with one nominal variable, one contin-
uous variable, and an interaction between them. A different name is an analysis of
covariance (ANCOVA). Because beach has nine levels and one level is used as the
baseline, the number of parameters used by this model is excessively high, at 17.
And we are not even interested in beach effects! But if there is any between beach
variation and a NAP–Beach interaction, then we cannot ignore these terms. If we
do, this systematic variation ends up in the residuals, leading to potentially biased
inference. To estimate model degrees of freedom more efficiently, we can apply the
mixed effects model with a random intercept (as before) and a random slope. The
required R code is a simple extension of the code we used for the random intercept
model.

> Mlme2 <- lme(Richness ∼ NAP,

random = ∼1 + NAP | fBeach, data = RIKZ)

> summary(Mlme2)

Linear mixed-effects model fit by REML

AIC BIC logLik

244.38 254.95 -116.19
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Random effects:

Formula: ∼1 + NAP | fBeach

StdDev Corr

(Intercept) 3.549 (Intr)

NAP 1.714 -0.99

Residual 2.702

Fixed effects: Richness ∼ NAP

Value Std.Error DF t-value p-value
(Intercept) 6.58 1.26 35 5.20 <0.001

NAP -2.83 0.72 35 -3.91 <0.001

Later we discuss how to compare the two models (random intercept and random
intercept and slope models) and how to judge which one is better. For the moment,
it is sufficient to note that the random intercept and slope model has a lower AIC
than the earlier models (the lower the AIC, the better). Later in this chapter, we
also dedicate an entire section to the phrase ‘Linear mixed-effects model fit by
REML’.

The random effects part now has three standard errors and one correlation term.
The model that we are fitting is of the form

⎛

⎜⎜⎜⎜⎝

Ri1

Ri2

Ri3

Ri4

Ri5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi4

1 NAPi5

⎞

⎟⎟⎟⎟⎠
×

(
α

β

)
+

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi4

1 NAPi5

⎞

⎟⎟⎟⎟⎠
×

(
bi1

bi2

)
+

⎛

⎜⎜⎜⎜⎝

εi1

εi2

εi3

εi4

εi5

⎞

⎟⎟⎟⎟⎠
(5.11)

The only difference with this model, compared to the one in Equation (5.10), is
the modification of the matrix Zi; NAP values for beach i have be included. As a
result, bi is now of dimension 2 × 1, and its distribution is given by

(
bi1

bi2

)
∼ N (0, D) where D =

(
d2

11 d12

d12 d2
22

)
(5.12)

The variance d2
11 plays the same role as d2 in the random intercept model; it

determines the amount of variation around the population intercept α. The numerical
output shows that its estimated value is 3.542 = 12.5. The model also allows for
random variation around the population slope in a similar way as it does for the
intercept. The variance d22

2 determines the variation in slopes at the nine beaches.
The estimated value of 1.712 = 2.92 shows that there is considerably more variation
in intercepts than in slopes at the nine beaches. Finally, there is a correlation between
the random intercepts and slopes. Its value of –0.99 is rather high (causing potential
numerical problems), but indicates that beaches with a high positive intercept also
have a high negative slope. This can also be seen from the fitted values in Fig. 5.3.
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Fig. 5.3 Fitted values obtained by the random intercept and slope model. The thick line represents
the fitted values for the population, and the other lines represent the so-called within-group fitted
curves. Numbers represent beaches

The thick line is the fitted population curve, and the other lines the within-beach
fitted curves. Note the difference with Fig. 5.2.

5.3.4 Random Effects Model

A linear mixed effects model that does not contain any β, except for an intercept is
called a random effects model. By dropping the NAP variable in Equation (5.9), we
obtain the following random effects model.

Ri = α + bi + εi

The term bi is normally distributed with mean 0 and variance d2; εi is normally
distributed with mean 0 and variance σ 2. The index i runs from 1 to 9. The model
implies that richness is modelled as an intercept plus a random term bi that is allowed
to differ per beach. The R code to run this model is

> Mlme3 <- lme(Richness ∼ 1, random = ∼1 | fBeach,

data = RIKZ)

The output of the summary(Mlme3) command is given below. The estimated
values for d and σ are 3.23 and 3.93, respectively.
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Linear mixed-effects model fit by REML

AIC BIC logLik

267.11 272.46 -130.55

Random effects:

(Intercept) Residual

StdDev: 3.23 3.93

Fixed effects:

Value Std.Error DF t-value p-value
(Intercept) 5.68 1.22 36 4.63 <0.001

Later in this chapter, we discuss how to choose between a random effects model,
random intercept model, and random intercept plus slope model. There are also
several other issues that we need to discuss such as: What is the correlation between
richness values measured at the same beach and measured at different beaches? How
do we estimate the parameters? How do we find the optimal model? Finally, once an
optimal model has been identified, how do we then validate it? Each of these points
is discussed next.

5.4 Induced Correlations

Returning to the RIKZ data discussed earlier in this chapter, we modelled species
richness as a function of NAP and a random intercept. The question we now address
is: What is the correlation between two observations from the same beach, and from
different beaches? To answer this question, we first need to find an expression for the
covariance matrix of Yi. The mathematical notation that we have used so far for the
model was Yi = Xi × β + Zi × bi + εi. This is also called the hierarchical model.
The underlying assumptions of this model were given in Equation (5.8). We now
derive an expression for the covariance matrix of the Yi. It is relatively easy to show
that Vi is normally distributed with mean Xi × β and variance Vi in mathematical
notation:

Yi ∼ N (Xi × β, Vi ) where Vi = Zi × D × Z′
i + Σi (5.13)

Recall that D was the covariance matrix of the random effects. So, including ran-
dom effects has an effect on the structure of the covariance matrix Vi. To illustrate
this, we discuss the random intercept model for the RIKZ data we presented in the
previous section.

For the random intercept model, Zi is a vector of length five containing ones and
Σi = σ 2 × I5×5 is a diagonal matrix of dimension 5 × 5. I5×5 is an identity matrix
with 5 rows and 5 columns; it has ones on the diagonal and zeros elsewhere. As a
result we have
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Vi =

⎛

⎜⎜⎜⎜⎝

1
1
1
1
1

⎞

⎟⎟⎟⎟⎠
× d2 × (

1 1 1 1 1
) + σ 2 ×

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

0 1
...

... 1
...

... 1 0
0 · · · · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

σ 2 + d2 d2 d2 d2 d2

d2 σ 2 + d2 d2 d2 d2

d2 d2 σ 2 + d2 d2 d2

d2 d2 d2 σ 2 + d2 d2

d2 d2 d2 d2 σ 2 + d2

⎞

⎟⎟⎟⎟⎠

Showing that, the covariance between any two sites on the same beach is d2, and
the variance is d2 + σ 2. By definition, the correlation between two observations from
the same beach is d2/(d2 + σ 2). This is irrespective of the identity of the beach (all the
Vis are the same). This is called an induced correlation (or covariance) structure as
we did not explicitly specify it. It is the consequence of the random effects structure.
The results presented in Section 5.3 show that the estimated value for d is 2.944 and
for σ it is 3.06. Giving an induced correlation of 2.942/(2.942 + 3.062) = 0.48,
which is relatively high. This correlation is also called the intraclass correlation and
is further discussed at the end of this section.

As to the second question, the model implies that observations from different
beaches are uncorrelated.

We can make things a bit more complicated by using the random intercept and
slope model. In this case, we get

Vi =

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi4

1 NAPi5

⎞

⎟⎟⎟⎟⎠
×

(
d2

11 d21

d12 d2
22

)
×

⎛

⎜⎜⎜⎜⎝

1 NAPi1

1 NAPi2

1 NAPi3

1 NAPi4

1 NAPi5

⎞

⎟⎟⎟⎟⎠
+σ 2×

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

0 1
...

... 1
...

... 1 0
0 · · · · · · 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

This is a bit more challenging, but it turns out that the variance of Yij and covari-
ance of two observations from the same beach, Yij and Yik, are given by (Fitzmaurice
et al., 2004)

var(Yij) = d2
11 + 2 × NAPij × d12 + NAP2

ij × d2
22 + σ 2

cov(Yij, Yik) = d2
11 + (NAPij + NAPik) × d12 + NAPij × NAPik × d2

22

This looks complicated, but it tells us that the variance and covariance of Yij

depend not only on the variances and covariances of the random terms, but also on
NAP. Fitzmaurice et al. (2004) used time instead of NAP. In that case, the variance
and covariance depend on time.
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5.4.1 Intraclass Correlation Coefficient

Although outside the scope of the underlying questions raised at the start of this sec-
tion, it is useful to take some time interpreting the intraclass correlation as it can be
used to determine appropriate sample sizes. It is also called the intraclass correlation
(Snijders and Bosker, 1999). Recall that we have nine beaches, five observations per
beach, and an intraclass correlation of 0.48. If we take a sample of a certain size, the
standard error of the mean is given by

standard error = standard deviation√
sample size

Obviously, we want a small standard error and a large sample size may help
achieve this as it is the denominator. In this case, we have a sample size of 45.
However, these data are nested (hierarchical) and this should be taken somehow into
account, especially of the correlation between observations on a beach is relative
high. The design effect indicates how much the denominator should be adjusted.
For a more formal definition, see Snijders and Bosker (1999). For a two-stage design
with equal number of samples per beach (n = 5) and intraclass correlation ρ, the
design effect is defined as

design effect = 1 + (n − 1) × ρ = 1 + 4 × 0.48 = 2.92

If this number is larger than 1, and in this case it is 2.92, we should not use 45 in
the denominator for the standard error, but an adjusted sample size, also called the
effective sample size, should be used. It is given by

Neffective = N × n

design effect
= 9 × 5

2.92
= 15.41

A high intraclass correlation means that the corrected sample size is considerably
lower, and this means less precise standard errors! At the end of the day, this makes
sense; if observations on a beach are highly correlated, we cannot treat them as
independent observations. Why then bother taking many observations per beach?
Perhaps we should sample more beaches with fewer observations per beach? Further
examples are given in Chapter 3 in Snijder and Bosker (2000).

5.5 The Marginal Model

In the previous section, we saw how including random effects induces a correla-
tion structure between observations from the same beach. With the random inter-
cept model, the induced correlation structure was fairly simple with the correlation
between any two observations from the same beach given as d2/(d2 + σ 2). Sur-
prisingly, we can get the same correlation structure and estimated parameters in a
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different way, and it does not contain any random effects. The model we use is the
linear regression model Yi = Xi × β + εi; but instead of assuming that the five resid-
uals of the same beach, εi = (εi1, εi2, εi3, εi4, εi5) are independent of each other, we
allow for dependence between them. This is done as follows. We start again with
an expression for the covariance matrix of the Yi. Using the standard linear regres-
sion theory, it is easy to show that Yi is normally distributed with mean Xi × β and
variance Vi; in mathematical notation,

Yi ∼ N (Xi × β, Vi ) where Vi = Σi

Note that there is no covariance matrix D in Vi as there are no random effects in
the model. In linear regression, we use Σi = σ 2 × I5×5. I5×5 is an identity matrix
with 5 rows and 5 columns, implying independence between residuals (or obser-
vations) of the same beach i. The dependence structure is built in by allowing for
non-zero off-diagonal elements in the covariance matrix. One option is the so-called
general correlation matrix

Vi = Σi =

⎛

⎜⎜⎜⎜⎝

σ 2 c21 c31 c41 c51

c21 σ 2 c32 c42 c52

c31 c32 σ 2 c43 c53

c41 c42 c43 σ 2 c54

c54 c52 c53 c54 σ 2

⎞

⎟⎟⎟⎟⎠

Because the covariance between observations Yi1 and Yi2 is the same as that
between observations Yi2 and Yi1, the covariance matrix Vi is symmetric. So, in
this example, we have to estimate 10 parameters (all the elements in the upper or
lower diagonal). But for data sets with larger number of observations per beach,
this number increases dramatically. Therefore, we can use more restrictive covari-
ance matrices. The most restrictive correlation structure is the so-called compound
symmetric structure defined by

Vi = Σi =

⎛

⎜⎜⎜⎜⎝

σ 2 ϕ ϕ ϕ ϕ

ϕ σ 2 ϕ ϕ ϕ

ϕ ϕ σ 2 ϕ ϕ

ϕ ϕ ϕ σ 2 ϕ

ϕ ϕ ϕ ϕ σ 2

⎞

⎟⎟⎟⎟⎠

In this case, there is only one unknown parameter, namely ϕ. So, the covariance
between any two observations on the same beach i is given by ϕ. If it is estimated as
0, then we can assume independence. General correlation and compound symmetry
correlation are the two most extreme correlation structures, and there are various
intermediate structures that we will see later, which can be applied to spatial and
temporal data.
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The R code for the marginal model is given below. We also give the command
for the equivalent random intercept mixed effects model.

> M.mixed <- lme(Richness ∼ NAP, random = ∼1 | fBeach,

method = "REML", data = RIKZ)

> M.gls <- gls(Richness ∼ NAP, method = "REML",

correlation = corCompSymm(form =∼ 1 | fBeach),

data = RIKZ)

The argument corCompSymm(form =∼ 1 | fBeach) for the correlation
option in the gls function tells R that all observations from the same beach are
correlated. The summary(M.mixed) and summary(M.gls) commands give
identical estimated parameters, standard errors, t-values, and p-values, and these are
not shown here (see Section 5.3). We only show the relevant output of the GLS
model.

Correlation Structure: Compound symmetry

Formula: ∼1 | factor(Beach)

Parameter estimate(s):

Rho

0.4807353

...

Residual standard error: 4.246141

The estimated Rho is ϕ divided by the estimated value of σ 2 (= 4.252) as we
expressed Vi as a covariance matrix and not a correlation matrix.

There are also subtle differences between the hierarchical model and the marginal
model with respect to the numerical estimation process (West et al., 2006).

5.6 Maximum Likelihood and REML Estimation∗

When applying mixed effects modelling, you will see phrases like ‘REML’ and
‘maximum likelihood’ estimation. Unlike linear regression models, where you can
get away with not knowing the underlying mathematics, there is no escaping some
maths when using REML and maximum likelihood (ML) in mixed effects mod-
elling. So, what does REML mean, and what does it do? The first question is easy;
REML stands for restricted maximum likelihood estimation. As to the second ques-
tion, most books at this point get rather technical or avoid the detail and only present
REML as a mystical way to ‘correct the degrees of freedom’. We have chosen to try
and explain it in more detail and for this we need to use matrix algebra. But, to
understand REML you need to first understand the principle of maximum likeli-
hood estimation, and this is where we will begin. If you are not familiar with matrix
algebra, or if the mathematical level in this section is too high, we still advise you
to skim through this section before reading on.
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We start by revising maximum likelihood for linear regression, and then show
how REML is used to correct the estimator for the variance.

Assume we have a linear regression model Yi = α + β × Xi + εi, where εi is
normally distributed with mean 0 and variance σ 2. The unknown parameters in this
model are α, β, and σ . Instead of writing these three variables all the time, we can
refer to them as θ, where θ = (α, β, σ ). One option to estimate θ is ordinary least
squares. It gives an expression for each element of θ, see, for example, Montgomery
and Peck (1992), among many other books on linear regression. The expression for
the estimated variance obtained by linear regression is

σ̂ 2 = 1

n − 2

∑n

i=1
(Yi − α̂ − β̂ × Xi )

2 (5.14)

We have put a ˆ on the parameters to indicate that these are the estimated values,
and n is the number of observations. It can be shown that σ̂ is an unbiased estimator
of σ ; this means that E[σ̂ ] = σ . Now let us have a look at the maximum likelihood
estimation approach. We have used results from Section 2.10 in Montgomery and
Peck (1992), which assume that Yi is normally distributed and its density function
is given by

fi (Yi , Xi , α, β, σ ) = 1

σ
√

2π
e

(Yi −α−β×Xi )2

2σ2 (5.15)

Because we also assume that the Yi are independent, we can write the joint
density function for Y1, Y2, . . .,Yn as a product of the individual density curves
f1, f2, . . ., fn. This is called the likelihood function L. It is a function of the data
and θ. The question is how to choose θ such that L is the highest. To simplify the
mathematics, the natural log is taken of L (The log converts the product of the den-
sity functions to a sum of log-density functions; it is easier to work with a sum than
a product.), resulting in the following log-likelihood equation.

ln L(Yi , Xi , α, β, σ ) = −n

2
ln 2π − n

2
ln σ 2 − 1

2σ 2

n∑

i=1

(Yi − α − β × Xi )
2 (5.16)

We need to maximise this function with respect to α, β, and σ . This is a matter
of taking partial derivates of L with respect to each of these parameters, setting
them to zero, and solving the equations. It turns out that these equations give simple
expressions for the estimators of α and β. Because we can easily calculate them,
these equations are called closed form solutions. In the generalized linear mixed
model chapters, we will see open form solutions, which means there is no direct
solution for the parameters.

The formulae for the estimators of α and β are not given here, but for the variance
we get

σ̂ 2 = 1

n

∑n

i=1
(Yi − α̂ − β̂ × Xi )

2 (5.17)
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Note this is nearly the same expression as we found with ordinary least squares
in Equation (5.14). In fact, the estimator for the variance obtained by maximum
likelihood is biased by a factor (n − 2)/n. If the linear regression model contains
p explanatory variables, the bias is (n − p)/n. The reason that the maximum like-
lihood estimator is biased is because it ignores the fact that the intercept and slope
are estimated as well (as opposed to being known for certain). So, we need a mech-
anism that gives better ML estimators, and indeed this is what restricted maximum
likelihood (REML) does.

REML works as follows. The linear regression model Yi = α + β × Xi + εi

can be written as Yi = Xi × β + εi. This is based on simple matrix notation using
Xi = (1 Xi), and the first element of β is the intercept and the second element is the
original β. The normality assumption implies that

Yi ∼ N (Xi × β, σ 2) (5.18)

The problem with the ML estimator is that we have to estimate the intercept and
the slope, which are in β in Equation (5.18). Obviously, the problem is solved if
there is no β. All that REML does is apply a little trick to avoid having any β in
Equation (5.18). It does this by finding a special matrix A of dimension n × (n – 2),
and special means ‘orthogonal to (or independent of) X′, multiplies Y = (Y1, . . .,
Yn)′ with this matrix and continues with ML estimation. Orthogonal means that if A
and X are multiplied, the result is 0. Hence, we get A′ × Y = A′ × X × β + A′ × ε

= 0 + A′ × ε = A′ × ε. The distribution for A′ × Y is now given by

A′ × Y ∼ N (0, σ 2 × A′ × A) (5.19)

which no longer depends on β. Applying ML on A′ × Y gives an unbiased estimator
for σ 2 (same expression as in Equation (5.14)). Now we discuss how REML can be
used for the mixed effects model. Our starting point is the marginal model

Yi ∼ N (Xi × β, Vi ) Vi = Zi × D × Z′
i + Σi (5.20)

The story now starts all over again. As before, we can formulate a slightly
different log-likelihood criteria. The unknown parameters are β and the elements
of D and Σi. Again, we denote them all by θ. The log-likelihood function is
given by

ln L(Yi , Xi , θ) = −n

2
ln 2π− 1

2

n∑

i=1

ln |Vi |− 1

2

n∑

i=1

(Yi −Xi ×β)′×V−1
i ×(Yi −Xi ×β)

The notation |Vi| stands for the determinant of Vi. This looks intimidating, but
can be found in many introductory statistical textbooks. Just as before, an expression
for β is obtained by setting the partial derivative of L with respect to β equal to zero
and solving the equation. Just as in the example discussed on the previous page,
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doing the same for the elements of the covariance matrix Vi gives biased estimates,
and therefore we need REML.

For the RIKZ data, we had 9 beaches; hence, i = 1, . . ., 9. In general, the index i
runs from 1 to n. We can stack all the vectors Yi = (Yi1, . . ., Yi5) into one long vector
of dimension 45 × 1 (nine beaches, five observations per beach). Let us denote the
stacked column by Y. We can also stack all the Xi into one matrix of dimension
45 × p, where p is the number of fixed covariates. Denote it by X. We have to do
something slightly different for the covariance matrix. Instead of stacking them, we
create a new matrix V with diagonal blocks V1 to V9. The other elements of V
are equal to 0. A similar approach is followed for the Zis. Using this new notation,
we can write Equation (5.20) as Y ∼ N(X × β,V). Just as before, the Y vector is
multiplied with a special matrix A, such that A′ × Y = A′ × X × β + A′ × V = 0
+ A′ × V. We can write A′ × Y ∼ N(0, A′ × V × A), and maximum likelihood is
used to obtain unbiased estimates for the elements of V. The good news is that the
estimators for the variance terms are independent of (not related to) the choice for
A. Summarising, REML applies a special matrix multiplication on Y in such a way
that the X × β-bit disappears. It then continues with maximum likelihood estimation
and the resulting parameter estimators are unbiased and not related to the specific
matrix multiplication. As a consequence, the REML estimators for the βs are not
identical to the maximum likelihood estimators. If the number of fixed covariates is
small relative to the number of observations, there are not many differences, but for
models with many fixed terms, this may not be the case.

5.6.1 Illustration of Difference Between ML and REML

To illustrate this, we applied two models on the RIKZ data. Both models are random
intercept models estimated with ML and REML. In the first model, we used only
NAP as fixed covariate and in the second model NAP and exposure. All numerical
outputs are given in Table 5.1. For the model that only contains NAP as the fixed
term, differences in estimated parameters and variances between REML and ML
are relatively small. Adding the nominal variable exposure increases the number
of regression parameters by 1. The ML estimated slope for NAP is –2.60 with the
REML now –2.58. The R code for the two models is as follows. The method =
"ML" or method = "REML" specifies which estimation method is used. The first
three lines define the nominal variable exposure with two levels (instead of 3). The
output was obtained with the summary command.

> RIKZ$fExp <- RIKZ$Exposure

> RIKZ$fExp[RIKZ$fExp == 8] <- 10

> RIKZ$fExp <- factor(RIKZ$fExp, levels = c(10, 11))

> M0.ML <- lme(Richness ∼ NAP, data = RIKZ,

random = ∼1 | fBeach, method = "ML")
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> M0.REML <-lme(Richness ∼ NAP, random = ∼1 | fBeach,

method = "REML", data = RIKZ)

> M1.ML <- lme(Richness ∼ NAP + fExp, data = RIKZ,

random = ∼1 | fBeach, method = "ML")

> M1.REML <- lme(Richness ∼NAP + fExp, data = RIKZ,

random = ∼1 | fBeach, method = "REML")

Table 5.1 Results for two models using ML (middle column) and REML (right column) estima-
tion. Numbers between brackets are standard errors. The first model (upper part of the table) uses
an intercept and NAP as fixed covariates and a random intercept. The second model (lower part of
the table) used the same terms, except that the nominal variable exposure is used as a fixed term
as well

Mixed model with NAP as fixed covariate and random intercept

Parameter Estimate using ML Estimate using REML
Fixed intercept 6.58 (1.05) 6.58 (1.09)
Fixed slope NAP –2.57 (0.49) –2.56 (0.49)
Variance random intercept 7.50 8.66
Residual variance 9.11 9.36
AIC 249.82 247.48
BIC 257.05 254.52

Mixed model with NAP and exposure as fixed covariate and random intercept

Fixed intercept 8.60 (0.96) 8.60 (1.05)
Fixed slope NAP –2.60 (0.49) –2.58 (0.48)
Fixed Exposure level –4.53 (1.43) –4.53 (1.57)
Variance random intercept 2.41 3.63
Residual variance 9.11 9.35
AIC 244.75 240.55
BIC 253.79 249.24

5.7 Model Selection in (Additive) Mixed Effects Modelling

In the earlier sections, we applied a series of models on the species richness for the
RIKZ data. Although the original data set contained 10–15 explanatory variables,
we have only used NAP and exposure as explanatory variables because our prime
aim here is to explain methodology and not to provide the best model for these data.
The case studies can be consulted for examples of best possible models. We now
use the RIKZ data to explain model selection in mixed effects modelling.

Just as in linear regression, there are two main options for model selection. One
option is based on selection tools like the Akaike Information Criteria (AIC), or the
Bayesian Information Criteria (BIC). Both the AIC and BIC contain two terms that
measure the fit of the model and the complexity of the model. The likelihood value
is used in defining the measure of fit, and the number of parameters measures the
complexity.
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As a measure of fit, we can use the log likelihood function. But there are two
likelihood functions: the REML and the ML one. It can be shown (Verbeke and
Molenberghs, 2000) that

LREML(θ) = ∣∣
∑n

i=1
X′

i × V −1
i × Xi

∣∣−0.5 × LML(θ)

The AIC is defined as twice the difference between the value of the likelihood
L (measure of fit) and the number of parameters (penalty for model complexity) in
θ. For the BIC, the number of observations is also taken into account, which means
that more severe increases in the likelihood are required for larger data sets to label
a model as better. In the formulae below, p is the number of parameters in θ, L is
either the ML or REML likelihood, and for ML, we have n∗ = n, but for REML,
n∗ = n – p.

AIC = −2 × L(θ) + 2 × p

BIC = −2 × L(θ) + 2 × p × ln(n∗)

This means that an AIC based on REML is not comparable with an AIC obtained
by ML. The same holds for the BIC.

The second approach to find the optimal model is via hypothesis testing. There
are three options here: (i) the t-statistic, the F-statistic, or the likelihood ratio
test. In Chapter 1, we discussed how to compare nested linear models using the
maximum likelihood ratio test. The problem is that the mixed effects model con-
tains two components: a fixed effect (the explanatory variables) and the random
effects. So, we need to select not only an optimal fixed effects structure but also
an optimal random effects structure. In most cases, we are interested in the fixed
effects. But if the random effects are poorly chosen, then this affects the values
(biased) and quality of the fixed effects as the random effects work their way
into the standard errors of the slopes for the fixed effects. On the other hand,
variation in the response variable not modelled in terms of fixed effects ends up
in the random effects. There are two strategies to work your way through the
model selection process: the top-down strategy and the step-up strategy (West
et al., 2006). The first one is recommended by Diggle et al. (2002) and is the only
one discussed here. The protocol for the top-down strategy contains the following
steps:

1. Start with a model where the fixed component contains all explanatory vari-
ables and as many interactions as possible. This is called the beyond optimal
model. If this is impractical, e.g. due to a large number of explanatory variables,
interactions, or numerical problems, use a selection of explanatory variables that
you think are most likely to contribute to the optimal model.

2. Using the beyond optimal model, find the optimal structure of the random com-
ponent. Because we have as many explanatory variables as possible in the fixed
component, the random component (hopefully) does not contain any information
that we would like to have in the fixed component. The problem is that comparing
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two models with nested random structures cannot be done with ML because the
estimators for the variance terms are biased. Therefore, we must use REML esti-
mators to compare these (nested) models. Obtaining valid p-values for such tests
is another non-trivial issue due to something called testing on the boundary,
which we will discuss later in this section. As well as using the (REML) likeli-
hood ratio test, we can also use the AIC or BIC, but again we need to use REML.
Using AIC or BIC does not avoid boundary problems.

3. Once the optimal random structure has been found, it is time to find the opti-
mal fixed structure. As mentioned above, we can either use the F-statistic or the
t-statistic obtained with REML estimation or compare nested models. To com-
pare models with nested fixed effects (but with the same random structure), ML
estimation must be used and not REML. We discuss the details of these tests
later in this chapter.

4. Present the final model using REML estimation.

These steps should only be used as a general guidance, and sometimes common
sense is required to derive a slightly different approach. For example, sometimes,
it is impractical to apply a model with as many explanatory variables as possible,
especially in generalised additive modelling.

5.8 RIKZ Data: Good Versus Bad Model Selection

5.8.1 The Wrong Approach

We start with an illustration how not to do a mixed effects model selection. In par-
ticular, we show the danger of not starting with a full model. To illustrate this, we
take NAP as the only fixed explanatory variable for the fixed component and ignore
exposure for the moment. As to the random structure, there are three options: (i) no
random term, except for the ordinary residuals; (ii) a random intercept model using
beach; and (iii) a random intercept and slope model.

A requirement for the nlme function in R is the specification of a random term,
and to avoid an error message, the gls function can be used instead. The R code
for these three models is:

> Wrong1 <- gls(Richness ∼ 1 + NAP, method = "REML",

data = RIKZ)

> Wrong2 <- lme(Richness ∼ 1 + NAP, random = ∼1|fBeach,
method = "REML", data = RIKZ)

> Wrong3 <- lme(Richness ∼ 1 + NAP, method = "REML",

random = ∼1 + NAP | fBeach, data = RIKZ)

All models have the same fixed effect structure, but different random
components.
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5.8.1.1 Step 2 of the Protocol

The second step of the protocol dictates that we judge which of these models is
optimal. Note that the only difference is the random structure. Because REML esti-
mation was used, we can compare AICs or BICs. These are obtained with the AIC
or BIC commands:

> AIC(Wrong1, Wrong2, Wrong3)

df AIC

Wrong1 3 258.2010

Wrong2 4 247.4802

Wrong3 6 244.3839

This suggests the model with the random intercept and slope is the best. Note that
both the second and third models are considerably better than the model without a
random effect. The BIC for the second and third models are similar and both are
lower than the BIC of the first model. Instead of the AIC (or BIC), we can also use
the likelihood ratio test via the anova command as the models are nested.

> anova(Wrong1, Wrong2, Wrong3)

Model df AIC BIC logLik Test L.Ratio p-val.

Wrong1 1 3 258.20 263.48 -126.10

Wrong2 2 4 247.48 254.52 -119.74 1 vs 2 12.72 <0.001

Wrong3 3 6 244.38 254.95 -116.19 2 vs 3 7.09 0.03

The second line compares a model without any random effect versus a model
with a random intercept. These models are nested with respect to the variances.
Unfortunately, there is a little problem here, which is the ‘testing on the boundary’
mentioned earlier. The null hypothesis of this test is H0: σ 2 = 0 versus the alterna-
tive H1: σ 2 > 0. This is different from how you normally use this test to see whether
a regression parameter is equal to zero or not. In that case, we use H0: β = 0 versus
the alternative H1: β 
= 0. Note the subtle difference with respect to the > and 
=
symbols. This is called testing on the boundary for the obvious reason that if there
is no evidence to reject the null-hypothesis, then σ 2 = 0 is the lowest possible value
as a variance is always non-negative. The p-value provided by the anova func-
tion is incorrect as this function assumes that twice the differences between the two
log-likelihood values, L = –2 × (–126.10 + 119.74) = 12.72, follows a Chi-square
distribution with p degrees of freedom; p is the number of extra parameters in the full
model (here p = 1). The mathematical notation for such a distribution is χp

2. How-
ever, when testing on the boundary, L does not follow this distribution, and therefore
the p-value from the table is incorrect. Verbeke and Molenberghs (2000) showed that
L follows a 0.5 × (χ0

2 + χ1
2) = 0.5 × χ1

2 distribution. This means that the p-value
in the table should be divided by 2. In R, you can get the correct p-value by typing

> 0.5 * (1 - pchisq(12.720753, 1))
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The resulting p-value is still smaller than 0.001. This means that adding a random
effect beach to the model is a significant improvement. Note that this correction only
applies for comparing a model without and with a random intercept! If we want to
compare the model with the random intercept and the model with random intercept
and slope, then L = 7.09 follows a 0.5 × (χ1

2 + χ2
2) distribution. The resulting

p-value of 0.018 is calculated by

> 0.5 * ((1 - pchisq(7.09, 1)) + (1 - pchisq(7.09, 2)))

So, the random structure that contains both the random intercept and slope is
significantly better (at least at the 5% level) than the random intercept model. The
conclusion of step 2 is that you should proceed to step 3 with the random intercept
and slope model.

5.8.1.2 Step 3 of the Protocol

In step 3, we search for the optimal fixed structure for a given random struc-
ture. Typing summary(Wrong3) gives a slope of –2.83 for NAP, and the asso-
ciated standard error and t-value are 0.72 and –3.91, respectively. The p-value of
the t-statistic is smaller than 0.001, indicating that the slope for NAP is significant.
Hence, dropping NAP from the model is not an option. The only thing we can try
is adding exposure or adding exposure and the interaction between exposure and
NAP. We can test the significance of these tests in three ways: either with an F-test
or t-test obtained with REML or by comparing nested models using ML estimation.
The first approach is carried out in R as follows. In case you skipped the previous
section, the first three lines redefine the nominal variable exposure such that it only
has two levels instead of three.

> RIKZ$fExp <- RIKZ$Exposure

> RIKZ$fExp[RIKZ$fExp == 8] <- 10

> RIKZ$fExp <- factor(RIKZ$fExp, levels = c(10, 11))

> lmc <- lmeControl(niterEM = 2200, msMaxIter = 2200)

> Wrong4 <- lme(Richness ∼1 + NAP * fExp,

random = ∼1 + NAP | fBeach,

method = "REML", data = RIKZ)

> anova(Wrong4)

numDF denDF F-value p-value

(Intercept) 1 34 34.87139 <.0001

NAP 1 34 18.65502 0.0001

fExp 1 7 5.65495 0.0490

NAP:fExp 1 34 3.32296 0.0771

The anova command applies sequential testing; the interaction term is the last
term to be added, but the order of NAP and exposure depends on how we specified
the model. Change the order of NAP and exposure and we may get different p-values
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for these two terms. The useful bit of this table is the last line, where it is testing
whether the NAP × exposure interaction term is significant. The F-statistic is 3.32,
and the p-value suggests it is not significant at the 5% level.

We can use the t-statistic as an alternative to the F-statistic. They are calculated
in the same way as in linear regression, namely, the estimated value divided by its
standard error. They are obtained with the summary(Wrong4) command, and the
relevant output is given below.

Fixed effects: Richness ∼ 1 + NAP * fExp

Value Std.Error DF t-value p-value

(Intercept) 9.118945 1.2242357 34 7.448684 0.0000

NAP -3.879203 0.8816476 34 -4.399947 0.0001

fExp11 -5.534743 1.8510032 7 -2.990132 0.0202

NAP:fExp11 2.429496 1.3327641 34 1.822900 0.0771

The t-statistic also shows that we can drop the interaction term. Rerunning the
model without the interaction term gives a t-statistic of t = –2.44 (p = 0.04), which
is not convincing neither. The new output is given below.

Fixed effects: Richness ∼ 1 + NAP + fExp

Value Std.Error DF t-value p-value

(Intercept) 8.407714 1.183419 35 7.104595 0.0000

NAP -2.808422 0.759642 35 -3.697034 0.0007

fExp11 -3.704917 1.517669 7 -2.441189 0.0447

Both the F-statistic and the t-statistic indicate a strong NAP effect, but a weak
exposure effect and no significant interaction. Both these test are approximate. This
means that we should not take them too literally. Hence, p = 0.04 is not convincing
evidence of an exposure effect.

Before moving on to the ML testing procedure, we first need to address the issue
of degrees of freedom. Within the mixed effects modelling literature, explanatory
variables are divided into level 1 and level 2 variables. An explanatory variable
that has the same value for all observations within the levels of the random effect
is called a level 2 variable. An example is exposure; it has the same value for all
observations on a beach. NAP, on the other hand, has a different value for each
observation within a beach; it is called a level 1 variable. The degrees of freedom
for a level 1 variable (NAP) in R is calculated as the number of level 1 observations
(= 45) minus the number of level 2 clusters (= 9 levels in the random variable
beach) minus the number of level 1 fixed effects (1, namely NAP). This explains
the 35 degrees of freedom for NAP. For a level 2 variable, the equation is slightly
different. It is calculated as the number of level 2 clusters (= 9 levels in the random
variable beach) minus the number of level 2 fixed variables (In case only exposure)
minus 1 if there is an intercept. This explains why the degrees of freedom are equal
to 7 for exposure. Further details can be found on page 111 in West et al. (2006),
Verbeke and Molenberghs (2000), or Pinheiro and Bates (2000).
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So far, we only discussed the use of the approximate F-statistic and t-statistic.
Estimation was done with REML. We now show the third hypothesis testing
approach: the likelihood ratio test using ML estimation. In this approach, we fit two
models with the same random effects structure using ML estimation and compare
the likelihood criteria. The code below compares the model with a fixed structure
containing NAP versus NAP + exposure. It also compares the model with NAP +
exposure versus the model that also contains the interaction between both explana-
tory variables.

> lmc <- lmeControl(niterEM = 5200, msMaxIter = 5200)

> Wrong4A <- lme(Richness ∼1 + NAP, method="ML",
control = lmc, data = RIKZ,

random = ∼1 + NAP | fBeach)

> Wrong4B <- lme(Richness ∼ 1 + NAP + fExposure,

random = ∼1 + NAP | fBeach, method="ML",
data = RIKZ)

> Wrong4C <- lme(Richness ∼1 + NAP * fExposure,

random = ∼1 + NAP | fBeach, data = RIKZ,

method = "ML", control = lmc)

> anova(Wrong4A, Wrong4B, Wrong4C)

To avoid an error message related to convergence, we used the control option,
which basically tells R to use more iterations. The output from the anova command
is given below.

Model df AIC BIC logLik Test L.Ratio p-value
Wrong4A 1 6 246.6578 257.4977 -117.3289
Wrong4B 2 7 245.3353 257.9820 -115.6677 1 vs 2 3.322437 0.0683
Wrong4C 3 8 243.2228 257.6761 -113.6114 2 vs 3 4.112574 0.0426

The comparison of model 1 versus 2 (Wrong4A versus Wrong4B) shows that
exposure is not significant at the 5% level. Adding the interaction to a model that
already contains exposure gives a log ratio statistic of L = 4.11, which is borderline
significant (p = 0.04). So the ML testing procedure also indicates the interaction
and exposure effects may be dropped from the model. This means that the optimal
model, according to our model selection strategy, contains NAP as a fixed effect
with a random slope and intercept. This means that the NAP effect is changing per
beach (but in a random fashion).

5.8.1.3 Step 4 of the Protocol

As a last step, we need to present the numerical output of the optimal model using
REML estimation. The code for the optimal model is
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> Wrong5 <- lme(Richness∼1+NAP,
random = ∼1 + NAP | fBeach,

method = "REML", data = RIKZ)

> summary(Wrong5)

Random effects:

Formula: ∼1 + NAP | fBeach

StdDev Corr

(Intercept) 3.55 (Intr)

NAP 1.71 -0.988

Residual 2.69

Fixed effects: Richness ∼ 1 + NAP

Value Std.Error DF t-value p-value

(Intercept) 6.59 1.26 35 5.20 <0.001

NAP -2.83 0.72 35 -3.90 <0.001

5.8.2 The Good Approach

5.8.2.1 Step 1 of the Protocol

The top-down strategy specified earlier in this chapter indicated that we should start
with as many explanatory variables as possible in the fixed component. So, we
should start with a model that contains as fixed effects NAP, exposure, and their
interaction. The starting point, therefore, is

> B1 <- gls(Richness ∼ 1 + NAP * fExp,

method = "REML", data = RIKZ)

> B2 <- lme(Richness ∼1 + NAP * fExp, data = RIKZ,

random = ∼1 | fBeach, method = "REML")

> B3 <- lme(Richness ∼ 1 + NAP * fExp, data = RIKZ,

random = ∼1 + NAP | fBeach, method="REML")

5.8.2.2 Step 2 of the Protocol

The AIC values of these three models are 238.53, 236.49, and 237.13. The random
intercept model is therefore the preferred option.

5.8.2.3 Step 3 of the Protocol

The summary(B2) command indicates that all parameters in this model are sig-
nificant as can be seen from the table below.
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Fixed effects: Richness ∼ 1 + NAP * fExp

Value Std.Error DF t-value p-value

(Intercept) 8.861084 1.0208449 34 8.680147 0.0000

NAP -3.463651 0.6278583 34 -5.516613 0.0000

fExp11 -5.255617 1.5452292 7 -3.401190 0.0114

NAP:fExp11 2.000464 0.9461260 34 2.114374 0.0419

If we use the same argument as above that a p-value of 0.04 is unconvincing, we
could drop the interaction and refit the model. In that case, the p-value for exposure
is 0.01, which is probably small enough to keep it in.

5.8.2.4 Step 4 of the Protocol

The results of the optimal model are given below.

Linear mixed-effects model fit by REML

Data: RIKZ

AIC BIC logLik

240.5538 249.2422 -115.2769

Random effects:

Formula: ∼1 | fBeach

(Intercept) Residual

StdDev: 1.907175 3.059089

Fixed effects: Richness ∼ 1 + NAP + fExp

Value Std.Error DF t-value p-value

(Intercept) 8.601088 1.0594876 35 8.118158 0.0000

NAP -2.581708 0.4883901 35 -5.286160 0.0000

fExp11 -4.532777 1.5755610 7 -2.876929 0.0238

Note that we end up with a fundamentally different model compared to our first
approach above. The biological conclusion is also very different as this model sug-
gests there is a strong NAP effect, a weak exposure effect, and absolute values differ
per beach in a random way (as modelled by the random intercept).

The reason we ended up with a different model is because in the previous
example, part of the information that we want to have in the fixed effects ended
up in the random effects. This is due to starting with a fixed component that only
contained NAP.

5.9 Model Validation

As with linear regression and additive modelling, the prime tool to validate the
model is the normalised residuals based on the REML fit in step 4 of the proto-
col. These were defined in Chapter 4. Residuals should be plotted against fitted val-
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ues to identify violation of homogeneity, indicated by differences in spread. If you
do see an increase in spread for larger fitted values, then there are several options:
(i) apply a transformation, (ii) check whether the increase in spread is due to a
covariate, and (iii) apply generalised linear mixed modelling with a Poisson distri-
bution (if the data are counts). If the increase in spread is due to a covariate, use
the methods described in Chapter 4. These can easily be combined with a random
effect.

You should also plot the residuals against each explanatory variable. Again, you
do not want to see any patterns in the spread. Nor do you want to see a pattern in
the residuals as it indicates the wrong model was applied. If this happens, consider
adding more explanatory variables, interactions, quadratic terms, and if this does
not help, use additive mixed modelling.

To verify normality, make histograms of the residuals. We recommend assessing
normality (and homogeneity) using graphical tools. However, some software pack-
ages provide normality tests like the Shapiro-Wilks test, and these offer an alterna-
tive approach.

Examples of the model validation are given in the case studies and in the next
section.

5.10 Begging Behaviour of Nestling Barn Owls

For those readers who enjoy television shows with many people in a house and
cameras all over the place, here is the ecological version of it. Roulin and Bersier
(2007) analysed the begging behaviour of nestling barn owls.

They looked at how nestlings responded to the presence of the father and of
the mother. Using microphones inside and a video outside the nests, they sampled
27 nests and studied vocal begging behaviour when the parents brought prey. The
number of nestlings was between 2 and 7 per nest.

Different response variables were defined in the paper: the amount of time spent
on the perch by a parent, the amount of time in the nestbox, sibling negotiation, and
begging. Here, we analyse sibling negotiation2, which is defined as follows. Using
the recorded footage, the number of calls made by all offspring in the absence of the
parents was counted during 30-s time intervals every 15 min. To allocate a number of
calls to a visit from a parent, the counted number of calls from the preceding 15 min
of the arrival was used. This number was then divided by the number of nestlings.
You may need to read this last sentence more than once, but in summary, the sibling

2When the need for food varies between the young owls, the calls used in the absence of parent
birds have been shown to communicate the different levels of hunger between the chicks. This
pre-parental arrival behaviour then seems to influence competitive behaviour between chicks when
the parent bird arrives. Using information from this sibling communication, the least hungry chick
avoids competing for food against the hungriest chick, which is the more likely to succeed in
winning the food from the parent bird. Thus saving energy to only compete for food when there is
the highest probability of successfully winning it.
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negotiation is just the number of counted calls in the nearest 30-s interval before the
arrival of a parent divided by the number of nestlings. In Chapters 12 and 13, we
return to these data and analyse the number of calls using a Poisson distribution. We
also use the data in Chapter 6 to model a more detailed auto-correlation structure.

The explanatory variables are sex of the parent, treatment of food, and arrival
time of the parent. Half of the nests were given extra prey, and from the other
half, prey (remaining) were removed. These were called ‘food-satiated’ and ‘food-
deprived’, respectively. Measurements took place on two nights, and the food treat-
ment was swapped on the second night. Note that the original paper contains an eth-
ical note stating that food treatment did not have an effect on survival of the chicks.
Measurements took place between 21.30 h and 05.30 h and the variable ArrivalTime
reflects the time when a parent arrived at the perch with a prey. Further biological
information and a description of the fascinating behaviour of barn owl nestlings can
be found in the Roulin and Bersier (2007).

How should we analyse these data? Ok, given the fact that this is a section in
a mixed effects modelling chapter, it should not be difficult to guess that nest will
be used as a random effect. The reasons for this are as follows. Firstly, there were
multiple observations from the same nests so these observations will be correlated.
Secondly, there are 27 nests and using nest as a fixed effect would be rather expen-
sive in terms of degrees of freedom. Furthermore, we would like to make a statement
on relationships for barn owl nests in general and not just on these 27. If we use nest
as a random effect, we allow for correlation between multiple observations from
the same nest, and we only need to estimate one variance, and our statements will
hold for all similar nests. Instead of starting immediately with a model that contains
nest as a random effect, we will follow one of the protocols described earlier. We
can either use the four-step protocol presented in Section 5.7 or the ten-step proto-
col discussed in Chapter 4. The later one has more intermediate steps, but basically
does the same thing. Because the protocol from Chapter 4 is easier to follow (more
detail, less chance to make mistakes), we use it here.

5.10.1 Step 1 of the Protocol: Linear Regression

We start with a linear regression model. Nestling negotiation is modelled as a func-
tion of sex of the parents, arrival time, and food treatment. Because one of the prime
aims of the analysis is to find a sex effect, we also include the interaction between
sex and each of the other variables. See also Appendix A for a discussion on inter-
actions. The following R code imports the data, applies the linear regression model,
and produces the graph in Fig. 5.4.

> library(AED) ; data(Owls)

> M.lm <- lm(NegPerChick ∼ SexParent * FoodTreatment +

SexParent * ArrivalTime, data = Owls)

> plot(M.lm, select = c(1))
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Fig. 5.4 Residuals versus fitted values for the linear regression model. Note that the residual
spread increases for larger fitted values, indicating heterogeneity

The graph indicates heterogeneity because the residual spread increases along
the horizontal axis. To understand why we have heterogeneity, we plotted residuals
versus sex of the parents, food treatment, and arrival time.

However, as there is no clear pattern in any of these graphs, we cannot easily
model the heterogeneity the way we did in Chapter 4. For this reason, we went for
plan B and applied a log10(Y + 1) transformation on the sibling negotiation data.
This transformation was also used in Roulin and Bersier (2007). The code below
applies the log10 transformation, refits the model, and plots the residuals versus the
nominal variable nest (Fig. 5.5).

> Owls$LogNeg <- log10(Owls$NegPerChick + 1)

> M2.lm <- lm(LogNeg ∼ SexParent * FoodTreatment +

SexParent * ArrivalTime, data = Owls)

> E <- rstandard(M2.lm)

> boxplot(E ∼ Nest, data = Owls, axes = FALSE,

ylim = c(-3, 3))

> abline(0,0); axis(2)

> text(1:27, -2.5, levels(Owls$Nest), cex=0.75, srt=65)

The abline(0, 0) command adds a horizontal line at y = 0. The axes =
FALSE and text commands are used to add fancy labels along the horizontal axis.
In a perfect world, the residuals should lie in a cloud around this line without any
patterns. However, for some nests, all residuals are above or below the zero line,
indicating that the term ‘nest’ has to be included in the model. We can do this as
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Fig. 5.5 Boxplot of standardised residuals obtained by a linear regression model applied on the
log-transformed sibling negotiation data. The y-axis shows the values of the residuals and the
horizontal axis the nests. Note that some nests have residuals that are above or below the zero line,
indicating the need for a random effect

a fixed term or as a random term, but we already discussed that this has to be as a
random term.

5.10.2 Step 2 of the Protocol: Fit the Model with GLS

In this step we fit the model using the gls function. It allows us to compare the
linear regression model with the mixed effects model that we will calculate using
the lme function in a moment.

> library(nlme)

> Form <- formula(LogNeg ∼ SexParent * FoodTreatment +

SexParent * ArrivalTime)

> M.gls <- gls(Form, data = Owls)

To reduce the code, we have used the formula expression. The numerical output
in the object M.gls is identical to that of the lm function.

5.10.3 Step 3 of the Protocol: Choose a Variance Structure

In Chapter 4, this step consisted of finding the optimal variance structure in terms
of heterogeneity. We can still do that here, but adding the random component nest
is our first priority. Note that the random intercept is also part of the ‘choose a
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variance structure’ process. This means that the following random intercept mixed
effects model is fitted.

LogNegij = α + β1 × SexParentij + β2 × Foodtreatmentij

+ β3 × ArrivalTimeij + β4 × SexParentij × FoodTreatmentij
+ β5 × SexParentij × ArrivalTimeij + ai + εij

LogNegij is the log-10 transformed sibling negotiation for observation j at nest
i. SexParentij and FoodTreatmentij are nominal variables with two levels, and
ArrivalTimeij is a continuous variable. The second line contains interactions. The term
ai is a random intercept and is assumed to be normally distributed with mean 0 and
variance d2. The residual εij is assumed to be normally distributed with mean
0 and variance σ 2. Both random terms are assumed to be independent of each other.

5.10.4 Step 4: Fit the Model

The linear mixed effects model is applied in R with the following code.

> M1.lme <- lme(Form, random = ∼ 1 | Nest,

method = "REML", data = Owls)

5.10.5 Step 5 of the Protocol: Compare New Model with Old Model

We use the anova command to compare the models M.gls and M1.lme. Note
that the models were estimated with REML, which allows us to apply the likelihood
ratio test to see whether we need the random intercept.

> anova(M.gls, M1.lme)

Model df AIC BIC logLik Test L.Ratio p-value
M.gls 1 7 64.37422 95.07058 -25.18711
M1.lme 2 8 37.71547 72.79702 -10.85773 1 vs 2 28.65875 <.0001

The likelihood ratio test indicates that the model with the random intercept
is considerably better. You would quote this statistic in a paper as L = 28.65
(df = 1, p < 0.001). Recall from Section 5.8 that we are testing on the bound-
ary here. If we did the correction for testing on the boundary, the p-value would
get even smaller. Because the random intercept is highly significant, testing on the
boundary is not a problem here.

The AIC of the model with the random intercept is also considerably smaller,
confirming the results of the likelihood ratio test. As well as the random intercept, it
is also an option to use a random intercept and random slope model. In this case, you
assume that the strength of the relationship between sibling negotiation and arrival
time changes randomly between the nests. We leave this as an exercise to the reader.
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Fig. 5.6 Model validation graphs for the random intercept mixed effects model. Residuals are
plotted versus fitted values (A), sex of the parent (B), food treatment (C), and arrival time (D)

5.10.6 Step 6 of the Protocol: Everything Ok?

The next thing we should think of is whether we have homogeneity of variance
in the model and independence. Before doing anything, ask yourself whether you
expect different residual spread per sex or per treatment (or over time). We have a
large data set and blindly following some test statistics may not be wise. The large
number of observations means that even small differences in spread may cause a
significant variance covariate and we prefer to judge homogeneity by eye. Figure
5.6 shows residuals versus fitted values, sex, food treatment, and arrival time. These
graphs do not show any clear violation of heterogeneity. There may be a violation
of independence along arrival time, but Fig. 5.6D is not very clear. For the moment,
we ignore any potential independence problems, and return to this issue later in
this section. The R code to make Fig. 5.6 is as follows. Residuals and fitted values
are extracted, a graph with four panels is set up, and the rest is a matter of trivial
boxplot and plot commands.

> E2 <- resid(M1.lme, type = "normalized")

> F2 <- fitted(M1.lme)

> op <- par(mfrow = c(2, 2), mar = c(4, 4, 3, 2))

> MyYlab <- "Residuals"

> plot(x = F2, y = E2, xlab = "Fitted values", ylab = MyYlab)

> boxplot(E2 ∼ SexParent, data = Owls,

main = "Sex of parent", ylab = MyYlab)



5.10 Begging Behaviour of Nestling Barn Owls 135

> boxplot(E2 ∼ FoodTreatment, data = Owls,

main = "Food treatment", ylab = MyYlab)

> plot(x = Owls$ArrivalTime, y = E, ylab = MyYlab,

main = "Arrival time", xlab = "Time (hours)")

> par(op)

5.10.7 Steps 7 and 8 of the Protocol: The Optimal Fixed Structure

In this step, we look at the optimal model in terms of the explanatory variables
sex, food treatment, arrival time, and the selected interaction terms. The first thing
we should do is to type summary(M1.lme) and inspect the significance of the
regression parameters.

Value Std.Error DF t-value p-value
(Intercept) 1.1236414 0.19522087 567 5.755744 0.0000
SexParentMale 0.1082138 0.25456854 567 0.425087 0.6709
FoodTreatmentSatiated -0.1818952 0.03062840 567 -5.938776 0.0000
ArrivalTime -0.0290079 0.00781832 567 -3.710251 0.0002
SexParMale:FoodTSatiated 0.0140178 0.03971071 567 0.352998 0.7242
SexParMale:ArrivalTime -0.0038358 0.01019764 567 -0.376144 0.7070

Note, the interaction terms have been edited, to let the R printout fit on the page.
Neither interaction term is significant. We could drop the least significant term, and
reapply the model. Note that you should not use the anova (M1.lme) command
as it applies sequential testing (which depends on the order of the two-way interac-
tion terms). Its output is given below.

> anova(M1.lme)

numDF denDF F-value p-value

(Intercept) 1 567 252.64611 <.0001

SexParent 1 567 1.52859 0.2168

FoodTreatment 1 567 71.43972 <.0001

ArrivalTime 1 567 37.13833 <.0001

SeParent:FoodTreatment 1 567 0.13472 0.7137

SexParent:ArrivalTime 1 567 0.14148 0.7070

The p-value of the last interaction term is the same as that obtained by the
summary command. The third option, and our preferred one, is the likelihood ratio
test. We need to fit the same model again, but now with ML. Both interaction terms
can be dropped from the model. Using the likelihood ratio test, the significance of
the dropped term is determined.

> M1.Full <- lme(Form, random =∼ 1 | Nest,

method = "ML", data = Owls)

> M1.A <- update(M1.Full, .∼. -SexParent:FoodTreatment)

> M1.B <- update(M1.Full, .∼. -SexParent:ArrivalTime)
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> anova(M1.Full, M1.A)

Model df AIC BIC logLik Test L.Ratio p-value
M1.Full 1 8 -0.7484292 34.41366 8.374215
M1.A 2 7 -2.6246932 28.14214 8.312347 1 vs 2 0.123736 0.725

> anova(M1.Full, M1.B)

Model df AIC BIC logLik Test L.Ratio p-value
M1.Full 1 8 -0.7484292 34.41366 8.374215
M1.B 2 7 -2.6103305 28.15650 8.305165 1 vs 2 0.1380986 0.7102

Recall that the update command takes all settings from the original lme
command, and -SexParent:FoodTreatment means that this term is dropped
from the model. We decided to omit the sex–food treatment interaction as it is
the least significant. In the second round, we have a model that contains sex, food
treatment, arrival time, and the interaction between sex and arrival time. There are
two more terms that can be dropped from this model, the interaction term and food
treatment.

> Form2 <-formula(LogNeg ∼ SexParent + FoodTreatment +

SexParent * ArrivalTime)

> M2.Full <- lme(Form2, random= ∼1| Nest, method= "ML",

data = Owls)

> M2.A <- update(M2.Full, .∼. -FoodTreatment)

> M2.B <- update(M2.Full, .∼. -SexParent:ArrivalTime)

> anova(M2.Full, M2.A)

Model df AIC BIC logLik Test L.Ratio p-value
M2.Full 1 7 -2.62469 28.14214 8.312347
M2.A 2 6 65.52071 91.89228 -26.760355 1 vs 2 70.1454 <.0001

> anova(M2.Full, M2.B)

Model df AIC BIC logLik Test L.Ratio p-value
M2.Full 1 7 -2.624693 28.14214 8.312347
M2.B 2 6 -4.476920 21.89465 8.238460 1 vs 2 0.1477732 0.7007

The interaction term sex–arrival time is not significant so this was also omitted.
The new model contains the main terms sex, food treatment, and arrival time. We
dropped them each in turn and applied the likelihood ratio test.

> Form3 <- formula(LogNeg ∼ Sex-Parent + FoodTreatment +

ArrivalTime)

> M3.Full <- lme(Form3, random= ∼1 | Nest,

method = "ML", data = Owls)

> M3.A <- update(M3.Full, .∼. -FoodTreatment)

> M3.B <- update(M3.Full, .∼. -SexParent)

> M3.C <- update(M3.Full, .∼. -ArrivalTime)
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> anova(M3.Full, M3.A)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 6 -4.47692 21.89465 8.23846
M3.A 2 5 63.56865 85.54496 -26.78433 1 vs 2 70.04557 <.0001

> anova(M3.Full, M3.B)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 6 -4.476920 21.89465 8.238460
M3.B 2 5 -5.545145 16.43116 7.772572 1 vs 2 0.9317755 0.3344

> anova(M3.Full, M3.C)

Model df AIC BIC logLik Test L.Ratio p-value
M3.Full 1 6 -4.47692 21.89465 8.23846
M3.C 2 5 29.71756 51.69387 -9.85878 1 vs 2 36.19448 <.0001

The term sex of the parent is not significant, and we omitted it from the model. In
the next round, the model has the terms food treatment and arrival time. It is fitted
with the following code. Each term is dropped in turn.

> Form4 <- formula(LogNeg ∼ FoodTreatment + ArrivalTime)
> M4.Full <- lme(Form4, random= ∼1 | Nest,

method = "ML", data = Owls)
> M4.A <- update(M4.Full, .∼. -FoodTreatment)
> M4.B <- update(M4.Full, .∼. -ArrivalTime)

> anova(M4.Full, M4.A)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 5 -5.54514 16.43116 7.772572
M4.A 2 4 64.03857 81.61962 -28.019286 1 vs 2 71.58372 <.0001

> anova(M4.Full,M4.B)

Model df AIC BIC logLik Test L.Ratio p-value
M4.Full 1 5 -5.545145 16.43116 7.772572
M4.B 2 4 28.177833 45.75888 -10.088917 1 vs 2 35.72298 <.0001

Both food treatment and arrival time are significant at the 5% level and we have
reached the end of the model selection process.

5.10.8 Step 9 of the Protocol: Refit with REML and Validate
the Model

The model that we have selected above is of the form

LogNegij = α + β2 × FoodTreatmentij + β3 × ArrivalTimeij + ai + εij
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The estimated parameters are obtained by the following R code.

> M5 <- lme(LogNeg ∼ FoodTreatment + ArrivalTime,

random= ∼1 | Nest, method = "REML", data = Owls)

> summary(M5)

Linear mixed-effects model fit by REML

AIC BIC logLik

15.07383 37.02503 -2.536915

Random effects:

Formula: ∼1 | Nest

(Intercept) Residual

StdDev: 0.0946877 0.2316398

Fixed effects: LogNeg ∼ FoodTreatment + ArrivalTime

Value Std.Error DF t-val p-val

(Intercept) 1.1821386 0.12897491 570 9.165648 0

FoodTrSatiated -0.1750754 0.01996606 570 -8.768650 0

ArrivalTime -0.0310214 0.00511232 570 -6.067954 0

Correlation:

(Intr) FdTrtS

FoodTreatmentSatiated -0.112

ArrivalTime -0.984 0.039

Number of Observations: 599. Number of Groups: 27

The slope for food treatment is −0.175. This means that sibling negotiation for
an observation from an owl that was food satiated is −0.175 lower (on the log-10
scale) than a food deprived sibling. Indicating that siblings are quieter if they have
more food. The slope for arrival time is −0.03, which means that the later in the
night the parents arrive, the lower the level of sibling negotiation.

As to the random effects, the random intercept ai is normally distributed
with mean 0 and variance 0.092. The residual term εij is normally distributed with
mean 0 and variance 0.232. These two variances can be used to calculate the corre-
lation between observations from the same nest: 0.092/(0.092 + 0.232) = 0.13. This
is relatively low, but significant (as shown by the likelihood ratio test above).

Note that there is a high correlation between the intercept and the slope for
arrival. This is because all arrival values are between 22 and 30 (recall that 30 is
06.00 AM). The intercept is the value of the response if all explanatory variables
are 0 (or have the baseline value for a nominal variable), which is obviously far out-
side the range of the sampled arrival time values. A small change in the slope can
therefore have a large change on the intercept, hence the high correlation. It would
be better to centre arrival time around 0 and refit all models. Something like

> Owls$CArrivalTime <- Owls$ArrivalTime −
mean(Owls$ArrivalTime)
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will do the job. You can also use the scale function (with center = TRUE and
scale = FALSE. In all the analyses presented in this section, you should then use
CArrivalTime. We leave this as an exercise for the reader.

To validate the model, you should make a graph like Fig. 5.6. It is not presented
here, but homogeneity seems a fair assumption. Independence will be discussed in
a moment.

5.10.9 Step 10 of the Protocol

A biological discussion can be found in Roulin and Bersier (2007).

5.10.10 Sorry, We are Not Done Yet

Our optimal model contained food treatment as a nominal variable and arrival time
as a continuous variable. We assumed independence because we cannot see a clear
pattern if residuals are plotted versus arrival time; see also Fig. 5.6D. In Fig. 5.7,
we made a multipanel plot with the xyplot from the lattice package. It shows the
residuals of the optimal mixed effects model versus arrival time for each sex–food
treatment combination. A LOESS smoother was added. This smoother should not
show any pattern. Unfortunately, it raises some suspicion about a possible pattern.
So, how do we know for sure there is no pattern in the residuals? The answer is to
fit an additive mixed model. However, before we do this, we present the R code to
make Fig. 5.7.

> library(lattice)

> xyplot(E2 ∼ ArrivalTime | SexParent * FoodTreatment,

data = Owls, ylab = "Residuals",

xlab = "Arrival time (hours)",

panel = function(x,y){
panel.grid(h = -1, v = 2)

panel.points(x, y, col = 1)

panel.loess(x, y, span = 0.5, col = 1,lwd=2)})

The R code to make multiple panel graphs with smoothers is discussed in various
case studies, e.g. Chapters 13, 14, 15, 16, 17, and 18. Note that the argument(s) on
the right hand side of the ‘|’ symbol are nominal variables. Due to the way we
coded them in the data files, they are indeed nominal variables. If you coded them
as numbers, use the factor command.

Before fitting the additive mixed model, we give the underlying equation.

LogNegij = α + β2 × FoodTreatmentij + f (ArrivalTimeij) + ai + εij
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Fig. 5.7 Residuals versus arrival time for each sex–food treatment combination. A LOESS
smoother with a span of 0.5 was fitted to aid visual interpretation

The term β3 × ArrivalTimeij has been replaced by f(ArrivalTimeij), which is
now a smoother (smoothing spline); see also Chapter 3. If the resulting shape of the
smoother is a straight line, we know that in the model presented in step 9 of the
protocol, arrival time has indeed a linear effect. However, if the smoother is not a
straight line, the linear mixed effects model is wrong!

The following R code fits the additive mixed model.

> library(mgcv)

> M6 <- gamm(LogNeg ∼ FoodTreatment + s(ArrivalTime),

random = list(Nest =∼ 1), data = Owls)

Formulation of the random intercept is slightly different and uses the list argu-
ment. Just do it, it’s better not to ask why at this stage. Because no family argu-
ment is specified, the gamm function uses the Gaussian distribution. Other options
are the Poisson, binomial, negative binomial, etc., and these will be discussed in
Chapter 9. The output from gamm is slightly confusing. If you type summary(M6),
R gives:

Length Class Mode

lme 18 lme list

gam 25 gam list

The object M6 has an lme component and a gam component. You can use the
following commands:
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Fig. 5.8 Estimated smoother for the additive mixed model. The solid line is the estimated smoother
and the dotted lines are 95% point-wise confidence bands. The horizontal axis shows the arrival
time in hours (25 is 01.00 AM) and the vertical axis the contribution of the smoother to the fitted
values. The smoother is centred around 0

• summary(M6$gam). This gives detailed output on the smoothers and paramet-
ric terms in the models.

• anova(M6$gam). This command gives a more compact presentation of the
results as compared to the summary(M6 $gam) command. The anova table is
not doing sequential testing!

• plot(M6$gam). This command plots the smoothers.
• plot(M6$lme). This command plots the normalised residuals versus fitted

values and can be used to assess homogeneity.
• summary(M6$lme). Detailed output on the estimated variances. Not every-

thing is relevant.

Good, let us now have a look at the shape of the smoother and see whether it
is a straight line or not. The command plot(M6$gam) produces the smoother in
Fig. 5.8 and indicates that it is bad news for the linear mixed effects model; the
effect of arrival time is non-linear. The summary(M6$gam) gives the following
output.

Family: Gaussian. Link function: identity

Formula: LogNeg ∼ FoodTreatment + s(ArrivalTime)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.41379 0.02222 18.622 <2e-16

FoodTreaSatiated -0.17496 0.01937 -9.035 <2e-16
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Approximate significance of smooth terms:

edf Est.rank F p-value

s(ArrivalTime) 6.921 9 10.26 8.93e-15

R-sq.(adj) = 0.184 Scale est. = 0.049715 n = 599

The estimated regression parameter for food treatment is the similar to the one
obtained by the linear mixed effects model. The smoother is significant and has
nearly seven degrees of freedom! A straight line would have had one degree of
freedom.

We also tried models with two smoothers using the by command (one smoother
per sex or one smoother per treatment), but the AIC indicated that the model with
one smoother was the best.

So, it seems that there is a lot of sibling negotiation at around 23.00 hours and a
second (though smaller) peak at about 01.00–02.00 hours.



Chapter 6
Violation of Independence – Part I

This chapter explains how correlation structures can be added to the linear regres-
sion and additive model. The mixed effects models from Chapters 4 and 5 can also
be extended with a temporal correlation structure. The title of this chapter contains
‘Part I’, suggesting that there is also a Part II. Indeed, that is the next chapter. In
part I, we use regularly spaced time series, whereas in the next chapter, irregular
spaced time series, spatial data, and data along an age gradient are analysed. We use
a bird time series data set previously analysed in Reed et al. (2007). In the first sec-
tion, we start with only one species and show how the linear regression model can
be extended with a residual temporal correlation structure. In the second section, we
use the same approach for a multivariate time series. In Section 6.3, the owl data are
used again.

6.1 Temporal Correlation and Linear Regression

Reed et al. (2007) analysed abundances of three bird species measured at three
islands in Hawaii. The data were annual abundances from 1956 to 2003. Here, we
use one of these time series, moorhen abundance on the island of Kauai, to illustrate
how to deal with violation of independence. A time series plot is given in Fig. 6.1.
We applied a square root transformation to stabilise the variance, but strictly speak-
ing, this is unnecessary as methods discussed earlier (Chapter 4) can be used to
model the heterogeneity present in the original series. However, we do not want
to over-complicate matters at this stage by mixing different concepts in the same
model. The following R code imports the data and makes a plot of square-root-
transformed moorhen numbers.

> library(AED); data(Hawaii)

> Hawaii$Birds <- sqrt(Hawaii$Moorhen.Kauai)

> plot(Hawaii$Year, Hawaii$Birds, xlab = "Year",

ylab = "Moorhen abundance on Kauai")

Note that there is a general increase since the mid 1970s. Reed et al. (2007) used
a dummy variable to test the effects of the implementation of new management

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 6,
C© Springer Science+Business Media, LLC 2009
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activities in 1974 on multiple bird time series, but to keep things simple, we will
not do this here. The (transformed) abundance of birds is modelled as a function of
annual rainfall and the variable Year (representing a long-term trend) using linear
regression.

This gives a model of the form

Birdss = α + β1 × Rainfalls + β2 × Years + εs (6.1)

An alternative option is to use an additive model (Chapter 3) of the form:

Birdss = α + f1(Rainfalls) + f2(Years) + εs

The advantage of the smoothers is that they allow for a non-linear trend over time
and non-linear rainfall effects. Whichever model we use, the underlying assumption
is that the residuals are independently normally distributed with mean 0 and variance
σ 2. In formula we have

εs ∼ N (0, σ 2)

cov(εs, εt ) =
{

σ 2 if s = t

0 else

(6.2)

The second line is due to the independence assumption; residuals from different
time points are not allowed to covariate. We already discussed how to incorporate
heterogeneity using variance covariates in Chapter 4. Now, we focus on the inde-
pendence assumption. The underlying principle is rather simple; instead of using
the ‘0 else’ in Equation (6.2), we model the auto-correlation between residuals of
different time points by introducing a function h(.):

cor(εs, εt ) =
{

1 if s = t

h(εs, εt ,ρ) else
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The function h(.) is called the correlation function, and it takes values between
–1 and 1. Just as Pinheiro and Bates (2000), we assume stationarity. This means we
assume that the correlation between the residuals εs and εt only depends on their
time difference s – t. Hence, the correlation between εs and εt is assumed to be
the same as that between εs+1 and εt+1, between εs+2 and εt+2, etc. The task of the
analyst is to find the optimal parameterisation of the function h(.), and we discuss
several options in this and the next chapter. We assume the reader is familiar with
the definition of the auto-correlation function, and how to estimate it from sample
data; see for example Chatfield (2003), Diggle (1990), and Zuur et al. (2007), among
others.

Before applying any model with a residual auto-correlation structure, we first
apply the linear model without auto-correlation so that we have a reference point.
In a preliminary analysis (not presented here), the cross-validation in the additive
model gave one degree of freedom for each smoother, indicating that parametric
models are preferred over smoothing models for this time series.

> library(nlme)

> M0 <- gls(Birds ∼ Rainfall + Year,

na.action = na.omit, data = Hawaii)

> summary(M0)

We used the gls function without any correlation or weights option, and as
a result it fits an ordinary linear regression model. The na.action option is
required as the time series contains missing value. The relevant output produced
by the summary command is given below:

Generalized least squares fit by REML

Model: Birds ∼ Rainfall + Year

Data: Hawaii

AIC BIC logLik

228.4798 235.4305 -110.2399

Coefficients:

Value Std.Error t-value p-value

(Intercept) -477.6634 56.41907 -8.466346 0.0000

Rainfall 0.0009 0.04989 0.017245 0.9863

Year 0.2450 0.02847 8.604858 0.0000

Residual standard error: 2.608391

Degrees of freedom: 45 total; 42 residual

The summary table shows that the effect of rainfall is not significant, but there is
a significant increase in birds over time. The problem is that we cannot trust these
p-values as we may be violating the independence assumption. The first choice to
test this is to extract the standardised residuals and plot them against time (Fig. 6.2).
Note that there is a clear pattern in the residuals.
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Fig. 6.2 Normalised residuals plotted versus time. Note the pattern in the residuals

A more formal visualisation tool to detect patterns is the auto-correlation function
(ACF). The value of the ACF at different time lags gives an indication whether there
is any auto-correlation in the data. The required R code for an ACF and the resulting
graph are presented below. Note that the auto-correlation plot in Fig. 6.3 shows a
clear violation of the independence assumption; various time lags have a significant
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Fig. 6.3 Auto-correlation plot for the residuals obtained by applying linear regression on the Bird
time series. Note that there is a clear indication of violation of independence
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correlation! The ACF plot has a general pattern of decreasing values for the first
5 years, something we will use later in this section.

The R code for the ACF is given below.

> E <- residuals(M0, type = "normalized")

> I1 <- !is.na(Hawaii$Birds)

> Efull <- vector(length = length(Hawaii$Birds))

> Efull <- NA

> Efull[I1] <- E

> acf(Efull, na.action = na.pass,

main = "Auto-correlation plot for residuals")

The function residuals extracts the normalised residuals. If there are no miss-
ing values, then you can just continue with acf(E), but it is not that easy here. The
time series has two missing values and to ensure that the correlation function is cor-
rectly calculated, we need to insert the two missing values in the right place. This is
because the gls function is removing the missing values, whereas the acf function
assumes that the points are at the right time position. Once this is done, we can cal-
culate the auto-correlation function and the resulting graph is presented in Fig. 6.3.

Figure 6.3 shows the type of pattern you do not want to see if you were
hoping for a quick analysis; these data clearly contain residual correlation. As
a result, we cannot assume that the F-statistic follows an F-distribution and the
t-statistic a t-distribution.

An alternative approach to judge whether auto-correlation is present and one that
doesnotdependonavisual judgementof theauto-correlationplot is to includeanauto-
correlation structure into the model. Then compare the models with and without an
auto-correlation structure using the AIC, BIC, or if the models are nested, a likelihood
ratio test. However, you should not spend too much time trying to find the optimal
residual auto-correlation structure. Citing from Schabenberger and Pierce (2002): ‘In
our experience it is more important to model the correlation structure in a reasonable
and meaningful way rather than to model the correlation structure perfectly’. Similar
statements can be found in Diggle et al. (2002), and Verbeke and Molenberghs (2000).
We agree with this statement as differences in p-values for the F- and t-statistics
obtained by using similar correlation structures tend to differ only marginally.

In Chapter 5, we used a slightly different mathematical notation compared to
Equation (6.1); but if we use it here, the time series model for the birds in Equation
(6.1) can be written as

Birds = Xβ + ε

The vector Birds contains all 58 bird observations, X is a matrix of dimension
58 × 3, where the first columns consists of only ones, the second column the rain-
fall data, and the third column the years. The vector β is of dimension 3 × 1, and
contains α, β1, and β2. Finally, ε is equal to a vector of length 58 with the elements
(ε1958, . . ., ε2003). Just as in Chapter 5, we can write Birds ∼ N(X × β, V), where V
is the covariance matrix of ε. It is of the form
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V = cov(ε) =

⎛

⎜⎜⎜⎜⎜⎜⎝

var(ε1958)
cov(ε1959, ε1958) var(ε1959)

cov(ε1960, ε1958) cov(ε1960, ε1959)
. . .

...
... · · · . . .

cov(ε2003, ε1958) cov(ε2003, ε1959) · · · cov(ε2003, ε2002) var(ε2003)

⎞

⎟⎟⎟⎟⎟⎟⎠

Under the independence assumption, V is a diagonal matrix of the form σ 2 × I,
where I is a 58 × 58 identity matrix. The easiest auto-correlation structure is the
so-called compound symmetry structure. We have already met this correlation struc-
ture in Chapter 5. It assumes that whatever the distance in time between two obser-
vations, their residual correlation is the same. This can be modelled as

cor(εs, εt ) =
{

1 if s = t

ρ else
(6.3)

Hence, the correlation structure in Equation (6.3) is implying the following cor-
relation matrix for ε.

cor(ε) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ
. . .

...
...

...
... · · · . . . ρ

ρ ρ · · · ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎠

This corresponds to the following covariance matrix V, where ρ = θ /(θ + σ 2).

V = cov(ε) =

⎛

⎜⎜⎜⎜⎜⎜⎝

θ + σ 2 θ θ · · · θ

θ θ + σ 2 θ · · · θ

θ θ
. . .

...
...

...
... · · · . . . θ

θ θ · · · θ θ + σ 2

⎞

⎟⎟⎟⎟⎟⎟⎠

Pinheiro and Bates (2000) mention that this correlation structure is often too
simplistic for time series, but may still be useful for short time series. It can be
implemented in R using the following code.

> M1 <- gls(Birds ∼ Rainfall + Year,

na.action = na.omit, data = Hawaii ,

correlation = corCompSymm(form =∼ Year))
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The residual correlation structure is implemented using the correlation
option in the gls function. The argument corCompSymm is the compound sym-
metry auto-correlation structure. The form argument within this argument is used
to tell R that the order of the data is determined by the variable Year. However, due to
the nature of the correlation structure, the form option is not needed (yet). Results
of the summary command are not presented here, but give AIC = 230.47, BIC =
239.16, ρ = 0, and the estimated regression parameters and p-values are the same
as for the ordinary linear regression model. So, we have made no improvements in
the model.

The next structure we discuss is the AR-1 auto-correlation. This cryptic notation
stands for an auto-regressive model of order 1. It models the residual at time s as a
function of the residual of time s – 1 along with noise:

εs = ρεs−1 + ηs (6.4)

The parameter ρ is unknown, and needs to be estimated from the data. It is rel-
atively easy to show that this error structure results in the following correlation
structure:

cor(εs, εt ) =
{

1 if s = t

ρ|t−s| else
(6.5)

Suppose ρ = 0.5 and t = s + 1. The correlation between residuals separated by
one unit in time is then 0.5. If the separation is two units in time, the correlation is
0.52 = 0.25. Hence, the further away two residuals are separated in time, the lower
their correlation. For many ecological examples, this makes sense. To emphasise the
imposed correlation structure, we show the correlation matrix for ε again.

cor(ε) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρ3 · · · ρ57

ρ 1 ρ
. . .

. . .
...

ρ2 ρ 1
. . . ρ2 ρ3

ρ3 ρ2 ρ
. . . ρ ρ2

...
. . .

. . .
. . . 1 ρ

ρ57 · · · ρ3 ρ2 ρ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following code implements the AR-1 correlation structure.

> M2 <- gls(Birds ∼ Rainfall + Year,

na.action = na.omit, data = Hawaii,

correlation = corAR1(form =∼ Year))

> summary(M2)
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The only thing that has changed compared to the compound symmetry structure
is the correlation argument corAR1. The form argument is now essential as R needs
to know position of the observations over time. The na.action option is also
required due to the missing values. The relevant output obtained by the summary
command is

Generalized least squares fit by REML

Model: Birds ∼ Rainfall + Year. Data: Hawaii

AIC BIC logLik

199.1394 207.8277 -94.5697

Correlation Structure: ARMA(1,0)

Formula: ∼Year
Parameter estimate(s):

Phi1

0.7734303

Coefficients:

Value Std.Error t-value p-value

(Intercept) -436.4326 138.74948 -3.145472 0.0030

Rainfall -0.0098 0.03268 -0.300964 0.7649

Year 0.2241 0.07009 3.197828 0.0026

Residual standard error: 2.928588

Degrees of freedom: 45 total; 42 residual

The parameter ρ is equal to 0.77. This means that residuals separated by one year
have a correlation of 0.77; by two years it is 0.772 = 0.59. This is rather high, but
seems to be in line with the pattern for the first few years in the auto-correlation
function in Fig. 6.3. The AIC indicates that the AR-1 correlation structure is a
considerable model improvement compared to the linear regression model. In gen-
eral, you would expect ρ to be positive as values at any particular point in time
are positively related to preceding time points. Occasionally, you find a negative
ρ. Plausible explanations are either the model is missing an important explanatory
variable or the abundances go from high values in one year to low values in the
next year.

6.1.1 ARMA Error Structures

The AR-1 structure can easily be extended to a more complex structure using
an auto-regressive moving average (ARMA) model for the residuals. The ARMA
model has two parameters defining its order: the number of auto-regressive
parameters (p) and the number of moving average parameters (q). The notation
ARMA(1, 0) refers to the AR-1 model described above. The ARMA(p, 0) structure
is given by
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εs = φ1εs−1 + φ2εs−2 + φ3εs−3 + · · · + φpεs−p + ηs (6.6)

The residuals at time s are modelled as a function of the residuals of the p pre-
vious time points and white noise. In this case, the function h(.) does not have an
easy formulation, see Equation (6.27) in Pinheiro and Bates (2000). The ARM(0,q)
is specified by

εs = θ1ηs−1 + θ2ηs−2 + θ3ηs−3 + · · · + θqηs−q + ηs (6.7)

And the ARMA (p, q) is a combination of the two. You should realise that all
these p and q parameters have to be estimated from the data, and in our experience,
using values of p or q larger than 2 or 3 tend to give error messages related to
convergence problems. Even for p = q = 3, it already becomes an art to find starting
values so that the algorithm converges. Obviously, this also depends on the data, and
how good the model is in terms of fixed covariates (year and rainfall in this case).
The ARMA(p, q) can be seen as a black box to fix residual correlation problems.

The implementation of the ARMA(p, q) error structure in R is as follows.

> cs1 <- corARMA(c(0.2), p = 1, q = 0)

> cs2 <- corARMA(c(0.3, -0.3), p = 2, q = 0)

> M3arma1 <-gls(Birds ∼ Rainfall + Year,

na.action = na.omit,

correlation = cs1, data = Hawaii)

> M3arma2 <- gls(Birds ∼ Rainfall + Year,

na.action = na.omit,

correlation = cs2, data = Hawaii)

> AIC(M3arma1, M3arma2)

This code applies the ARMA(1,0) and ARMA(2,0) error structure. We chose
arbitrary starting values. For larger values of p and q, you may need to change these
starting values a little.

Finding the optimal model in terms of the residual correlation structure is then
a matter of applying the model with different values of p and q. But remember the
citation from Schabenberger and Pierce (2002) given at the start of this section; there
is not much to be gained from finding the perfect correlation structure compared to
finding one that is adequate. We tried each combination of p = 0, 1, 2, 3 and q = 0,
1, 2, 3, and each time we wrote down the AIC. Because not all the models are nested,
we cannot apply a likelihood ratio test and have therefore based our model selection
on the AIC. The lowest AICs were obtained by the ARMA(2,0) and ARMA(2,3)
models and were 194.5 and 194.1, respectively. Both AICs differed only in the first
decimal, and we selected the ARMA(2,0) model as it is considerably less complex
than the ARMA(2,3) model. Recall that the linear regression model without a resid-
ual auto-correlation structure had AIC = 228.47, and the AR-1 structure gave AIC =
199.13. So, going from no residual correlation to an AR-1 structure gave a
large improvement, while the more complicated structures gave only a marginal
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improvement. The estimated auto-regressive parameters of the ARMA(2,0) model
were ϕ1 = 0.99 and ϕ2 = –0.35. The value for ϕ1 close to 1 may indicate a more
serious problem of the residuals being non-stationary (non-constant mean or vari-
ance). Note that the auto-correlation function in Fig. 6.3 becomes positive again for
larger time lags. This suggests that an error structure that allows for a sinusoidal
pattern may be more appropriate.

The correlation structure can also be used for generalised additive models, and
it is also possible to have a model with residual correlation and/or heterogeneity
structures.

6.2 Linear Regression Model and Multivariate Time Series

Figure 6.4 shows the untransformed abundances of two bird species (stilts and coots)
measured on the islands Maui and Oahu. These time series form part of a larger data
set analysed in Reed et al. (2007), but these four series are the most complete. Again,
we use annual rainfall and year as explanatory variables to model bird abundances.
Preliminary analyses suggested a linear rainfall effect that was the same for all four
time series and a non-linear trend over time. Hence, a good starting model is

Birdsis = αi + β × Rainfallis + fi (Years) + εis (6.8)
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Fig. 6.4 Time series of (untransformed) silt and coot abundances on the islands of Maui and Oahu
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Birdis is the value of time series i (i = 1, . . ., 4) in year s (s = 1, . . ., 48). For
the moment, we treat the time series for the two species and two islands as different
time series. The intercept αi allows for a different mean value per time series. An
extra motivation to use no rainfall–species or rainfall–island interaction is that some
intermediate models had numerical problems with the interaction term. Years is the
year and fi(Years) is a smoother for each species–island combination. If we remove
the index i, then all four time series are assumed to follow the same trend.

The range of the y-axes in the lattice plot immediately indicates that some species
have considerably more variation, indicating violation of homogeneity. The solution
is to allow for different spread per time series.

The following code (i) imports the data into R, (ii) creates the lattice graph in
Fig. 6.4, and (iii) applies the model in Equation (6.8).

> library(AED); data(Hawaii)

> Birds <- c(Hawaii$Stilt.Oahu, Hawaii$Stilt.Maui,

Hawaii$Coot.Oahu, Hawaii$Coot.Maui)

> Time <- rep(Hawaii$Year, 4)

> Rain <- rep(Hawaii$Rainfall, 4)

> ID <- factor(rep(c("Stilt.Oahu", "Stilt.Maui",

"Coot.Oahu", "Coot.Maui"),

each = length(Hawaii$Year)))

> library(lattice)

> xyplot(Birds ∼ Time | ID, col = 1)

> library(mgcv)

> BM1<-gamm(Birds ∼ Rain + ID +

s(Time, by = as.numeric(ID == "Stilt.Oahu")) +

s(Time, by = as.numeric(ID == "Stilt.Maui")) +

s(Time, by = as.numeric(ID == "Coot.Oahu")) +

s(Time, by = as.numeric(ID == "Coot.Maui")),

weights = varIdent(form =∼ 1 | ID))

The first line imports the data. The next line stacks all four time series and calls
it ‘Birds’. Obviously, we also have to stack the variables Year and Rainfall, and the
rep command is a useful tool for this. Finally, we need to make sure we know
which observation belongs to which time series, and this is done using the variable
‘ID’. The familiar xyplot command from the lattice package draws Fig. 6.4. The
interested reader can find information on how to add gridlines, connect the dots, etc.,
in other parts of this book. The model in Equation (6.8) is an additive model with
Gaussian distribution. The weights option with the varIdent argument was
discussed in Chapter 4. Recall that it implements the following variance structure:

εs ∼ N (0, σ 2
i ) i = 1, · · · , 4 (6.9)

Each time series is allowed to have a different residual spread. The by =
as.numeric(.) command ensures that each smoother is only applied on one
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time series. The same model could have been fitted with the gam command instead
of the gamm, but our choice allows for a comparison with what is to come.

The numerical output for the smoothing model is given below.

> summary(BM1$gam)

Family: gaussian. Link function: identity
Formula: Birds ∼ Rain + ID +

s(Time, by = as.numeric(ID == "Stilt.Oahu")) +
s(Time, by = as.numeric(ID == "Stilt.Maui")) +
s(Time, by = as.numeric(ID == "Coot.Oahu")) +
s(Time, by = as.numeric(ID == "Coot.Maui"))

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 225.3761 20.0596 11.235 < 2e-16
Rain -4.5017 0.8867 -5.077 9.93e-07
IDCoot.Oahu 237.7378 30.3910 7.823 5.06e-13
IDStilt.Maui 117.1357 14.9378 7.842 4.53e-13
IDStilt.Oahu 257.4746 27.1512 9.483 < 2e-16

Approximate significance of smooth terms:
edf Est.rank F p-value

s(Time):as.numeric(ID == "Stilt.Oahu") 1.000 1 13.283 0.000355
s(Time):as.numeric(ID == "Stilt.Maui") 1.000 1 20.447 1.14e-05
s(Time):as.numeric(ID == "Coot.Oahu") 6.660 9 8.998 4.43e-11
s(Time):as.numeric(ID == "Coot.Maui") 2.847 6 3.593 0.002216

R-sq.(adj) = 0.813 Scale est. = 26218 n = 188

The problem here is that the p-values assume independence and because the data
are time series, these assumptions may be violated. However, just as for the univari-
ate time series, we can easily implement a residual auto-correlation structure, for
example, the AR-1:

εis = ρεi,s−1 + ηis (6.10)

As before, this implies the following correlation structure:

cor(εis, εit) =
{

1 if s = t

ρ|t−s| else
(6.11)

The correlation between residuals of different time series is assumed to be 0.
Note that the correlation is applied at the deepest level: Observations of the same
time series. This means that all time series have the same ρ. The following R code
implements the additive model with a residual AR-1 correlation structure.

> BM2 <- gamm(Birds ∼ Rain + ID +

s(Time, by = as.numeric(ID == "Stilt.Oahu")) +

s(Time, by = as.numeric(ID == "Stilt.Maui")) +
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s(Time, by = as.numeric(ID == "Coot.Oahu")) +

s(Time, by = as.numeric(ID == "Coot.Maui")),

correlation = corAR1(form =∼ Time | ID ),

weights = varIdent(form = ∼1 | ID))

> AIC(BM1$lme, BM2$lme)

The only new piece of is the correlation = corAR1 (form = ∼Time
| ID). The form option specifies that the temporal order of the data is speci-
fied by the variable Time, and the time series are nested. The auto-correlation is
therefore applied at the deepest level (on each individual time series), and we get
one ρ for all four time series. The AIC for the model without auto-correlation is
2362.14 and with auto-correlation it is 2351.59, which is a worthwhile reduction.
The anova(BM2$gam) command gives the following numerical output for the
model with AR-1 auto-correlation.

Parametric Terms:
df F p-value

Rain 1 18.69 2.60e-05
ID 3 20.50 2.08e-11

Approximate significance of smooth terms:
edf Est.rank F p-value

s(Time):as.numeric(ID == "Stilt.Oahu") 1.000 1.000 27.892 3.82e-07
s(Time):as.numeric(ID == "Stilt.Maui") 1.000 1.000 1.756 0.187
s(Time):as.numeric(ID == "Coot.Oahu") 6.850 9.000 22.605 < 2e-16
s(Time):as.numeric(ID == "Coot.Maui") 1.588 4.000 1.791 0.133

The Oahu time series have a significant long-term trend and rainfall effect,
whereas the Maui time series are only affected by rainfall. The plot(BM2$gam,
scale = FALSE) command produces the four panels in Fig. 6.5. Note
that the smoothers in panels B and D are not significant. Further model
improvements can be obtained by dropping these two smoothers from the
model.

The long-term trend for stilts on Oahu (panel A) is linear, but the coots on Oahu
show a non-linear trend over time. Abundances are increasing from the early 1970s
onwards. The results from the summary(BM2$gam) command are not shown, but
indicate that the rainfall effect is negative and highly significant (p < 0.001). The
adjusted R2 is 0.721. The summary(BM2$lme) results are not shown either, but
give ρ = 0.32, large enough to keep it in the model.

The normalised residuals are plotted versus time in Fig. 6.6. The stilt residu-
als at Maui show some evidence of heterogeneity over time. It may be an option
to use the varComb option to allow for heterogeneity per time series (as we
have done here) but also along time, see Chapter 4. We leave this as an exercise
for the reader. If you do attempt to apply such a model, it would make sense to
remove the square root transformation. Figure 6.5 was created using the following
R code.
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Fig. 6.5 A: Significant smoother for stilts in Oahu showing a linear increase over time. B:
Non-significant smoother for stilts on Maui. C: Significant smoother for coots on Oahu. D:
Non-significant smoother for coots on Maui. The four panels were created with the par (mfrow
= c (2,2)) command before the plot command

> E2 <- resid(BM2$lme, type = "normalized")

> EAll <- vector(length = length(Birds))

> EAll[] <- NA

> I1 <- !is.na(Birds)

> EAll[I1] <- E2

> library(lattice)

> xyplot(EAll ∼ Time | ID, col = 1, ylab = "Residuals")

The only difficult aspect of the R code is dealing with missing values. Our
approach is to create a vector EAll of length 192, fill in missing values, and fill
in the matching values of the residuals E2 at the right places (i.e. where we do not
have missing values).

We need to investigate one last aspect. The model we applied above assumes
that residuals are normally distributed with a variance that differs per time series
and allows for auto-correlation within a time series. But, we also assume there is no
correlation of residuals for different time series. This assumption could be violated
if birds on one island are affecting those on other islands. Or there may be other
biological reasons why the residual patterns of different time series are correlated.
Whatever the biological reason, we need to verify this assumption. This is done by
calculating the correlation coefficients between the four residual time series. If these
correlation coefficients are reasonably small, we can assume independence between
residuals of different time series. The following code extracts the residuals per time
series, calculates an auto-correlation function, and a 4-by-4 correlation matrix.



6.2 Linear Regression Model and Multivariate Time Series 157

Time

R
es

id
ua

ls

–2

–1

0

1

2

3

1960 1970 1980 1990 2000

Coot.Maui Coot.Oahu

Stilt.Maui

1960 1970 1980 1990 2000

–2

–1

0

1

2

3
Stilt.Oahu

Fig. 6.6 Normalised residuals obtained by the additive model that allows for heterogeneity and an
AR-1 residual error structure. The residual spread for the stilt at Oahu are perfect, but the residual
spread for the stilts at Maui show a clear increase. One can argue about the interpretation of coot
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> E1 <- EAll[ID == "Stilt.Oahu"]

> E2 <- EAll[ID == "Stilt.Maui"]

> E3 <- EAll[ID == "Coot.Oahu"]

> E4 <- EAll[ID == "Coot.Maui"]

> par(mfrow = c(2, 2))

> acf(E1, na.action = na.pass)

> acf(E2, na.action = na.pass)

> acf(E3, na.action = na.pass)

> acf(E4, na.action = na.pass)

> D <- cbind(E1, E2, E3, E4)

> cor(D, use = "pairwise.complete.obs")

Results are not presented here, but all correlation coefficients are smaller than 0.2,
except for the correlation coefficient between stilts and coots on Maui (r = 0.46).
This may indicate that the model is missing an important covariate for the Maui time
series. The three options are (i) find the missing covariate and put it into the model,
(ii) extend the residual correlation structure by allowing for the correlation, and (iii)
ignore the problem because it is only one out of the six correlations, and all p-values
in the model were rather small (so it may have little influence on the conclusions).
If more than one correlation has a high values, option (iii) should not be considered.
You could try programming your own correlation structure allowing for spatial and
temporal correlation.
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6.3 Owl Sibling Negotiation Data

In Section 5.10, we analysed the owl sibling negotiation data. The starting point was
a model of the form:

LogNegis = α + β1 × SexParentis + β2 × FoodTreatmentis+
β3 × ArrivalTimeis + β4 × SexParentis × FoodTreatmentis+
β5 × SexParentis × ArrivalTimeis + εis

LogNegis is the log transformed sibling negotiation at time s in nest i. Recall
that we used nest as a random intercept, and therefore, the compound correlation
structure was imposed on the observations from the same nest. We can get the same
correlation structure (and estimated parameters) by specifying this correlation struc-
ture explicitly with the R code:

> library(AED) ; data(Owls)

> library(nlme)

> Owls$LogNeg <- log10(Owls$NegPerChick + 1)

> Form <- formula(LogNeg ∼ SexParent * FoodTreatment +

SexParent * ArrivalTime)

> M2.gls <- gls(Form, method = "REML", data = Owls,

correlation = corCompSymm(form =∼ 1 | Nest))

You will see that the summary(M2.gls) command produces exactly the same
estimated parameters and correlation structure compared to the random intercept
model presented in Section 5.10. The summary command gives an estimated cor-
relation of 0.138. Hence, the correlation between any two observations from the
same nest i is given by

cor (εis, εit) = 0.138

It is important to realise that both random intercept and compound correlation
models assume that the correlation coefficient between any two observations from
the same nest are equal, whether the time difference is 5 minutes or 5 hours. Based
on the biological knowledge of these owls, it is more natural to assume that observa-
tions made close to each other in time are more similar than those separated further
in time. This sounds like the auto-regressive correlation structure of order 1, which
was introduced in Section 6.1, and is given again below.

cor (εis, εit) = ρ|t−s|

There are two ‘little’ problems. The numbers below are the first 12 lines of the
data file and were obtained by typing
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> Owls[Owls$Nest=="AutavauxTV",1:5]

Nest FoodTreatment SexParent ArrivalTime SiblingNegotiation
1 AutavauxTV Deprived Male 22.25 4
2 AutavauxTV Satiated Male 22.38 0
3 AutavauxTV Deprived Male 22.53 2
4 AutavauxTV Deprived Male 22.56 2
5 AutavauxTV Deprived Male 22.61 2
6 AutavauxTV Deprived Male 22.65 2
7 AutavauxTV Deprived Male 22.76 18
8 AutavauxTV Satiated Female 22.90 4
9 AutavauxTV Deprived Male 22.98 18
10 AutavauxTV Satiated Female 23.07 0
11 AutavauxTV Satiated Female 23.18 0
12 AutavauxTV Deprived Female 23.28 3

The experiment was carried out on two nights, and the food treatment changed.
Observations 1 and 2 were made at 22.25 and 22.38 hours, but the time difference
between them is not 13 minutes, but 24 hours and 13 minutes! So, we have to be
very careful where we place the auto-regressive correlation structure. It should be
within a nest on a certain night. The random intercept and the compound correlation
models place the correlation within the same nest, irrespective of the night.

The second problem is that the observations are not regularly spaced, at least not
from our point of view; see Fig. 6.7. However, from the owl parent’s point of view,
time between visits may be regularly spaced. With this we mean that it may well
be possible that the parents chose the nest visiting times. Obviously, if there is not
enough food, and the parents need a lot of effort or time to catch prey, this is not a
valid assumption. But if there is a surplus of food, this may well be a valid assump-
tion. For the sake of the example, let us assume the owls indeed chose the times,
and therefore, we consider the longitudinal data as regularly spaced. This basically
means that we assume that distances (along the time axis) between the vertical lines
in Fig. 6.7 are all the same. A similar approach was followed in Ellis-Iversen et al.
(2008). Note that this is a biological assumption.

In this scenario, we can consider the visits at a nest on a particular night as regular
spaced and apply the models with an auto-regressive correlation structure, e.g. the
corAR1 structure. The following R code does the job (the first few lines are used
for Fig. 6.7):

> library(lattice)

> xyplot(LogNeg ∼ ArrivalTime | Nest, data = Owls,

type = "h", col = 1, main = "Deprived",

subset = (FoodTreatment == "Deprived"))

> M3.gls <- gls(Form, method = "REML", data = Owls,

correlation = corAR1(form =∼ 1 |
FoodTreatment))
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Fig. 6.7 Log-transformed sibling negotiation data versus arrival time. Each panel shows the data
from one nest on a particular night. A similar graph can be made for the satiated data. R code to
make this graph is given in the text

The variables FoodTreatment and Nest identify the group of observa-
tions from the same night, and the correlation is applied within this group. As a
result, the index i in the model does not represent nest, but night in the nest. The
summary(M3.gls) command shows that the estimated auto-correlation is 0.418,
which is relatively high. The whole 10-step protocol approach can now be applied
again: first chose the optimal random structure and then the optimal fixed structure.
You can also choose to model arrival time as a smoother, just as we did in Section
5.8. This gives a GAM with auto-correlation.

The model with the auto-regressive correlation structure assumes that observa-
tions from different nests are independent and also that the observations from the
same nest on two different nights are independent. It may be an option to extend
the model with the AR1 correlation structure with a random intercept nest. Such
a model allows for the compound correlation between all observations from the
same nest, and temporal correlation between observations from the same nest and
night. But the danger is that the random intercept and auto-correlation will fight
with each other for the same information. These types of models are also applied in
Chapter 17, where station is used as a random intercept and a correlation structure
is applied along depth, but within the station.



Chapter 7
Violation of Independence – Part II

In the previous chapter, we discussed violation of independence for measurements
taken repeatedly over time and how temporal correlation structures can be added
to linear regression and additive models. We used a regular spaced data set. In this
chapter, we consider data measured at multiple spatial locations, and we show how
similar correlation structures can be used. The ‘Part II’ in the title refers to irregular
spaced data, either in space, time, or along an age or depth gradient. The general
principle with spatial data is that things that are close to each other are likely to be
more similar than things that are further apart (Tobler, 1979).

In this chapter, we use various examples. The first example uses data obtained
at multiple spatial locations. We then revisit the Hawaiian bird data and show how
to add spatial correlation to time series models. We also present an example where
a correlation structure along an age gradient is required. In Section 7.5, we discuss
the possibility that spatial correlation may be due to missing covariates. In the final
section, we analyse data from a bird behavioural study, but this time with short
longitudinal (temporal) measurements.

7.1 Tools to Detect Violation of Independence

In this section, we use data from Chapter 37 in Zuur et al. (2007). The case study
in that chapter illustrates the application of spatial analysis methods on a boreal
forest in Tatarstan, Russia. Using remotely sensed data and spatial statistical meth-
ods, they explored the influence of relief, soil, and climatic factors on the forests of
the Raifa section of Volzhsko-Kamsky State Nature Biosphere. The response vari-
able is a boreal forest index and is defined as the number of species that belong
to a set of boreal species divided by the total number of species at a site. Several
remotely sensed variables derived from the LANDSAT 5 satellite images were used
as explanatory variables: (i) the normalised difference vegetation index, (ii) temper-
ature, (iii) an index of wetness, and (iv) an index of greenness. A data exploration
indicated high collinearity between these variables, and we therefore only used wet-
ness. In addition to these variables, we also know the latitude (X) and longitude (Y)
of each site. Boreality was transformed using the following transformation:

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 7,
C© Springer Science+Business Media, LLC 2009
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zi = (1000 × (Si + 1)/ni )
1/2

where zi is transformed boreality, Si is the number of species that belong to boreal
coenosis species, and ni is the number of all species at the site i. See Cressie (p. 395,
1993) for a discussion of this transformation.

In Chapter 6, we started by applying a model without a temporal correlation
structure and used graphical tools to asses violation of independence. As a second
step, we made an auto-correlation (ACF) of the residuals, and finally we added a
temporal correlation structure to the regression and GAM models. The same can be
done for spatial data. We first fit the following linear regression model.

zi = α + β × Wetnessi + εi

where zi is the transformed boreality, Wetnessi is the wetness at site i, and the index
i = 1, . . ., 533. The following R code imports the data and applies the transformation
and linear regression.

> library(AED); data(Boreality)

> Boreality$Bor <- sqrt(1000 * (Boreality$nBor + 1) /

(Boreality$nTot))

> B.lm <- lm(Bor ∼ Wet, data = Boreality)

> summary(B.lm)

The results from the summary command are not given here, but the explanatory
variable Wetness is highly significant (t = 15.64, df = 532, p < 0.001). Based on
residual graphs (not shown here), homogeneity is a reasonable assumption. As a first
step to verify independence, we plot the residuals versus their spatial coordinates.
The package gstat (Pebesma, 2004) has a nice tool for this called a bubble plot,
see Fig. 7.1. This package is not part of the base installation and you will need to
install it from the R website. The size of the dots is proportional to the value of the
residuals. This graph should not show any spatial pattern (e.g. groups of negative
or positive residuals close to each other). If it does, then their may be a missing
covariate or spatial correlation. In this case, there seems to be some spatial pattern
as most of the positive residuals as well as the negative residuals are showing some
clustering. The following R code was used to create the graph:

> E <- rstandard(B.lm)

> library(gstat)

> mydata <- data.frame(E, Boreality$x, Boreality$y)

> coordinates(mydata) <- c("Boreality.x","Boreality.y")

> bubble(mydata, "E", col = c("black","grey"),

main = "Residuals", xlab = "X-coordinates",

ylab = "Y-coordinates")

The first part of the R code extracts the standardised residuals, loads the gstat
package, and creates a data frame containing the residuals and the coordinates.
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Fig. 7.1 Standardised residuals obtained by the linear regression model plotted versus their spatial
coordinates. Black dotes are negative residuals, and grey dots are positive residuals

The coordinates command is from the gstat package and ensures that the
bubble functions know that x and y are spatial coordinates. The names of the x
and y columns in the coordinates command must match the ones from the data
frame, hence the ‘Boreality’ in ‘Boreality.x’.

As an alternative to the informal approach of making a bubble plot of residuals
and judging whether there is spatial dependence, you can make a variogram of the
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residuals. In Chapter 6, we used the ACF to judge whether there was dependence
over time. For this, we assumed stationarity of the residuals and calculated the cor-
relation between εs and εs+k, where k is the time lag. So residuals that are separated
by k time units are aggregated to calculate the ACF.

In the forest data example, we do not have residuals at time s and t, but we have
residuals at sites i and j and instead of using the ACF, we use the variogram. It is
defined by:

γ (x1, x2) = 1

2
E

[
(Z (x1) − Z (x2))2

]

This is a function that measures the spatial dependence between two sites with
coordinates x1 and x2. If these two sites are located close to each other, then you
would expect the values of the variables of interest (residuals in this case) are similar.
A low value of γ (x1, x2) indicates that this is indeed the case (dependence), whereas
a large value indicates independence. Spatial statistics tends to be rather compli-
cated and intimidating. Zuur et al. (2007) discussed various aspects like ergodicity,
stationarity, and weak stationarity. Without going into detail here, weak stationarity
leads to the following variogram.

γ (h) = 1

2
Var [(Z (x + h) − Z (x)] .

In the same way as the ACF measures the temporal dependence by comparing the
value of Z at times t and t + k, so does the variogram in space. Instead of comparing
all time points that are separated by k units, it takes all points that are separated by
a vector h, and it uses these to calculate the sample (or experimental) variogram:

γ̂ (h) = 1

2 N (h)

N (h)∑

i=1

[z(xi + h) − z(xi )]
2

The hat notation ˆ is used because it is an estimator based on sample data. If
there is spatial dependence, points close to each other tend to have similar values
and the experimental variogram will be small. Large values for the experimental
variogram indicate spatial independence. There are all kinds of ‘little’ details that
play a role here, for example, the number of points that are exactly separated by a
distance h. This is the N(h). In reality only a few points, if any, are separated exactly
by a distance h. The software code used to estimate the variogram puts a small
range around h so that enough points are available for analysis. Another important
issue is that we assume isotropy. This means that the spatial dependence of the
residuals is the same in any direction. If this is not the case, we cannot calculate the
variogram using sites that are separated by a distance h in any direction. If you do
not have isotropy in the residuals, you may try to add more covariates and model
the anisotropy.
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Fig. 7.2 Variogram with fitted line. The sill is the asymptotic value and the range is the distance
where this value occurs. Pairs of points that have a distance larger than the range are uncorrelated.
The nugget effect occurs if γ̂ (h) is far from 0 for small h

Figure 7.2 shows a theoretical variogram (line) plus some simulated data (dots).
Along the x-axis, the distances between the sites are plotted, and along the y-axis,
the estimated values of the variogram are plotted. Spatial dependence shows itself
as an increasing band of points, which then levels off at a certain distance. The point
along the x-axis at which this pattern levels off is called the range, and the y-value
at the range is the sill. The nugget is the y-value when the distance is 0. It represents
the discontinuity of the variable caused by spatial structures at distances less than
the minimum distance between points.

Figure 7.3A shows the experimental variogram for the residuals of the linear
regression model applied on the forest boreality data. Note that there is a clear spatial
correlation up to about 1000 m. There is also a nugget effect of approximately 0.75.
The following R code was used to create the experimental variogram.

> Vario1 <- variogram(E ∼ 1, mydata)

> plot(Vario1)

Note that this variogram assumes isotropy; the strength of the spatial correlation
is the same in each direction. We can verify this by making experimental variograms
in multiple directions; see Fig. 7.3B. It seems that isotropy is a reasonable assump-
tion as the strength, and pattern, of the spatial correlation seems to be broadly the
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Fig. 7.3 A: Semi-variogram of the standardised residuals obtained by the linear regression model.
The semi-variogram assumes isotropy. Note that there is spatial correlation up to 1000 m. B: Exper-
imental variograms for four different directions

same in all four directions. The code to produce this graph is similar as above, except
that the argument alpha = c(0, 45, 90, 135) is added to the variogram
function.

> Vario2 <- variogram(E ∼ 1, mydata,

alpha = c(0, 45, 90, 135))

> plot(Vario2)

7.2 Adding Spatial Correlation Structures to the Model

Both the bubble plot and the experimental variogram indicate that there is spatial
correlation in the residuals, and Fig. 7.3 seems to suggest that isotropy is a reason-
able assumption. We are now going from an informal assessment (looking at the
bubble plot or experimental variogram) to a more formal approach. Now we include
the correlation structure and use the AIC, BIC, or likelihood ratio test to judge the
best model, the one with or without spatial correlation. This process works in a sim-
ilar way as in the previous chapter. The only conceptual difference is that time goes
in only one direction and space goes in multiple directions.

The question now is how do we include a spatial residual correlation structure
in a linear regression, additive model, or (additive) mixed model? In Chapter 6,
temporal dependences were included using the AR-1 or ARMA structures. Recall
that these were used to parameterise the correlation function h() in

cor(εs, εt ) =
{

1 if s = t

h(εs, εt , ρ) else
(7.1)
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We now need to do the same trick we used with the time series, but this time,
based on the shape of the variogram we need to choose a parameterisation for the
correlation function h(). Options available in the R package nlme are as follows:

• Exponential correlation using the function corExp.
• Gaussian correlation using the function corGaus.
• Linear correlation using the function corLin.
• Rational quadratic correlation using the function corRatio.
• Spherical correlation using the function corSpher.

Each of these options implies a specific mathematical structure for the function
h(), and a good overview is given in Schabenberger and Pierce (2002). Instead of
diving straight into these formulae, it is perhaps more useful to first look at a couple
of typical shapes implied by these spatial correlation structures. In Fig. 7.4, we show
several theoretical variograms; the Gaussian, linear, rational quadratic, exponential,
and the spherical correlation. Lines in the same panel were obtained by using a
different range and sill. Some of these curves look similar and selecting the right
one is a matter of expertise and pre-knowledge.

The R code for Fig. 7.4 is not given in full here. Instead, we show how to make
one particular variogram, which should provide the background required to build
the others.

> library(nlme)

> D <- seq(from = 0, to = 1, by = 0.1)

> Mydata2 <- data.frame(D = D)

> cs1C <- corSpher(c(0.8, 0.1), form = ∼ D, nugget = TRUE)

> cs1C <- Initialize(cs1C, data = Mydata2)

> v1C <- Variogram(cs1C)

> plot(v1C, smooth = FALSE, type = "l", col = 1)

The first line creates an artificial distance gradient from 0 to 1, which we store
in the data frame mydata. It is used in the function corSpher, which takes as
arguments the range and the sill (optional) and the form option that specifies the
gradient. Note that the sill is scaled to 1 by this particular Variogram function
from the nlme package. The function uses the specified range and sill, substitutes
these in the formulae for the spherical correlation (Schabenberger and Pierce, 2002),
and calculates the corresponding variogram values. The multipanel plot in Fig. 7.4
is then a matter of repeating this with different ranges and sills and correlation func-
tions, and then, with a bit of R magic, using the rep function and xyplot.

Some of the underlying formulae for the variogram are intimidating and some
are surprisingly simple. For example, the exponential correlation structure is
given by

γ (s, ρ) = 1 − e
s
ρ
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where ρ is the range and s the distance. If you decide to add a nugget effect c0, the
formulation changes to

γ (s, ρ) =
{

c0 + (1 − c0)(1 − e
s
ρ ) if s > 0

0 if s = 0

All this does is specify that the variogram is 0 for s = 0, shifts up the curve with
c0, and ensures it is not larger than 1. The Gaussian model is similar, but it squares
the s/ρ term. The linear, rational quadratic, and spherical correlations are slightly
more complicated and are not given here, but the principle is the same. The function
γ (s,ρ) is actually called the correlogram; you need to multiply it with the variance
to get the variogram.

So, our task is to extract the (standardised; observed, minus fitted, and potentially
corrected for heterogeneity) residuals from the linear regression or GLS model,
make an experimental variogram of the residuals, and judge which correlation
structure is the most appropriate. We look at this process using the boreality for-
est data. Instead of the function variogram from the gstat package, we use
the Variogram function from the nlme package as it takes as input the object
from a gls, lme, or gamm command. The following R code produces a simi-
lar experimental variogram for the residuals of the linear regression model as in
Fig. 7.3A.

> library(nlme)

> f1 <- formula(Bor ∼ Wet)

> B1.gls <- gls(f1, data = Boreality)
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> Vario.gls <- Variogram(B1.gls, form =∼ x + y,

robust = TRUE, maxDist = 2000,

resType = "pearson")

> plot(Vario.gls, smooth = TRUE)

The first three lines apply the same linear regression model as above (transformed
boreality as a function of wetness), but now with the gls command. The function
Variogram takes the object from the gls function and extracts the standardised
residuals (because we specified this type of residuals with the resType option).
It then calculates the experimental variogram. The x and y-coordinates are used to
calculate distances (using Pythagoras theorem) between points. To aid visual inter-
pretation, a LOESS smoother was added, but can be suppressed using smooth =
FALSE. Sometimes it is handy to add it, and sometimes it is not. The robust
and maxDist are further parameters for calculating the experimental variogram
(Cressie, 1993). Spatial independence is a likely assumption if the experimental
variogram shows a band of horizontal points, but this is not the case here.

Instead of judging from the experimental variogram whether residual indepen-
dence can be assumed, we can add a spatial correlation structure to the GLS model
and compare it with the model without the spatial correlation. The following R code
adds the various correlation structures to the GLS model.

> B1A <- gls(f1, correlation = corSpher(form =∼ x + y,

nugget = TRUE), data = Boreality)

> B1B <- gls(f1, correlation = corLin(form =∼ x + y,

nugget = TRUE), data = Boreality)

> B1C <- gls(f1, correlation = corRatio(form =∼ x + y,

nugget = TRUE), data = Boreality)

> B1D <- gls(f1, correlation = corGaus(form =∼ x + y,

nugget = TRUE), data = Boreality)

> B1E <- gls(f1, correlation = corExp(form =∼ x + y,

nugget = TRUE), data = Boreality)

> AIC(B1, B1A, B1B, B1C, B1D, B1E)

We could have used the update command, but in this case, it does not shorten
the code. If there are convergence problems (and this can happen quite often), then
it may help to modify the lmeControl settings (see its help file). The anova
or AIC command can be used to obtain the AIC values, and these are given in
Table 7.1. The AIC of the model with no correlation is 2844.54, but the models
with the corLin, corGaus, and corExp correlation structures have considerable
lower AIC values, making them all candidate models. So adding a spatial correlation
structure improves the model, as judged by the AIC.

We can also apply a hypothesis test with the anova(B1, B1E) command (we
could have used any of the other candidate models). It gives L = 116.31, (df = 2,
p < 0.001), indicating that adding a spatial correlation structure gives a significantly
better model.
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Table 7.1 AIC values obtained by adding various correlation structures to the linear regression
model. The first column shows which correlation structure is added, the second column the object
name, all models with spatial correlation use two extra parameters, and the last column gives
the AIC

Model Object df AIC

No correlation B1 3 2844.54
corSpher B1A 5 2737.01
corLin B1B 5 2848.51
corRatio B1C 5 2732.93
corGaus B1D 5 2736.29
corExp B1E 5 2732.22

From the AICs and likelihood ratio test, we can conclude that we are violating
the independence assumption in the linear regression model. So the remaining ques-
tion is now whether adding any of these spatial correlation structures can solve the
independence problem. The commands

> Vario1E <- Variogram(B1E, form =∼ x + y,

robust = TRUE, maxDist = 2000,

resType = "pearson")

> plot(Vario1E, smooth = FALSE)

will show the experimental variogram with the fitted spatial correlation (results are
not shown here), and the following code

> Vario2E <- Variogram(B1E, form =∼ x + y,

robust = TRUE, maxDist = 2000,

resType = "normalized")

> plot(Vario2E, smooth = FALSE)

does the same for the normalised residuals. The later ones should no longer show
a spatial correlation (you should see a horizontal band of points). Results are not
presented here, but the experimental variogram of the normalised residuals indeed
form a horizontal band of points, indicating spatial independence.

Note that we should apply the same 10-step protocol we used in Chapters 4 and 5.
First determine the optimal random structure using REML estimation, using as
many fixed covariates as possible. (However, here all covariates are highly collinear;
so there is effectively only one variable.) Once the optimal random structure has
been found, the optimal fixed structure can be found using the tools described in
Chapters 4 and 5. So, the whole REML and ML process used earlier also applies
here.

For this chapter, we used the GLS model. If a random effects model is used, the
spatial correlation structure is applied within the deepest level of the data. See also
Chapters 16 and 17 where we impose a correlation structure on nested data.
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7.3 Revisiting the Hawaiian Birds

Now we return to the Hawaiian bird data set, which we left with an AR1 auto-
correlation structure. In the previous section, we used the form =∼ x + y argu-
ment in the correlation option. If included in the gls, lme, or gamm function,
it ensures that R calculates distances between the sampling points with coordi-
nates given by x and y. The default option to calculate distances is Euclidean dis-
tances (using Pythagoras) and alternatives are Manhattan and maximum distances
(Pinheiro and Bates, 2000). In the Hawaiian data, we used form =∼ Time | ID in
the corAR1 function. Nothing stops us using for example a spatial correlation func-
tion like corSpher for time series. It can cope better with missing values and irreg-
ularly spaced data. In fact, the corExp structure is closely related to the corAR1
(Diggle et al., 2002). The following code applies the model with the corAR1 struc-
ture and all four spatial correlation functions. We copied and pasted the code from
Chapter 6 to access the data.

> library(AED); data(Hawaii)

> Birds <- c(Hawaii$Stilt.Oahu, Hawaii$Stilt.Maui,

Hawaii$Coot.Oahu, Hawaii$Coot.Maui)

> Time <- rep(Hawaii$Year, 4)

> Rain <- rep(Hawaii$Rainfall, 4)

> ID <- factor(rep(c("Stilt.Oahu", "Stilt.Maui",

"Coot.Oahu", "Coot.Maui"),

each = length(Hawaii$Year)))

> library(mgcv); library(nlme)

> #Define the fixed part of the model

> f1 <- formula(Birds ∼ Rain + ID +

s(Time, by = as.numeric(ID == "Stilt.Oahu"))+

s(Time, by = as.numeric(ID == "Stilt.Maui"))+

s(Time, by = as.numeric(ID == "Coot.Oahu"))+

s(Time, by = as.numeric(ID == "Coot.Maui")))

> #Fit the gamms

> HawA <- gamm(f1, method = "REML", correlation =
corAR1(form =∼ Time | ID),

weights = varIdent(form =∼ 1 | ID))

> HawB <- gamm(f1, method = "REML", correlation =
corLin(form =∼ Time | ID, nugget = TRUE),

weights = varIdent(form =∼ 1| ID))

> HawC <- gamm(f1, method = "REML", correlation =
corGaus(form =∼ Time | ID, nugget = TRUE),

weights = varIdent(form =∼ 1| ID))

> HawD <- gamm(f1, method = "REML", correlation =
corExp(form =∼ Time | ID, nugget = TRUE),

weights = varIdent(form =∼ 1 | ID))
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> HawE <- gamm(f1, method = "REML", correlation =
corSpher(form =∼ Time | ID, nugget = TRUE),

weights = varIdent(form =∼ 1| ID))

> #Compare the models

> AIC(HawA$lme, HawB$lme, HawC$lme, HawD$lme, HawE$lme)

df AIC

HawA$lme 18 2277.677

HawB$lme 19 2281.336

HawC$lme 19 2279.182

HawD$lme 19 2279.677

HawE$lme 19 2278.898

The results of the AIC command indicate that the model with the corAR1 struc-
ture should be chosen.

7.4 Nitrogen Isotope Ratios in Whales

In this section, we analyse the nitrogen isotopic data of teeth growth layers of 11
whales. We start with one whale and then analyse the data from all whales.

7.4.1 Moby

In Chapter 2, we applied linear regression on the nitrogen isotope values of a whale
nicknamed Moby, and we discussed two potential sources of violating the indepen-
dence assumption. The first was a potential improper model specification (a linear
relationship when the real relationship may be non-linear). The second one was due
to the nature of the data; nitrogen concentrations at a certain age s may depend on
the concentrations at age s − 1, s − 2, s − 3, etc. To deal with the first problem, we
applied a Gaussian additive model on the data for Moby:

ys = α + f (ages) + εs ε ∼ N (0, σ 2 × V), where ε = (ε1, ε2 . . . , εT )′

The index s represents year and runs from 3 to 44 for Moby. The variable ys

contains the isotopic value in year s, α is the intercept, ages is the age in year s,
f(ages) is the smoothing function of age, and εs are the residuals. In an ordinary
Gaussian additive model (or linear regression model), we assume that the residuals
are independent and normally distributed with mean 0 and variance σ 2. This means
that V is a 42-by-42 identity matrix. (This is matrix full of zeros, except for the
diagonal; these are all equal to 1.)

To allow for a dependence structure between the observations, we can use any of
the correlation structures discussed earlier in Chapter 6 or in this chapter. Instead of
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temporal or geographical coordinates, age is now the variable that we use to set up
the variogram. As a consequence, V is no longer a diagonal matrix. Its off-diagonal
elements give the residual covariance at different ages. The key question is now,
how we should parameterise this matrix. Clearly, using a completely unspecified
matrix results in too many unknown parameters. We can use the variogram or the
AR1 residual correlation structures. These will specify that observations that are
separated by an age of k years have a correlation as specified by, for example, the
linear, spherical, exponential, or Gaussian variogram structure. All we have to do
is to apply models with different covariance structures and assess which one is the
most appropriate using, for example, the AIC.

The model selection process is identical to mixed modelling; (i) start with a
model that contains as many explanatory variables as possible, (ii) find the opti-
mal random structure, and (iii) find the optimal fixed structure. If we have data on
only one whale, the first step is rather simple: use age. The following code imports
the data, extracts the data from Moby, and applies the models.

> library(AED); data(TeethNitrogen)

> TN <- TeethNitrogen

> N.Moby <- TN$X15N[TN$Tooth == "Moby"]

> Age.Moby <- TN$Age[TN$Tooth == "Moby"]

> library(mgcv); library(nlme)

> f <- formula(N.Moby ∼ s(Age.Moby))

> #Apply gamm models

> Mob0 <- gamm(f, method = "REML")

> Mob1 <- gamm(f, method = "REML", cor =
corSpher(form =∼ Age.Moby, nugget = TRUE))

> Mob2 <- gamm(f, method = "REML", cor =
corLin(form =∼ Age.Moby, nugget = TRUE))

> Mob3 <- gamm(f, method = "REML", cor =
corGaus(form =∼ Age.Moby, nugget = TRUE))

> Mob4 <- gamm(f, method = "REML", cor =
corExp(form =∼ Age.Moby, nugget = TRUE))

> Mob5 <- gamm(f, method = "REML", cor =
corRatio(form =∼ Age.Moby, nugget = TRUE))

> Mob6 <- gamm(f, method = "REML", cor =
corAR1(form =∼ Age.Moby))

> AIC(Mob0$lme, Mob1$lme, Mob1$lme, Mob4$lme, Mob5$lme,

Mob6$lme)

Mob0$lme 4 64.52995

Mob1$lme 6 67.02795

Mob2$lme 6 67.02795

Mob4$lme 6 63.38405

Mob5$lme 6 63.09320

Mob6$lme 5 63.60480
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The model with the corGaus correlation structure did not converge and is
therefore not used in the AIC command. Except for the corSpher correlation
structure, all AICs are similar; hence, we might as well choose the simplest model,
which is the one without a correlation structure (the linear regression model, Mob0).
Comparing model Mob0 with Mob5 (Mob0 is the model without a correlation
structure and Mob5 is the best potential model with respect to spatial correlation)
using a likelihood ratio test gave a p-value of 0.06 (just type: anova(Mob0$lme,
Mob5$lme)). Hence, there is no convincing evidence to use a correlation structure
for the data of this whale. Furthermore, the estimated smoother in model Mob5 is a
straight line. This indicates that for the Moby data, the linear regression model that
was presented in Chapter 2 suffices. This is rather confusing as the model did have
residual patterns!

7.4.2 All Whales

What about the other whales? Instead of applying the above method on each individ-
ual whale data, we apply one additive model on the data of all animals and estimate
one underlying ‘spatial’ correlation structure. This is the same approach we applied
on the Hawaiian time series in Chapter 6. The following model was applied:

Nis = αi + fi (Ageis) + εis

The subscript i refers to whale (i = 1, . . ., 11) and s to year. Here, we assume that
each whale i has a potentially different age-effect on isotopic nitrogen values, hence
the subscript i for the smoothing function f. Later, in the case studies, we show how
we can test whether multiple smoothers can be replaced by one or a few smoothers
using a deep sea research data set.

In a standard application of this model, the residuals εis are assumed to be inde-
pendent and normally distributed with mean 0 and covariance matrix σ 2Vi, where
Vi is an identity matrix. The size of this matrix depends on the number of observa-
tions for whale i. This is perhaps clearer if we switch to a vector notation.

Ni = α + f(Agei ) + εi

Each vector contains all the age data for one whale. A dependence structure
between residuals of different ages can be introduced by using a non-diagonal
matrix Vi, just as we did for the Moby data earlier in this section. We use the data
from all the 11 whales and apply the correlation structure at the deepest level within
a time series for each whale. All whales are assumed to have the same spatial corre-
lation structure.

A model that contains as many explanatory variables as possible is a model
that has one smoother per whale. This means that we have to use 11 smoothers,
and this could potentially take considerable computing power (even with modern
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computers). We therefore use cubic regression splines as these are less time con-
suming to calculate than the default thin plate regression spline smoother (Wood,
2006).

The following R code applies the model in R. Note the use of the by command
in the smoother; it ensures we have one smoother per whale.

> lmc <- lmeControl(niterEM = 5200, msMaxIter = 5200)

> AllWhales.corGaus <- gamm( X15N ∼
s(Age,by=as.numeric(Tooth=="M2679/93"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M2683/93"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M2583/94(1)"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M2583/94(7)"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M2583/94(10)"),bs="cr")+
s(Age,by=as.numeric(Tooth=="M546/95"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M143/96E"),bs="cr") +

s(Age,by=as.numeric(Tooth=="Moby"),bs="cr") +

s(Age,by=as.numeric(Tooth=="M447/98"),bs="cr") +

s(Age,by=as.numeric(Tooth=="I1/98"),bs="cr") +

factor(Tooth), control = lmc, method = "REML",

correlation = corGaus(form =∼ Age|Tooth, nugget=T),
data = TN)

Besides the corGaus correlation structure, we also applied all the other cor-
relation structures we discussed earlier in this chapter. Using no correlation struc-
ture gave AIC = 529.16. The lowest AIC value was obtained by the corGaus
structure with a value of 478.82, closely followed by the corRatio. Other correla-
tion structures were all slightly higher (around 485). This shows that a correlation
structure improves the model considerably! The estimated range by the corGaus
structure was 2.9 years. This means that after removing the age effect, the nitrogen
isotopic values are correlated up to 2.9 years.

An interesting question is then what are the differences between the models with
and without the corGaus correlation structure? The results of the model without
the correlation structure are presented below. The object AllWhales.0$gam was
fitted with the code below, except that the correlation option was removed.

> anova(AllWhales.0$gam)

Approximate significance of smooth terms:
edf F p-value

s(Age):as.numeric(Tooth=="M2679/93") 6.055 58.440 < 2e-16
s(Age):as.numeric(Tooth=="M2683/93") 1.000 39.421 1.42e-09
s(Age):as.numeric(Tooth=="M2583/94(1)") 1.000 175.088 < 2e-16
s(Age):as.numeric(Tooth=="M2583/94(7)") 4.215 12.742 1.30e-12
s(Age):as.numeric(Tooth=="M2583/94(10)") 3.839 6.103 5.32e-06
s(Age):as.numeric(Tooth=="M546/95") 4.039 18.847 < 2e-16
s(Age):as.numeric(Tooth=="M143/96E") 1.000 32.316 3.50e-08
s(Age):as.numeric(Tooth=="Moby") 4.272 44.760 < 2e-16
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s(Age):as.numeric(Tooth=="M447/98") 4.408 21.910 < 2e-16
s(Age):as.numeric(Tooth=="I1/98") 5.244 14.361 < 2e-16

All the smoothers are highly significant at the 5% level. However, this model
ignores the potential dependence. The following results were obtained by the model
with the corGaus correlation structure.

> anova(AllWhales.corGaus$gam)

Approximate significance of smooth terms:
edf F p-value

s(Age):as.numeric(Tooth=="M2679/93") 1.000 86.928 < 2e-16
s(Age):as.numeric(Tooth=="M2683/93") 1.000 10.746 0.001178
s(Age):as.numeric(Tooth=="M2583/94(1)") 1.000 48.341 2.56e-11
s(Age):as.numeric(Tooth=="M2583/94(7)") 2.414 4.983 0.000218
s(Age):as.numeric(Tooth=="M2583/94(10)") 3.290 4.715 0.000137
s(Age):as.numeric(Tooth=="M546/95") 3.371 5.071 5.89e-05
s(Age):as.numeric(Tooth=="M143/96E") 1.000 7.896 0.005307
s(Age):as.numeric(Tooth=="Moby") 1.000 73.198 8.08e-16
s(Age):as.numeric(Tooth=="M447/98") 1.000 32.954 2.47e-08
s(Age):as.numeric(Tooth=="I1/98") 3.336 3.035 0.004317

Note that there are considerable differences in the p-values, and the model with-
out the correlation structure giving a rosier but misleading picture in terms of sig-
nificance levels!

These models assume the same residual spread per whale and over time. A model
validation did not reveal any immediate problems with homogeneity, but the analysis
may be extended by allowing for different spread per whale, which means the use
of the weights and varIdent functions. The reason that we mention this is that
most examples used in this book contain some form of heterogeneity. It would be a
small miracle if this is not also the case here.

To save some parameters, it is also possible to use Tooth as random effect instead
of a fixed nominal variable with 11 levels. It is also interesting to compare the
compound symmetric correlation structure (by using a random intercept) versus
the spatial correlation model. Or perhaps, use both correlation structures: a spa-
tial correlation within the random effect tooth. We leave this an exercise for the
reader.

Mendes et al. (2007) analysed the same data and looked at sudden changes in
nitrogen isotopic values. Multivariate time series techniques like chronological clus-
tering were used (Legendre and Legendre, 1998). Such an analysis can also be car-
ried out within the additive mixed modelling framework. A dummy variable (also
called intervention variable in this context) is an explanatory variable of the form 0
0 0 0 0 0 . . . 1 1 1 1 1 (Harvey, 1989). These can be used to test for sudden changes
using a model of the form

Nis = αi + fi (Ageis) + βi × Dis + εis
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where Dis is a vector of zeros and ones. A sudden increase in nitrogen isotope ratios
for a particular whale can be tested by looking at the significance of the regression
parameter β i. The only problem is at which age the dummy variable Dis should
switch from a zero to a one. Adding an optimisation routine that tries different
switching points per whale and compares them using the AIC may be an option.
This is also called intervention analysis (Harvey, 1989; Zuur et al., 2007).

Something we have ignored so far is the assumption of a fixed X. Recall that this
means that before sampling, we know the value of the explanatory variables. For the
whale data, this assumption is clearly violated as there may be an error of 1–2 years
on an age reading. Bootstrapping (Efron and Tibshirani, 1993) may be a tool to deal
with this. There are many ways to carry out a bootstrap, and one of these, to apply
an ordinary bootstrap, is as follows.

1. Apply the smoothing model for the given data, and estimate the smoothers, etc.
Obtain the fitted values and the residuals for the original data.

2. Permute the residuals from step 1, or apply a parametric bootstrap on the resid-
uals. Add the permuted residuals to the fitted values from step 1. This gives
bootstrapped data (response variable).

3. Apply the smoothing model on the new data.
4. Repeat steps 2 and 3 1000 times.
5. Use the 1000 estimated smoothers to create confidence bands.

More details can be found in Davison and Hinkley (1997). To take account of the
age of 20 years being anything between 18 and 22, we can add an extra permutation
step to the algorithm described above that will slightly modify the age in each
bootstrap iteration. Note that this 5-step scheme is not a full recipe. Details on boot-
strapping GAMs can be found in Davison and Hinkley (1997) and Keele (2008).

7.5 Spatial Correlation due to a Missing Covariate

In this section, we show how a missing covariate may cause spatial correlation. The
data used are a subset of the data analysed in Cruikshanks et al. (2006), a technical
report by the Environmental Protection Agency, Wexford, Ireland). We only use the
2003 data, and several recordings were dropped. So, our results may be different
from those presented in the original report.

The original research sampled 257 rivers in Ireland during 2002 and 2003. One
of the aims was to find a different tool for identifying acid-sensitive waters, which
currently uses measures of pH. The problem with pH is that it is extremely vari-
able within a catchment and depends on both flow conditions and underlying geol-
ogy. As an alternative measure, the Sodium Dominance Index (SDI) is proposed as
an indicator of the acid sensitivity of rivers. SDI is defined as the contribution of
sodium (Na+) to the sum of the major cations. The motivation for this research is
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the increase in plantation forestry cover in Irish landscapes and its potential impacts
on aquatic resources. Of the 257 sites, 192 were non-forested and 65 were forested.

In this section, we model pH as a function of SDI, whether a site is forested or not,
and altitude. Figure 7.5 shows the geographical position of the sites in Ireland that
were sampled in 2003. The following code accesses the data and makes the graph.

> library(AED); data(SDI2003);

> library(lattice)

> MyPch <- vector(length = dim(SDI2003)[1])

> MyPch[SDI2003$Forested == 1] <- 16

> MyPch[SDI2003$Forested == 2] <- 1

> xyplot(Northing ∼ Easting, aspect = "iso", col = 1,

pch = MyPch, data = SDI2003)

The xyplot from the lattice package is used to ensure that the units along
the vertical and horizontal axes are the same; see also Chapter 16 for other ways of
doing this. The variable MyPch is used to plot different types of dots for forested
and non-forested sites.
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We first show that there is spatial correlation in the pH data with help of an exper-
imental variogram (Fig. 7.6). Results clearly indicate that there is spatial dependence
as the pattern slowly increases and then levels off. Earlier in this chapter, we used
the variogram function from the gstat package. Here, we use yet another package
to make variograms, namely geoR. In practise, these packages tend to give similar
results, but it is useful to know (and be able to use) that there are multiple packages
for the same thing.

The code to make Fig. 7.6 is given below.

> library(geoR)

> cords <- matrix(0, length(SDI2003$pH), 2)

> coords[, 1] <- SDI2003$Easting;

> coords[, 2] <- SDI2003$Northing

> gb <- list(data = SDI2003$pH, cords = coords)

> plot(variog(gb, max.dist = 200000))

Before adding spatial correlation structures, we should first apply a model
without spatial correlation structures, extract its residuals, and see whether these
residuals show spatial dependence. After all, we may be able to explain the spa-
tial patterns in pH with SDI or altitude. The following linear regression model (in
words) is applied.

pHi = α + SDIi × Altitudei × factor(Forestedi ) + εi

Actually, we used the log-transformed altitude. The model contains 3 main
terms, all 2-way interactions, and one 3-way interaction term, and the residuals
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are assumed to be independent and normally distributed with mean 0 and vari-
ance σ 2. Homogeneity and normality are valid assumptions, and the numerical out-
put indicates that we may expect a significant SDI effect and a significant altitude ×
Forested effect. The following R code applies the linear regression model and draws
an experimental variogram of the residuals (Fig. 7.7A). A smoother was added to
aid visual interpretation.

> library(nlme)

> SDI2003$fForested <- factor(SDI2003$Forested)

> SDI2003$LAltitude <- log(SDI2003$Altitude)

> M1 <- gls(pH ∼ SDI * fForested * LAltitude,

data = SDI2003)

> Vario1 <- Variogram(M1, form =∼ Easting + Northing,

data = SDI2003, nugget = TRUE, maxDist = 200000)

> plot(Vario1)

The AIC of the GLS model without auto-correlation is 248.34. Just as in pre-
vious sections, we can add any of the five available correlation structures to the
GLS and the corRatio and corExp structures give considerable lower AICs:
205.95 and 208.57, respectively. These models are implemented with the following
code:

> M1C <- gls(pH ∼ SDI * fForested * LAltitude,

correlation = corRatio(form =∼ Easting +

Northing, nugget = TRUE), data = SDI2003)
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> M1E <- gls(pH ∼ SDI * fForested * LAltitude,

correlation = corExp(form =∼ Easting +

Northing, nugget = TRUE), data = SDI2003)

However, neither of these correlation structures produces a fitted line that
matches the experimental variogram. Figure 7.7B shows the experimental variogram
of the normalised residuals and shows a clear pattern. It was made with the follow-
ing R code. If you remove the resType option, the plot function shows the fitted
experimental variogram.

> Vario1C <- Variogram(M1C, form =∼ Easting + Northing,

data = SDI2003, nugget = TRUE, maxDist = 200000,

resType = "normalized")

> plot(Vario1C, smooth = FALSE)

We could try and choose fixed values for the nugget and range, but the real prob-
lem is that we are missing a covariate. This can be seen from a bubble plot of the
normalised residuals of the linear regression model (Fig. 7.8). The negative residuals
are mainly clustered along the south and south-east coastline, and the western coast-
line mainly contains positive residuals. So there is a clear pattern in these residuals.
To solve this problem, we need to think very carefully about which missing covari-
ate could be causing this type of pattern and hope that it can (still) be quantified

Normalised residuals
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0.577
3.031Fig. 7.8 Normalised residuals

of the linear regression model
plotted against spatial
coordinates. The size of the
dot is proportional to its value,
and the colour refers to the
sign. Note that most negative
residuals are clustered along
the south-east coast, and the
west coast mainly contains
positive residuals
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and included in the model. In the meantime, we should refrain from making any
inferential conclusions from these models, and we cannot say (yet) whether there is
an altitude × Forested interaction or an SDI effect on pH.

The following R code was used to create the bubble plot.

> library(gstat)

> E <- resid(M1, type = "normalized")

> mydata <- data.frame(E, SDI2003$Easting,

SDI2003$Northing)

> coordinates(mydata) <- c("SDI2003.Easting",

"SDI2003.Northing")

> bubble(mydata, "E", col = c("black", "grey"),

main = "Normalised residuals",

xlab = "X-coordinates", ylab = "Y-coordinates")

7.6 Short Godwits Time Series

In the previous chapter, we showed how to include a temporal correlation struc-
ture using relatively long and regularly spaced time series with the corAR1 and
corARMA functions. In earlier sections in this chapter, we had spatial data and data
along an age gradient. In all cases, the length of the gradient was long. We now use
an example that consists of rather short and irregularly spaced time series of feed-
ing behaviour patterns in the godwits (Limosa haemastica) data (Ieno, unpublished
data).

7.6.1 Description of the Data

Food intake rates of migrating godwits were observed at a tidal channel, on a section
of a South Atlantic mudflat system in Argentina (Samborombón Bay). Sampling
took place on 20 (non-sequential) days, divided over three consecutive periods. On
the basis of plumage and time of the year, birds were classified as ‘birds prepar-
ing for migration’ (southern late summer/fall) and ‘birds not preparing for migra-
tion’. The second group can be further divided in southern spring/early summer, and
southern winter. Measurements took place during the low water period on at least
two days per month during 15 consecutive months.

On each sampling day, between 7 and 19 observations were taken, which gives
us short longitudinal time series per day.

The observations consist of the food intake rates, which is the mg of Ash free
dried prey (nereid worm) weight per second of feeding (mg AFDW/s). The time
when the godwits took food was also recorded. Because time itself has no ecological
meaning for the birds, it is expressed in hours before and after the low tide.
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The underlying question is whether intake rate depends on period of migration,
time with respect to low tide (does food consumption depend on the tide), and sex.
What we have in mind is a model of the form:

IntakeRateij = function(Timeij, Sexij, Periodij) + εij

IntakeRateij is the intake rate of observation j on day i. Timeij is the corre-
sponding time. It tells you how many minutes before or after low tide an obser-
vation was made. Sex has the values unknown, female or male. Period is a nominal
variable with three levels; 0 if an observation was made in January, September–
December; 1 if an observation was made during February, March, or April; and 3 for
May–August. These three periods represent the migration ‘status’ of godwits as
explained above.

The potential complicating factor is that the intake rate at a particular time on
a particular day may depend on the intake rate at an earlier time on the same day.
Your alarm bells for violation of independence should now make a lot of noise!

7.6.2 Data Exploration

As always, we started the statistical analysis with a detailed graphical data explo-
ration. Results are not presented here, but none of the data exploration tools (box-
plots, Cleveland dotplots, and pairplots) indicated any outliers. The coplot in Fig. 7.9
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shows that in some periods (late summer and fall), not all sexes are measured.
Hence, we cannot include a sex–period interaction term.

The coplot accumulates the data from all sampling days. To show how intake rate
changes on each day, we made an xyplot from the lattice package (Fig. 7.10). We
added a LOESS smoother to aid visual interpretation. At some days, there seems
to be a non-linear time effect; hence, we should perhaps model time as a quadratic
function.

7.6.3 Linear Regression

Based on the data exploration, we think that a reasonably starting model is

IntakeRateij = α + β1 × Timeij + β2 × Time2
ij + β3 × Sexij + β4 × Periodij + εij

where the residuals are independently and normally distributed with mean 0 and
variance σ 2. The R code to import the data, make the two graphs, and apply the
linear regression model is given below.

> library(AED); data(Limosa)

> Limosa$fID <- factor(Limosa$ID)

> Limosa$fPeriod <- factor(Limosa$Period,

levels = c(0, 1, 2),
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labels = c("Summer", "LSummer.Fall",

"Winter"))

> Limosa$fSex <- factor(Limosa$Sex, levels = c(0, 1, 2),

Labels = c("Unk", "F", "M"))

> coplot(IntakeRate ∼ Time | fPeriod * fSex,

data = Limosa, xlab = c("Time (hours)"))

> library(lattice)

> xyplot(IntakeRate ∼ Time | fID, data = Limosa,

panel=function(x, y){
panel.xyplot(x, y, col = 1, cex = 0.5, pch = 1)

panel.grid(h = -1, v = 2)

panel.abline(v = 0, lty = 2)

if (length(x) > 5) panel.loess(x, y, span = 0.9,

col = 1, lwd = 2)

})

The first line accesses the data from our package. Because the nominal variables
Sex and Period were coded as 0, 1, and 2, we relabelled them; this will make the
numerical output of the models easier to understand. The coplot command is
straightforward and the xyplot has some fancy commands in the panel function
to draw the LOESS smoother (a smoother is only added if there are at least 5 obser-
vations on a particular day). With so few data points, we choose a large span width.
The linear regression is applied with the following code. We also produce some
numerical output.

> Limosa$Time2 <- Limosa$Timeˆ2 - mean(Limosa$Timeˆ2)

> M.lm <- lm(IntakeRate ∼ Time + Time2 + fPeriod +

fSex, data = Limosa)

> drop1(M.lm, test = "F")

Single term deletions

Model: IntakeRate ∼ Time + Time2 + fPeriod + fSex

Df Sum of Sq RSS AIC F value Pr(F)

<none> 2.74 -881.37

Time 1 0.01 2.75 -882.51 0.8330 0.362515

Time2 1 0.03 2.77 -881.10 2.2055 0.139095

fPeriod 2 0.01 2.75 -884.25 0.5460 0.580142

fSex 2 0.13 2.87 -875.73 4.7675 0.009491

We centred the quadratic time component to reduce the collinearity. Note that
there is a significant sex effect; the F statistic is 4.76 with a corresponding p-value
of 0.009. Good enough to start thinking about writing a paper! But to spoil the
fun, let us plot the residuals versus the fitted values (Fig. 7.11) with the command
plot(M.lm, which = c (1)). Note that there is clear violation of homogene-
ity. It is now time to go back to the protocols from Chapters 4 and 5.
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7.6.4 Protocol Time

In the previous subsection, we detected heterogeneity in the residuals of the linear
regression model (which is step 1 of the protocol). We can now do two things. We
can either mess around with variance covariates and then discover that there is still
misery (in terms of correlation) or be clever and do everything at once. Assuming
that you read this book from A to Z (and are therefore familiar with the material in
Chapters 4 and 5), we follow the second approach. We will use the 10-step protocol
from Chapter 4.

7.6.4.1 Step 2 of the Protocol: Refit with gls

In this step, we refit the linear regression with the gls function (so that we have a
base model) and make some fancy graphical validation graphs; see Fig. 7.12. The
R code does not contain any new aspects.

> library(nlme)

> M1.gls <- gls(IntakeRate ∼ Time + Time2 + fPeriod +

fSex, data = Limosa)

> E <- resid(M1.gls)

> op <- par(mfrow = c(2, 2))

> boxplot(E ∼ Limosa$fPeriod, main = "Period")

> abline(0, 0)

> boxplot(E ∼ Limosa$fSex, main = "Sex")
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> abline(0, 0)

> boxplot(E ∼ Limosa$fSex * Limosa$fPeriod,

main = "Sex & Period")

> abline(0, 0)

> boxplot(E ∼ Limosa$ID, main = "Day")

> abline(0, 0)

> par(op)

Note that the variation in residual spread is larger for the unknown sex, and it is
also larger for the summer period. This means that in step 3 of the protocol, we could
do with a varIdent variance structure with the variance covariates Period and
Sex. Figure 7.12D shows that we need the term ID (sampling day) as an explanatory
variable; at some days, all the residuals are above or below zero. We can either use
ID as a fixed effect or as a random effect. In this example, it is obvious to use it as a
random effect (it allows for correlation between observations from the same day; it
avoids estimating lots of parameters and it allows us to generalise the conclusions);
see also Chapter 5.

7.6.4.2 Step 3 of the Protocol: Choose an Appropriate Variance Structure

We already discussed in the previous step that we need a varIdent variance struc-
ture and ID as random effect. Such a model is given by

> M1.lme <- lme(IntakeRate ∼ Time + Time2 + fPeriod +

fSex, data = Limosa,
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weights = varIdent(form =∼ 1 | fSex * fPeriod),

random =∼ 1 | fID, method = "REML")

Perhaps it is useful to give the corresponding equation for this, just in case you
find it difficult to see this from the R code.

IntakeRateij = α + β1 × Timeij + β2 × Time2
ij + β3 × Periodij + β4 × Sexij + ai + εij

ai ∼ N (0, d2)

εij ∼ N (0, σ 2
Sex,Period )

We have seen most of this equation already in Section 7.6.1. The term ai is the
random intercept (Chapter 5). The subscripts for the σ are there because we allow
for different residual variances depending on sex and period.

7.6.4.3 Steps 4–6 of the Protocol: Find the Optimal Random Structure

We are going to save some space by summarising a couple of model selection steps.
The model that was fitted in step 3 is the optimal one in terms of the random struc-
ture. Leave out the random effect, refit the model, and compare both models with the
likelihood ratio test, and you will get p-values smaller than 0.001. The same holds
if you drop the varIdent variance structure if you use the varIdent with only
sex or only with period. The R code to do these analyses was given in Chapters 4
and 5.

7.6.4.4 Steps 7–8 of the Protocol: Find the Optimal Fixed Structure

It is now time to find the optimal model in terms of the explanatory variables time,
period, and sex. We use the likelihood ratio test with ML estimation. The starting
model contains Time, Time2, Period, and Sex. The last three can be dropped (Time
is nested in Time2 and cannot be dropped). The R code to do this is as follows.

> M1.lme <- lme(IntakeRate ∼ Time + Time2 + fPeriod +

fSex, data = Limosa,

weights = varIdent(form =∼ 1 | fSex * fPeriod),

random =∼ 1 | fID, method = "ML")

> M1.lmeA <- update(M1.lme, .∼. -Time2)

> M1.lmeB <- update(M1.lme, .∼. -fPeriod)

> M1.lmeC <- update(M1.lme, .∼. -fSex)

> anova(M1.lme, M1.lmeA)

> anova(M1.lme, M1.lmeB)

> anova(M1.lme, M1.lmeC)

The output is not shown here, but the least significant term is Period (L =
1.28, df = 2, p = 0.52); hence, it can be dropped. In the next round, Time2 is
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dropped, followed by Time in the third round. In the fourth and last round, we
have a model that only contains Sex. The following code gives us one p-value
for the nominal variable Sex (the update command fits a model with only the
intercept):

> M4.lme <- lme(IntakeRate ∼ fSex, data = Limosa,
weights = varIdent(form =∼ 1 | fSex * fPeriod),
random =∼ 1 | fID, method = "ML")

> M4.lmeA <- update(M4.lme, .∼. -fSex)
> anova(M4.lme, M4.lmeA)

Model df AIC BIC logLik Test L.Ratio p-value
M4.lme 1 11 -359.3379 -322.6779 190.6689
M4.lmeA 2 9 -355.4784 -325.4839 186.7392 1 vs 2 7.85945 0.0196

Hence, the optimal model contains only Sex in the fixed part of the model. If we
have to quote a p-value for this term, it will be 0.0196, which is not very impressive.
A model validation shows that everything is now ok (no heterogeneity patterns in
the normalised residuals).

7.6.4.5 Step 9 of the Protocol: Refit with REML

We now discuss the numerical output of the model. First we have to refit it with
REML.

> M4.lme <- lme(IntakeRate ∼ fSex, data = Limosa,

weights = varIdent(form =∼ 1 | fSex * fPeriod),

random =∼ 1 | fID, method = "REML")

> summary(M4.lme)

Linear mixed-effects model fit by REML. Data: Limosa

AIC BIC logLik

-340.1566 -303.6573 181.0783

Random effects:

Formula: ∼1 | fID

(Intercept) Residual

StdDev: 0.06425989 0.1369959

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | fSex * fPeriod

Parameter estimates:

Unk*Summer Unk*LSummer.Fall M*Winter F*Winter Unk*Winter

1.0000 0.4938 0.6249 0.5566 0.5035

M*Summer F*Summer

0.7971 0.4366
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Fixed effects: IntakeRate ∼ fSex

Value Std.Error DF t-value p-value

(Intercept) 0.15051634 0.01897585 186 7.931993 0.0000

fSexF -0.02507688 0.01962955 186 -1.277506 0.2030

fSexM 0.01999006 0.01863430 186 1.072756 0.2848

Correlation:

(Intr) fSexF

fSexF -0.491

fSexM -0.470 0.653

Number of Observations: 207. Number of Groups: 19

Let us discuss what this all means. Recall from Chapter 5 that in a mixed effects
model with random intercept, the correlation between the observations from the
same group (in this case: the same day), is given by

d2

d2 + σ 2

The problem is that in this case, we do not have one variance σ 2, but we have
a σ 2 that depends on Sex and Period. This means that the within-day correlation is
given by

d2

d2 + (sij × σ 2)
= 0.0642

0.0642 + (sij × 0.136)2

The sijs are the multiplication factors denoted by ‘Different standard deviations
per stratum’ in the numerical output. The largest value of sij is 1 for unknown sex in
the summer, leading to a within-day correlation of 0.18. On the other extreme, for
females in the summer, sij = 0.436, which leads to a within-day correlation of 0.54.
Note that this correlation was called the intraclass correlation in Chapter 5.

As a final note, the p-values for the individual levels of sex (based on the t-
statistic) are all larger than 0.05, but keep in mind that these p-values are with respect
to the baseline level “Unknown”. The fact that the likelihood ratio test showed that
sex was significant (though only weakly, the p-value was 0.0196), means that males
and females are having a different effect. Just change the baseline of the variable
fSex to verify this.

7.6.5 Why All the Fuss?

You may wonder what the benefit is of the mixed modelling approach. Let us com-
pare the optimal mixed effects model with the other models. Recall that the lin-
ear regression model in Section 7.6.3 gave us a p-value of 0.009 for Sex. That is
rather a different p-value compared to the 0.0196 from the mixed model. Ok, you
can argue that the linear regression model contained various non-significant terms.
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No problem; let us drop them and refit the linear regression model with only Sex as
explanatory variable.

> M2.lm <- lm(IntakeRate ∼ fSex, data = Limosa)

> drop1(M2.lm, test = "F")

Single term deletions

Model: IntakeRate ∼ fSex

Df Sum of Sq RSS AIC F value Pr(F)

<none> 2.80 -884.38

fSex 2 0.15 2.96 -877.56 5.475 0.004829

Hence, in the linear regression model in which we only use Sex, this term has a
p-value of 0.0048. You may argue that you should not compare the linear regression
with the linear mixed model as the linear regression model ignores the heterogeneity.
Ok, let us fit a model that allows for heterogeneity, but without the random effect
and obtain a p-value for sex.

> M5A.gls <- gls(IntakeRate ∼ fSex, data = Limosa,
weights = varIdent(form =∼ 1 | fSex * fPeriod),
method = "ML")

> M5B.gls <- gls(IntakeRate ∼ 1, data = Limosa,
weights = varIdent(form =∼ 1 | fSex * fPeriod),
method = "ML")

> anova(M5A.gls, M5B.gls)

Model df AIC BIC logLik Test L.Ratio p-value
M5A.gls 1 10 -321.8643 -288.5371 170.9322
M5B.gls 2 8 -311.9607 -285.2989 163.9803 1 vs 2 13.90364 0.001

The analysis of variance compares a model with sex and without sex. Both have
the varIdent variance structure, but not the random intercept. We are still let to
believe that sex is highly significant. What this means is that as soon as we include
the random intercept, we allow for correlation between observations on the same
day. For some sex–period combinations, this correlation can be as high as 0.54.
Ignoring this correlation means that we end up with a p-value of 0.001. Taking it
into account gives a p-value of 0.0196. The difference is a factor of 20. This example
shows the danger of ignoring temporal correlation, something which happens in
many scientific papers on ecology.

In case you enjoyed this analysis, try fitting the correlation structure with the
compound symmetry correlation directly as an exercise. With this we mean that you
can also use the correlation = corCompSymm() instead of random effects.
And a more complicated approach would be to use any of the spatial correlation
functions.



Chapter 8
Meet the Exponential Family

8.1 Introduction

In Chapters 2 and 3 and in Appendix A, linear regression and additive modelling
were discussed and various extensions allowing for different variances, nested data,
temporal correlation, and spatial correlation were then discussed in Chapters 4, 5, 6,
and 7. In Chapters 8, 9, and 10, we discuss generalised linear modelling (GLM) and
generalised additive modelling (GAM) techniques. In linear regression and additive
modelling, we use the Normal (or: Gaussian) distribution. It is important to realise
that this distribution applies for the response variable. GLM and GAM are exten-
sions of linear and additive modelling in the sense that a non-Gaussian distribution
for the response variable is used and the relationship (or link) between the response
variable and the explanatory variables may be different. In this chapter, we focus on
the first point, the distribution.

There are many reasons for using GLM and GAM instead of linear regression
and additive modelling. Absence–presence data are (generally) coded as 1 and
0, proportional data are always between 0 and 100%, and count data are always
non-negative. The GLM and GAM models used for 0−1 and proportional data are
typically based on the Bernoulli and binomial distributions and for count data the
Poisson and negative binomial distributions are common options. For continuous
data, the Gaussian distribution is the most used distribution, but you can also use
the gamma distribution. So before using GLMs and GAMs, we should focus on
the questions: What are these distributions, how do they look like, and when would
you use them? These three questions form the basis of this chapter. We devote an
entire chapter to this topic because in our experience few of our students have been
familiar with Poisson, negative binomial or gamma distributions, and some level of
familiarity is required before entering the world of GLMs and GAMs in the next
chapter.

As we will see in the next chapter, a GLM (or GAM) consists of three steps:
(i) choosing a distribution for the response variable, (ii) defining the systematic part
in terms of covariates, and (iii) specifying the relationship (or: link) between the
expected value of the response variable and the systematic part. This means that we
have to stop for a moment and think about the nature of the response variable.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 8,
C© Springer Science+Business Media, LLC 2009
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In most statistics textbooks and undergraduate statistics courses, only the Nor-
mal, Poisson, and binomial distributions are discussed in any detail. However, there
are various other distributions that are equally interesting for ecological data, for
example, the negative binomial distribution. These are useful if the ‘ordinary’ GLMs
do not work, and in practise, this is quite often in ecological data analysis.

Useful references for distributions within the context of GLMs are McCullagh
and Nelder (1989), Hilbe (2007), and Hardin and Hilbe (2007). It should be noted
that most books on GLMs discuss distributions, but these three have detailed expla-
nations.

8.2 The Normal Distribution

We start with some revision on the Normal distribution. Figure 8.1 A shows the
histogram of the weight of 1280 sparrows (unpublished data from Chris Elphick,
University of Connecticut, USA). The y-axis in panel A shows the number per class.
It is also possible to rescale the y-axis so that the total surface under the histogram
adds up to 1 (Fig. 8.1B). The reason for doing this is to give a better representation of
the density curve that we are going to use in a moment. The shape of the histogram
suggests that assuming normality may be reasonable, even though the histogram is
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Fig. 8.1 A: Histogram of weight of 1281 sparrows. B: As panel A, but now scaled so that the total
area in the histogram is equal to 1. C: Histogram of simulated data from a Normal distribution with
mean and variance taken from the 1281 sparrows. D: Normal probability curve with values for the
mean and the variance taken from the sample of 1281 sparrows. The surface under the Normal
density curve adds up to 1
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slightly skewed. Panel C shows simulated data (1280 observations) from a Normal
distribution with the sample mean (18.9) and sample variance (3.7) from the 1280
sparrows. The shape of the histogram in panel C gives an impression of how a
distribution looks if the data are really Normal distributed. Repeating this simulation
ten times gives a good idea how much variation you can expect in the shape of the
histogram.

Possible factors determining the weight of a sparrow are sex, age, time of the
year, habitat, and diet, among others. But for the moment, we will not take these
into account. The Normal distribution is given by the following formula:

f (yi ; μ, σ ) = 1

σ
√

2π
e− (yi −μ)2

2σ2 (8.1)

The distribution function in Equation (8.1) gives the probability that bird i has a
weight yi, and μ and σ 2 are the population mean and variance, respectively, in the
following formula:

E(Y ) = μ and var(Y ) = σ 2 (8.2)

The probability function is also called a density function. The notation f(yi;
μ, σ ) means that the parameters are after the ‘;’ symbol. The variable y can take
any value between −∞ and ∞. In general, we do not know the population mean
μ and variance σ 2, but if we just take the sample mean and variance and substitute
these into the distribution function in Equation (8.1), we can calculate the probabili-
ties for various values of y; see Fig. 8.1D. Note that the y-axis in this panel represents
probabilities of certain weight values. So, the probability that we measure a sparrow
of weight 20 g is about 0.21, and for 5 g, the probability is very small. According
to the Normal distribution, we can even measure a bird with weight –10 g, though
with a very small probability.

In linear regression, we model the expected values μi (the index i refers to obser-
vations or cases) as a function of the explanatory variables, and this function con-
tains unknown regression parameters (intercept and slopes).

The following R code was used to create Fig. 8.1.

> library(AED); data(Sparrows)

> op <- par(mfrow = c(2, 2))

> hist(Sparrows$wt, nclass = 15, xlab = "Weight",

main = "Observed data")

> hist(Sparrows$wt, nclass = 15, xlab = "Weight",

main = "Observed data", freq = FALSE)

> Y <- rnorm(1281, mean = mean(Sparrows$wt),

sd = sd(Sparrows$wt))

> hist(Y, nclass = 15, main = "Simulated data",

xlab = "Weight")

> X <- seq(from = 0, to = 30, length = 200)
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> Y <- dnorm(X, mean = mean(Sparrows$wt),

sd = sd(Sparrows$wt))

> plot(X, Y, type = "l", xlab = "Weight",

ylab = "Probablities", ylim = c(0, 0.25),

xlim = c(0, 30), main = "Normal density curve")

> par(op)

The freq = FALSE option in the histogram scales it so that the area inside
the histogram equals 1. The function rnorm takes random samples from a Normal
distribution with a specified mean and standard deviation. The functions mean and
sd calculate the mean and standard deviation of the weight variable wt. Similarly,
the function dnorm calculates the Normal density curve for a given range of values
X and for given mean and variance.

In this case, the histogram of the observed weight data (Fig. 8.1B) indicates that
the Normal distribution may be a reasonable starting point. But what do you do if
it is not (or if you do not agree with our statement)? The first option is to apply a
data transformation, but this will also change the relationship between the response
and explanatory variables. The second option is to do nothing yet and hope that the
residuals of the model are normally distributed (and the explanatory variables cause
the non-normality). Another option is to choose a different distribution and the type
of data determines which distribution is the most appropriate. The best way to get
some familiarity with different distributions for the response variable is to plot them.
We have already seen the Normal distribution in Fig. 8.1, and also in Chapter 2. The
second distribution we now discuss is the Poisson distribution.

8.3 The Poisson Distribution

The Poisson distribution function is given by

f (y; μ) = μy × e−μ

y!
y ≥ 0, y intger (8.3)

This formula specifies the probability of Y with a mean μ. Note that Y has to be an
integer value or else the y! = y × (y – 1) ×(y – 2) × . . . × 1 is not defined. Once we
know μ, we can calculate the probabilities for different y values. For example, if μ =
3, the probability that y = 1 is given by 3 × e–3 / (1!) = 0.149. The same can be done
for other values of y. Figure 8.2 shows four Poisson probability distributions, and
to create these graphs, we used different values for the average μ. For small μ, the
density curve is skewed, but for larger μ, it becomes symmetrical. Note that μ can be
a non-integer, but the ys have to be non-negative and integers. Other characteristics
of the Poisson distribution are that P(Y < 0) = 0 and the mean is the variance, in
formula

E(Y ) = μ and var(Y ) = μ (8.4)
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Fig. 8.2 Poisson probabilities for μ = 3 (A), μ = 5 (B), μ = 10 (C), and μ = 100 (D). Equation
(8.3) is used to calculate the probabilities for certain values. Because the outcome variable y is a
count, vertical lines are used instead of a line connecting all the points

This is also the reason that the probability distributions become wider and wider
for larger mean values. Note that although the Poisson probability distribution in
Fig. 8.2D looks like a normal distribution, it is not equal to a Normal distribu-
tion; a Normal distribution has two parameters (the mean μ and the variance σ 2),
whereas a Poisson distribution only uses one parameter μ (which is the mean and the
variance).

The following code was used the make Fig. 8.2.

> x1 <- 0:10; Y1 <- dpois(x1, lambda = 3)

> x2 <- 0:10; Y2 <- dpois(x2, lambda = 5)

> x3 <- 0:40; Y3 <- dpois(x3, lambda = 10)

> x4 <- 50:150; Y4 <- dpois(x4, lambda = 100)

> XLab <- "Y values"; YLab <- "Probabilities"

> op <- par(mfrow = c(2, 2))

> plot(x1, Y1, type = "h", xlab = XLab, ylab = YLab,

main = "Poisson with mean 3")

> plot(x2, Y2, type = "h", xlab = XLab, ylab = YLab,

main = "Poisson with mean 5")

> plot(x3, Y3, type = "h", xlab = XLab, ylab = YLab,

main = "Poisson with mean 10")

> plot(x4, Y4, type = "h", xlab = XLab, ylab = YLab,

main = "Poisson with mean 100")

> par(op)

The function dpois calculates the Poisson probabilities for a given μ, and it
calculates the probability for certain Y-values using Equation (8.3). Note that we



198 8 Meet the Exponential Family

use the symbol ‘;’ to print multiple R commands on one line; it saves space. The
type = "h" part in the plot command ensures that vertical lines are used in
the graph. The reason for using vertical lines is because the Poisson distribution is
for discrete data.

In the graphs in Fig. 8.2, we pretended we knew the value of the mean μ, but in
real life, we seldom know its value. A GLM models the value of μ as a function of
the explanatory variables; see Chapter 9.

The Poisson distribution is typically used for count data, and its main advantages
are that the probability for negative values is 0 and that the mean variance relation-
ship allows for heterogeneity. However, in ecology, it is quite common to have data
for which the variance is even larger than the mean, and this is called overdispersion.
Depending how much larger the variance is compared to the mean, one option is to
use the correction for overdispersion within the Poisson GLM, and this is discussed
in Chapter 9. Alternatively, we may have to choose a different distribution, e.g. the
negative binomial distribution, which is discussed in the next section.

8.3.1 Preparation for the Offset in GLM

The Poisson distribution in Equation (8.2) is written for only one observation, but
in reality we have multiple observations. So, we need to add an index i to y and μ.

Penston et al. (2008) analysed the number of sea lice at sites around fish farms
in the north-west of Scotland as a function of explanatory variables like time, depth,
and station. The response variable was the number of sea lice at various sites i,
denoted by Ni. However, samples were taken from a volume of water, denoted by
Vi, that differed per site. One option is to use the density Ni/Vi as the response
variable and work with a Gaussian distribution, but if the volumes differ con-
siderably per site, then this is a poor approach as it ignores the differences in
volumes.

Alternative scenarios are the number of arrivals Yi per time unit ti, numbers Yi

per area of size Ai, and number of bioluminescent flashes per depth range Vi. All
these scenarios have in common that the volume Vi, time unit ti, area of size Ai, may
differ per observation i, making the ratio of Yi and Vi a rate or density.

We can still use the Poisson distribution for this type of data. For example,
for the sea lice data, we assume that Yi is Poisson distributed with probability
function:

f (yi ; μi ) = (Vi × μi )yi × e−Vi ×μi

yi !
(8.5)

The parameter μi is now the expected number of sea lice at site i for a 1-unit
volume. If all the values Vi are the same, we may as well drop it (for the purpose of
a GLM) and work with the Poisson distribution in Equation (8.3).



8.4 The Negative Binomial Distribution 199

8.4 The Negative Binomial Distribution

We continue the trail of distribution functions with another discrete one: the negative
binomial. There are various ways of presenting the negative binomial distribution
and a detailed explanation can be found in Hilbe (2007). Because we are working
towards a GLM, we present the negative binomial used in GLMs. It is presented
in the literature as a combination of two distributions, giving a combined Poisson-
gamma distribution. This means we first assume that the Ys are Poisson distributed
with the mean μ assumed to follow a gamma distribution. With some mathematical
manipulation, we end up with the negative binomial distribution for Y. Its density
function looks rather more intimidating than that of the Poisson or Normal distribu-
tions and is given by

f (y; k, μ) = Γ(y + k)

Γ(k) × Γ(y + 1)
×

(
k

μ + k

)k

×
(

1 − k

μ + k

)y

(8.6)

Nowadays, the negative binomial distribution is considered a stand-alone distri-
bution, and it is not necessary to dig into the Poisson-gamma mixture background.
The distribution function has two parameters: μ and k. The symbol Γ is defined as:
Γ(y + 1) = (y + 1)!. The mean and variance of Y are given by

E(Y ) = μ var(Y ) = μ + μ2

k
(8.7)

We have overdispersion if the variance is larger than the mean. The second term
in the variance of Y determines the amount of overdispersion. In fact, it is indirectly
determined by k, where k is also called the dispersion parameter. If k is large (relative
to μ2), the term μ2/k approximates 0, and the variance of Y is μ; in such cases the
negative binomial converges to the Poisson distribution. In this case, you might as
well use the Poisson distribution. The smaller k, the larger the overdispersion.

Hilbe (2007) uses a different notation for the variance, namely,

var(Y ) = μ + α × μ2

This notation is slightly easier as α = 0 means that the quadratic term disappears.
However, the R code below uses the notation in Equation (8.7); so we will use it
here.

It is important to realise that this distribution is for discrete (integers) and non-
negative data. Memorising the complicated formulation of the density function is
not needed; the computer can calculate the Γ terms. All you need to remember is
that with this distribution, the mean of Y is equal to μ and the variance is μ +μ2/k.

The probability function in Equation (8.6) looks complicated, but it is used in
the same way as we used it in the previous section. We can specify a μ value and
a k value, and calculate the probability for a certain y value. To get a feeling for
the shape of the negative binomial probability curves, we drew a couple of density



200 8 Meet the Exponential Family

0 2 4 6 8 10

0.
0

0.
6

NB (1, 0.1)

Y values

P
ro

ba
bi

lit
ie

s

0 2 4 6 8 10

0.
0

0.
4

NB (1, 1)

Y values

P
ro

ba
bi

lit
ie

s

0 2 4 6 8 10

0.
0

0.
3

NB (1, 1e+05)

Y values

P
ro

ba
bi

lit
ie

s

0 5 10 15 20

0.
0

0.
4

NB (10, 0.1)

Y values

P
ro

ba
bi

lit
ie

s

0 5 10 15 20

0.
02

0.
08

NB (10, 1)

Y values
P

ro
ba

bi
lit

ie
s

0 5 10 15 20

0.
00

0.
10

NB (10, 1e+05)

Y values

P
ro

ba
bi

lit
ie

s

0 50 100 150 200

0.
0

0.
4

NB (100, 0.1)

Y values

P
ro

ba
bi

lit
ie

s

0 50 100 150 200

0.
00

2
0.

01
0 NB (100, 1)

Y values

P
ro

ba
bi

lit
ie

s

0 50 100 150 200

0.
00

0.
03

NB (100, 1e+05)

Y values

P
ro

ba
bi

lit
ie

s

Fig. 8.3 Nine density curves from a negative binomial distribution NB(μ, k), where μ is the
mean and k–1 is the dispersion parameter. The column of panels on the right have a large k, and
these negative binomial curves approximate the Poisson distribution. R code to create this graph is
given on the book website. If k = 1, the negative binomial distribution is also called the geometric
distribution

curves for various values of μ and k, see Fig. 8.3. We arbitrarily choose three values
for μ, of 1, 10, and 100. We also choose arbitrarily three values for k, of 0.1, 1, and
100,000. For k = 100,000, we expect to see a distribution function similar to the
Poisson distribution with mean and variance μ, and this is indeed the case: see the
panels in the right column. The three panels in the middle column have E(Y) = μ

and var(Y) = μ + μ2, because k = 1.
If we set k = 1 in the negative binomial distribution, then the resulting distribution

is called the geometric distribution. Its mean and variance are defined by

E(Y ) = μ var(Y ) = μ + μ2 (8.8)

Hence, the variance increases as a quadratic function of the mean. As with the
Poisson distribution, observations of the response variables with the value of zero
are allowed in the negative binomial and the geometric distribution. Most software
will not have a separate function for the geometric distribution; just set the parameter
k in the software for a negative binomial equal to 1.

Returning to the negative binomial probability function, note that for a small
mean μ and large overdispersion (small k), the value of 0 has by far the highest
probability.

In Fig. 8.3 we know the values of μ and k. In reality we do not know these
values, and in GLM models, the mean μ is a function of covariates. Estimation of k
depends on the software, but can for example be done in a 2-stage iterative approach
(Agresti, 2002).
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8.5 The Gamma Distribution

The gamma distribution can be used for a continuous response variable Y that has
positive values (Y > 0), and the distribution function has various forms. Within the
context of a GLM, we use (Faraway, 2006)

f (y; μ, ν) = 1

Γ(ν)
×

(
ν

μ

)ν

× yν−1 × e
y×ν

μ y > 0 (8.9)

Before starting to memorise the exact mathematical definition of this density
function, let us first look at the mean and variance of a variable Y that is gamma
distributed and sketch the density curve for various values of μ and v (which is the
equivalent of the k in the negative binomial distribution). The mean and variance of
Y are

E(Y ) = μ and var(Y ) = μ2

ν
(8.10)

The dispersion is determined by v–1; a small value of v (relative to μ2) implies
that the spread in the data is large. Density curves for difference values of μ and
v are given in Fig. 8.4. Note the wide range of shapes between these curves. For a
large v, the gamma distribution becomes bell shaped and symmetric. In such cases,
the Gaussian distribution can be used as well. Faraway (2006) gives an example
of a linear regression model and a gamma GLM with a small (0.0045) dispersion
parameter v–1; estimated parameters and standard errors obtained by both methods
are nearly identical. However, for larger values of v–1, this is not the necessarily
the case.
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Fig. 8.4 Gamma distributions for different values of μ and v. The R function dgamma was
applied, which uses a slightly different parameterisation: E(Y) = a × s and var(Y) = a × s2, where
a is called the shape and s the scale. In our parameterisation, v = a and μ = a × s
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Note that the allowable range of Y values is larger then 0. So, you cannot use this
distribution if your response variable takes negative values or has a value of zero.

8.6 The Bernoulli and Binomial Distributions

The last two distributions we review are the Bernoulli and binomial distributions,
and we start with the latter. In a first year statistics course, it is often introduced as
the distribution that is used for tossing a coin. Suppose you know that a coin is fair
(no one has tampered with it and the probability of getting a head is the same as
getting a tail), and you toss it 20 times. The question is how many heads do you
expect? The possible values that you can get are from 0 to 20. Obviously, the most
likely value is 10 heads. Using the binomial distribution, we can say how likely it is
that you get 0, 1, 2, . . ., 19 or 20 heads.

A binomial distribution is defined as follows. We have N independent and iden-
tical trials, each with probability P(Yi = 1) = π of success, and probability P(Yi =
0) = 1 – π on failure. The labels ‘success’ and ‘failure’ are used for the outcomes
of 1 and 0 of the experiment. The label ‘success’ can be thought of P(Yi = head),
and ‘failure’ can be P(Yi = tail). The term independent means that all tosses are
unrelated. Identical means that each toss has the same probability of success. Under
these assumptions, the density function is given by

f (y; π ) =
(

N
y

)
× π y × (1 − π )N−y (8.11)

The probability for each value of y between 0 and 20 for the tossing example can
be calculated with this probability function. For example, if N = 20 and π = 0.5,
then the probability of measuring 9 heads is (20!/(9! × 11!)) × 0.59 × (1 – 0.5)11.
The value can either be obtained from a calculator or you can read it from the panel
in the middle of Fig. 8.5 (N = 20, π = 0.5). As expected, the value y = 10 has the
highest probability, but 9 and 11 have very similar probabilities. The probability of
getting 20 heads is close to zero; it is too small to read on the vertical axis (it is in
fact something that starts with 7 zeros). For some arbitrarily chosen values of π and
N, we drew more Binomial probability curves, just to get a feel for the shape of the
density curves (Fig. 8.5).

The mean and variance of a Binomial distribution are given by

E(Y ) = N × π var(Y ) = N × π × (1 − π ) (8.12)

So, if you know that the probability of tossing a head is 0.5 and toss a coin
20 times, then the answer to the question that we started this section with is 20 ×
0.5 = 10 heads.

In ecology, we are (hopefully) not tossing with coins, but instead we may go to a
deer farm and sample N animals for the presence and absence of a particular disease.
In such a research, you want to know the probability π that a particular animal is
infected with the disease. Other examples are the presence or absence of koalas at
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Fig. 8.5 Binomial density curves B(π , N) for various values of π (namely 0.2, 0.5, and 0.7) and
N (namely 10, 20, and 100). R code to create this graph is on the book website

particular sites (see Chapter 20 for a detailed example), badger activity (yes or no)
around farms (Chapter 21), or the presence and absence of flat fish at 62 sites in an
estuary (Chapter 21 in Zuur et al., 2007).

In the example of the N deer at the farm, we do not know the value of π and the
GLM is used to model π as a function of covariates. In such a research problem, you
can also question if your sample of 20 animals from the same farm is independent.
But we leave this problem until Chapters 12 and 13.
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Fig. 8.6 Four Bernoulli distributions B(π ,1) for different values of π . R code to create this graph
is on the book website
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A Bernoulli distribution is obtained if N = 1; hence, we only toss once or we
only sample one animal on the farm. Four Bernoulli distributions with π = 0.2, π

= 0.5, π = 0.7, and π = 1 are given in Fig. 8.6. Note that we only get a value of the
probabilities at 0 (failure) and 1 (success).

In general, we do not make a distinction between a binomial and Bernoulli dis-
tribution and use the notation B(π , N) for both, and N = 1 automatically implies the
Bernoulli distribution.

8.7 The Natural Exponential Family

So far, we have discussed the Normal, Poisson, negative binomial, gamma, bino-
mial, and Bernoulli distributions. There are, however, a lot more distributions
around, for example, the multinomial distribution (useful for a response variable
that is a categorical variable with more than two levels) and inverse Gaussian distri-
bution (e.g. for lifetime distributions; these can be used for failure time of machines
in production processes or lifetime of a product). It is relatively easy to show that
all the distributions we have used so far can be written in a general formulation:

f (y; θ, φ) = e
y×θ−b(θ )

a(φ) +c(y,θ) (8.13)

For example, if we use θ = log(μ), φ = 1, a(φ) = 1, b(θ ) = exp(θ ), c(y,
φ) = –log(y!), we get the Poisson distribution function. Similar definitions exist for
the binomial, negative binomial, geometric, Normal, and gamma distributions; see
McCullagh and Nelder (1989), Dobson (2002), Agresti (2002), or Hardin and Hilbe
(2007). The advantage of this general notation is that when we build up a maximum
likelihood criterion and optimise this to estimate the regression parameters, we can
do this in terms of the general notation. This means that one set of equations can be
used for all these distributions.

Using first- and second-order derivatives for the density function specified in
Equation (8.13), we can easily derive an expression for the mean and variance of Y.
These are as follows:

E(Y ) = b′(θ)

var(Y ) = b′′(θ ) × a(φ)
(8.14)

The notation b′(θ ) refers to the first-order derivative of the function b with
respect to θ , and b′′(θ ) the second-order derivative. If you check this for the Pois-
son distribution, you will see that we get the familiar relationships E(Y) = μ and
var(Y) = μ.

The term a(φ) determines the dispersion. In the Gaussian linear regression model,
we have θ = μ, φ = σ 2, a(φ) = φ, b(θ ) = θ2/2, and c(y, φ) = − (y2/φ + log(2πφ))/2,
which gives us E(Y) = μ and var(Y) = σ 2.
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Hence, the notation in Equation (8.13) allows us to summarise all distribution
functions discussed so far in a general notation, and the mean and variance are
specified by the set of equations in (8.14).

8.7.1 Which Distribution to Select?

We have discussed a large number of distributions for the response variable, but
which one should we use? This choice should, in first instance, be made a priori
based on the available knowledge on the response variable. For example, if you
model the presence and absence of animals at M sites as a function of a cou-
ple of covariates, then your choice is simple: the binomial distribution should be
used because your response variable contains zeros and ones. This is probably the
only scenario where the choice is so obvious. Having said that, if we aggregate the
response variable into groups, we (may) have a Poisson distribution.

If your data are counts (of animals, plants, etc.) without an upper limit, then the
Poisson distribution is an option. This is because counts are always non-negative,
and tend to be heterogeneous and both comply with the Poisson distribution. If there
is high overdispersion, then the negative binomial distribution is an alternative to the
Poisson for count data.

You can also use the Normal distribution for counts (potentially combined with a
data transformation), but the Poisson or negative binomial may be more appropriate.
However, the Normal distribution does not exclude negative realisations.

You can also have counts with an upper limit. For example, if you count the
number of animals on a farm that are infected with a disease, out of a total of N
animals. The maximum number of infected animals is then N. If you consider each
individual animal as an independent trial and each animal has the same probability
of being infected, then we are in the world of a binomial distribution.

But, what do you do with densities? Density is often defined as the numbers
(which are counts!) per volume (or area, depth range, etc.). We will see in Chapter 9
that this can be modelled with the Poisson (or NB) distribution and an offset
variable.

If the response variable is a continuous variable like weight of the animal, then
the Normal distribution is your best option, but the gamma distribution may be an
alternative choice.

The important thing to realise is that these distributions are for the response vari-
able, not for explanatory variables. The choice of which distribution to use is an a
priori choice. A list of all discussed distributions in this section is given in Table 8.1.
If you are hesitating between two competing distributions, e.g. the Normal distribu-
tion and the gamma distribution, or the Poisson distribution and the negative bino-
mial distribution, then you could plot the mean versus the variance of the response
variable and see what type of mean–variance relationship you have and select a
distribution function accordingly. In Chapter 9, we will see that the Poisson distri-
bution is nested in the NB distribution, which opens the possibility for a likelihood
ratio test.
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Table 8.1 List of distributions for the response variable. Density means numbers per Area (or
volume, range, etc), and in this case the offset option is needed in the Poisson or NB GLM

Distribution Type of data Mean – variance relationship

Normal Continuous Equation (8.2)
Poisson Counts (integers) and density Equation (8.4)
Negative binomial Overdispersed counts and density Equation (8.7)
Geometric Overdispersed counts and density Equation (8.8)
Gamma Continuous Equation (8.10)
Binomial Proportional data Equation (8.12)
Bernoulli Presence absence data Equation (8.12) with N = 1

8.8 Zero Truncated Distributions for Count Data

The discussion presented in this section applies to the Poisson, negative binomial,
and the geometric distributions. All three distributions can be used for count data.
Suppose we sample N sites, and at each site we count the number of birds, denoted
by Yi. The values that we can measure are 0, 1, 2, 3, . . ., etc. For a given mean μ,
the Poisson, negative binomial, and geometric distributions specify the probability
of having a count of 0, 1, 2, etc. For example, if we use the Poisson distribution with
μ = 3, Fig. 8.2A shows that the probability of counting 0 animals is 13.5%. So, if
you had a sample of size N = 100, you would expect to have a zero count approxi-
mately 14 times in your resulting data set. But what if you have a response variable
that cannot take the value of 0? A typical example from the medical literature is the
length of stay of a patient in a hospital. As soon as the patient enters the hospital, the
length of stay is at least 1. In ecology, it is more difficult to envisage examples that
structurally exclude zeros, but think of the number of plants in a transect and you
know that it would be impossible to have transects with zero abundance due to the
experimental design, the time that a whale stays at the surface before submerging
(it has to breath) or the number of days per year with rain in Scotland. These are all
variables that cannot have the value of 0. However, the Poisson, negative binomial,
and geometric distributions do not exclude this value, and this can be a problem for
small mean values μ.

The solution is to modify the distribution and exclude the possibility of a zero
observation, and this is called a zero truncated distribution. We illustrate the pro-
cess for a Poisson distribution, but the process is similar for the other two dis-
tributions. In fact, the same problem exists for continuous distributions. Think of
the weight of an animal. The weight is always positive, and if the majority of
the observations have small values, a Gaussian distribution may not be appropri-
ate as it allows for negative values and realisations. In this chapter, we focus on
discrete distributions (because we need them in Chapter 11), but the Tobit model
can be used for the Gaussian distribution. Cameron and Trivedi (1998) is a good
reference.
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Recall that the Poisson distribution is given by

f (yi ; μ) = μyi × e−μ

yi !
(8.15)

The probability that yi = 0, is given by

f (0; μ) = μ0 × e−μ

0!
= e−μ

The probability of not measuring a 0 is given by 1 – e–μ. If we use μ = 2, then the
probability that yi = 0, is 0.135 and the probability of not measuring a 0 is 0.864. In
Fig. 8.7A, we have sketched the Poisson distribution with μ = 2. In panel B, we put
a cross through the line that represents the probability of sampling a 0 count. The
cross is our pedagogical way of saying that we are changing the Poisson density and
setting the probability that y = 0 equal to 0. However, this leaves us with the problem
that by definition the sum of the probabilities of all outcome should be exactly 1.
Removing the probability of y = 0 means that the remaining probabilities add up
to 0.864. The solution is simple; divide the probability of each outcome larger than
0 by 0.864. The sum of all scaled probabilities will then add up to 1 again. We
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Fig. 8.7 A: Poisson distribution with μ = 2. The sum of all probabilities is 1. B: The zero
outcome is dropped from the possible range of outcomes, as indicated by a cross. The sum of all
probabilities is equal to 0.864. C: Adjusted probabilities according to Equation (8.15). The vertical
lines are slightly higher (because each probability was divided by 0.864), and the probability that
yi = 0 is zero. The sum of all scaled probabilities equals 1
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therefore need to divide the Poisson probability function by the probability that we
have a count larger than 0, and the new probability function is

f (yi ; μ|yi > 0) = μyi × e−μ

(1 − e−μ) × yi !
(8.16)

The notation ‘| yi > 0’ is used to indicate that yi is larger than 0. This is called the
zero-truncated Poisson distribution. The same can be done for the negative binomial
distribution.

The distribution function in Equation (8.15) will be used in GLMs and GAMs to
model zero-truncated data. The underlying principle will also be applied in models
that have too many zeros (zero inflated Poisson). For further details, see Chapter 11
or Hilbe (2007).



Chapter 9
GLM and GAM for Count Data

9.1 Introduction

A generalised linear model (GLM) or a generalised additive model (GAM) consists
of three steps: (i) the distribution of the response variable, (ii) the specification
of the systematic component in terms of explanatory variables, and (iii) the link
between the mean of the response variable and the systematic part. In Chapter 8,
we discussed several different distributions for the response variable: Normal, Pois-
son, negative binomial, geometric, gamma, Bernoulli, and binomial distributions.
One of these distributions can be used for the first step mentioned above. In fact,
later in Chapter 11, we see how you can also use a mixture of two distributions
for the response variable; but in this chapter, we only work with one distribution at
a time.

We spent a lot of time looking at distributions in Chapter 8 because our expe-
rience teaching environmental scientists show that in general they are less familiar
with some of these distributions, especially the negative binomial. Before reading
this chapter, you should ensure that you are familiar with the material described in
Chapter 8.

In this chapter, we focus on count data and use the Poisson and negative binomial
distributions. In the next chapter we concentrate on logistic regression using the
binomial distribution. We also revisit count data in Chapter 11, where we look at
data sets with lots of zeros or no zeros. Models for these types of data use a mixture
of techniques discussed in this and the next chapter.

Good references on GLM include McCullagh and Nelder (1998), Dobson (2002),
and Agresti (2002). It is possible to dedicate an entire book to Poisson or logis-
tic regression (see for examples: Hosmer and Lemeshow, 2000; Collet, 2003). Fox
(2002), Ruppert et al. (2003), Wood (2006), and Keele (2008) are excellent GAM
references.

We start this chapter showing that the linear regression model is also a GLM. This
is merely a pedagogical choice as it allows us to start with something familiar, and
after all, the Gaussian linear regression can also be used for count data, even though
it is not the best option. In Section 9.3, Poisson GLM is introduced using an artificial
data set that we know the regression parameters for. It allows us to demonstrate what

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 9,
C© Springer Science+Business Media, LLC 2009
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the model is actually doing. In Section 9.4, we give the likelihood criterion and show
how parameters can be estimated. In Sections 9.5, 9.6, 9.7, 9.8, and 9.9, we discuss
Poisson GLM using a real data set and focus on overdispersion, model selection,
and model validation. In Section 9.10, we present the negative binomial distribution
and show how it can be used if there is overdispersion. Finally we look at GAM.

9.2 Gaussian Linear Regression as a GLM

A GLM consists of three steps:

1. An assumption on the distribution of the response variable Yi. This also defines
the mean and variance of Yi.

2. Specification of the systematic part. This is a function of the explanatory vari-
ables.

3. The relationship between the mean value of Yi and the systematic part. This is
also called the link between the mean and the systematic part.

We discuss these three steps for the Gaussian linear regression model.
Step 1: In a Gaussian linear regression, we assume that the response variable Yi

is normally distributed with mean μi and variance σ 2. The index i refers to a case or
observation.

Step 2: In the second step, we specify the systematic part of the model. This
means that we need to select the explanatory variables. Define the predictor function
η(Xi1, . . ., Xiq) by:

η(Xi1, . . . , Xiq ) = α + β1 × Xi1 + · · · + βq × Xiq (9.1)

The systematic part is given by the predictor function η(Xi1, . . ., Xiq).
Step 3: In the third step, we need to specify the link between the expected value

of Yi (which is μi) and the predictor function η(Xi1, . . ., Xiq). We use the identity
link, which means that μi = η(Xi1, . . ., Xiq).

These three steps give the following GLM:

Yi ∼ N (μi , σ
2)

E(Yi ) = μi and var(Yi ) = σ 2

μi = η(Xi1, · · · , Xiq )

(9.2)

This model is also called a GLM with Gaussian distribution and identity link.
Combining some of the elements in Equation (9.2) gives

E(Yi ) = η(Xi1, · · · , Xiq) = α + β1 × Xi1 + · · · + βq × Xiq
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which is our familiar linear regression model from Chapter 2 and Appendix A. We
can also write it as:

Yi = α + β1 × Xi1 + · · · + βq × Xiq + εi

where εi is normally and independently distributed with mean 0 and variance σ 2.
Examples and further details of the Gaussian GLM with identity link function are
given in Appendix A. In principle, you can use the Gaussian distribution to analyse
count data, but the residuals often show heterogeneity. Options to solve this are a
data transformation or using generalised least squares as discussed in Chapter 4.

The formulation of a generalised additive model with a Gaussian distribution is
similar to the linear regression model, except that in step 2 we use smoothers in the
predictor function:

η(Xi1, . . . , Xiq) = α + f1(Xi1) + · · · + fq (Xiq)

Obviously, we can also have a predictor function with smoothers and parametric
or nominal variables.

9.3 Introducing Poisson GLM with an Artificial Example

In this section, we show the model formulation for a Poisson GLM, and we use an
artificial example to demonstrate what the model is doing. We need the following
three steps for a Poisson GLM:

1. Yi is Poisson distributed with mean μi. By definition of this distribution, the
variance of Yi is also equal to μi.

2. The systematic part is given by η(Xi1, . . ., Xiq) = α + β1 × Xi1 + · · · + βq × Xiq.
3. There is a logarithmic link between the mean of Yi and the predictor function

η(Xi1, . . ., Xiq). The logarithmic link (also called a log link) ensures that the
fitted values are always non-negative.

As a result of these three steps, we get

Yi ∼ P(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1.··· ,Xiq )

(9.3)

The Poisson GLM is particularly useful for count data as these tend to be het-
erogeneous and are always non-negative; both aspects are dealt with by the Poisson
GLM.

In the remaining part of this section, we use an artificial data set to explain what
a Poisson GLM model is doing. Creating artificial data is simple; choose some



212 9 GLM and GAM for Count Data

arbitrary values for an intercept and slope, then choose arbitrary values for a covari-
ate, and calculate some fitted values. We will start with the covariate Xi, which takes
the values 0, 1, 2, 3, 4, 5, . . ., 100. We arbitrarily choose an intercept of 0.01 with a
slope of 0.03 and calculate the fitted values μi using the equation:

μi = exp(0.01 + 0.03 × Xi )

The problem is that in reality, we never measure a count of exp(0.01) or
exp(0.03 + 0.01 × 1), because a count is an integer. We therefore sampled one
value from a Poisson distribution with mean μi and the resulting value is Yi. This
process is repeated for each i = 1, . . ., 101. A scatterplot of Xi and Yi is given in
Fig. 9.1. We fitted a Poisson GLM on these data (on the Xi and Yi), which gave
an estimated intercept and slope, and these allowed us to draw the fitted line in
Fig. 9.1. Note the line shows an exponential relationship. The scatter of points
around the line in Fig. 9.1 gives an idea of how much variation to expect from a
Poisson distribution with values between 0 and 30 (the range of the vertical axis).

The same exponential line is shown in Fig. 9.2, except that the third axis now
shows the probability of other realisation. At several values along the covariate,
where X = 2, 15, 30, 50, and 75, we calculated the fitted values (the Y values in
Fig. 9.2), which are the means μi of the Poisson distributions in Fig. 9.2. Note how
the shape of the Poisson density curves change from small skewed curves to wide
symmetric curves.

In this section, we pretended that we knew the intercept α and slope β, which
allowed us to calculate the fitted values μi used to generate the count data Yi. Obvi-
ously, in real life, the situation is the opposite way around. In real life, we measure Yi

and Xi, and do not know α and β (and therefore also μi). Hence, we need a mecha-
nism that estimates the values of α and β, and this is discussed in the next section.
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Fig. 9.1 Artificial data with a GLM Poisson model fitted. The fitted line is obtained from the GLM
model, and X is the covariate with values from 0 to 100
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Fig. 9.2 Example of a Poisson GLM. The plane in the x–y axes shows the same exponential curve
as in Fig. 9.1. The vertical lines along the third axis show Poisson probability curves at different
values of the covariate: X = 2, 15, 30, 50, and 75. The widths of the probability curves show the
spread of the data. This is the same graph as Fig. 2.5, except that we use a Poisson GLM here

9.4 Likelihood Criterion

The Poisson distribution was discussed in Chapter 8. Recall that it is given by

f (yi ; μi ) = μ
yi

i × e−μi

yi !
yi ≥ 0, yi integer

It gives the probability that a particular yi value is observed for a given mean μi.
Within the context of a GLM, we add an index i to μ, and μi is a function of the
covariates:

μi = eα+β1 X1i +···+βq Xiq

The unknown parameters that we need to estimate are the intercept and slopes.
In linear regression, we used ordinary least squares to minimise the residual sum of
squares. Here, we use maximum likelihood estimation.

The principle of maximum likelihood estimation is that we specify a joint like-
lihood criterion L for all observed data y1 to yn, and we maximise this likelihood
criterion as a function of the unknown regression parameters. Formulated differ-
ently, what are the values of the regression parameters such that the probability L of
the observed data is the highest? The starting point is

L = Probability(Y1 = y1 and Y2 = y2 and . . . and Yn = yn)

Because we assume independence of the observations, we can use the basic prob-
ability rule P(A and B) = P(A) × P(B). As a result the likelihood function, L can be
written as
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L =
∏

i

μyi × e−μi

yi !

The roman pillar symbol stands for multiplication, and the Poisson distribution
function was used for the probability that Yi is yi. From this point onwards, it is
merely a matter of mathematics; how can we maximise L as a function of the regres-
sion parameters? To simplify the maximisation process, we make the likelihood cri-
terion L additive by working with the logarithm of the likelihood:

log(L) =
∑

i

(
log(μyi × e−μi ) − log(yi !)

)

=
∑

i

(
log(μyi ) + log(e−μi ) − log(yi !)

)

=
∑

i
(yi × log(μi ) − μi − log(yi !))

=
∑

i

(
yi × Xi × β − eXi ×β − log(yi !)

)

(9.4)

To speed up the numerical optimisation routines, we could drop the log(yi!)
term as it does not contain any regression parameters. You may remember from
high school mathematics that to optimise a function, we need to obtain first-order
derivatives, set them to 0 and solve the equations. The first-order derivatives are
given by

∂ log(L)

∂β
=

∑
i
(yi × Xi − Xi × eXi ×β) =

∑
i
Xi × (yi − μi )

Setting these to 0 gives

∑

i

Xi × (yi − μi ) = 0 (9.5)

For the Gaussian linear regression model with an identity link, this gives a closed
form solution. This means we get nice expressions for the unknown parameters
that can easily be calculated. However, for most of the other distributions and link
functions, this is not the case. Instead, we get a set of equations that have to be solved
iteratively. A so-called iteratively reweighted least squares (IRWLS) algorithm is
applied, and the numerical output of the GLM function in R has a sentence telling
you how many iterations were carried out. To obtain standard errors for the para-
meters, we also need second-order derivatives of the log likelihood function, but we
do not present them here.

If you open a book on GLM, it will be hard to find the likelihood equations for a
Poisson GLM, as most books present these equations in terms of the general notation
we used in Chapter 8. The advantage of this general notation is that, provided we use a
canonical link (e.g. the log for a Poisson, or identity link for the Gaussian distribution),
the internal mathematics of all GLMs can be written in the same way and with the same
variable names that we used in Chapter 8. This makes it easy to program. However,
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from a pedagogical point of view, we decided to focus first on the Poisson GLM,
and then to mention the possibility of rewriting it in abstract, and general, mathe-
matical notation. We refer the interested reader to McCullagh and Nelder (1989).

9.5 Introducing the Poisson GLM with a Real Example

9.5.1 Introduction

In Section 9.3, we arbitrarily chose a set of regression parameters and created arti-
ficial count data. It allowed us to explain the underlying concept of Poisson GLM
and give an impression of how much variation can be expected in the data if they are
from a Poisson distribution. In Section 9.4, we formulated the maximum likelihood
criterion and presented the first-order derivatives. Luckily, other people have written
software code that uses the log likelihood criterion and the equations for first-order
derivatives to obtain parameter estimates. In this section, we show how to use the
software and present a detailed example. Because we are now going to use a real
example, all the misery will come at the same time.

The data used here (and in various other sections in this chapter) are fully anal-
ysed in Chapter 16 as a case study. It should be noted that a Poisson GLM is not
the best tool to analyse these data, but it serves as a convenient example of how to
progress through all steps of a GLM for count data.

The data set consists of roadkills of amphibian species at 52 sites along a road in
Portugal. A scatterplot of the response variable roadkills against a possible explana-
tory variable ‘distance to the natural park’, denoted by D.PARK, is given in Fig. 9.3.
The biological interpretation of ‘distance to the park’ is given in Chapter 16.
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Fig. 9.3 Scatterplot of amphibian road kills versus distance (in metres) to a nearby Natural Park
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The data are counts, and there seems to be a non-linear, perhaps exponential,
relationship between roadkills and D.PARK. Also note that the variation is larger
for larger values of roadkills. Taken together, this gives us all the ingredients for a
Poisson GLM. Starting with only D.PARK as an explanatory variable, and ignoring
the other 10 explanatory variables, is a pedagogical choice for presenting Poisson
GLM in a textbook and is not a general recommendation for analysing these data.
The following Poisson GLM was applied.

1. Yi, the number of killed animals at site i, is Poisson distributed with mean μi.
2. The systematic part is given by η(D.PARKi) = α + β × D.PARKi.
3. There is a logarithm link between the mean of Yi and the predictor function

η(D.PARKi).

As a result of these three steps, we have

Yi ∼ p(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = α + β × D.PARKi or μi = eα+β×D.PARKi

(9.6)

We now discuss how to fit this model in R.

9.5.2 R Code and Results

The following R code accesses the data, produces Fig. 9.3, applies the GLM, and
presents the results.

> library(AED); data(RoadKills)

> RK <- RoadKills #Saves some space in the code

> plot(RK$D.PARK, RK$TOT.N, xlab = "Distance to park",

ylab = "Road kills")

> M1 <- glm(TOT.N ∼ D.PARK, family = poisson, data = RK)

> summary(M1)

The only new code here compared to linear regression (see Chapter 2 and
Appendix A) is using the glm command instead of the lm command and the option
family = poisson. Using family = gaussian applies linear regression,
but we will not do that here (in fact, it is easier just to use the function lm for lin-
ear regression). The output of the summary command is slightly different from the
summary output of an lm command and is given by:
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Call:

glm(formula = TOT.N ˜ D.PARK, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-8.1100 -1.6950 -0.4708 1.4206 7.3337

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.316e+00 4.322e-02 99.87 <2e-16

D.PARK -1.059e-04 4.387e-06 -24.13 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1071.4 on 51 degrees of freedom

Residual deviance: 390.9 on 50 degrees of freedom

AIC: 634.29

Number of Fisher Scoring iterations: 4

The first two lines tell us which model has been fitted, which is handy if you save
the output into a word processor document. Basic numerical information on the
residuals is also provided, although in Section 9.8 we present more useful graphical
tools that can be used for the model validation process. The estimated intercept and
slope are 4.31 and –0.000106, respectively. Keep in mind that distance to the park is
expressed in metres. To avoid parameter estimates with lots of zeros, you could (and
perhaps should) express it in kilometres, as it will save some ink when presenting
the estimated slope on paper. We also get a z-statistic and corresponding p-value for
testing the null hypothesis that the slope (and intercept) is equal to 0 and an AIC,
which can be used for model selection. The z-statistic is used because we know the
variance. In a Gaussian model, the variance is estimated as well, and therefore, a
t-statistic is used.

9.5.3 Deviance

The null and residual deviances are new phrases, and these are sort of maximum
likelihood equivalents of the total sum of squares and the residual sum of squares,
respectively. For the Poisson GLM, the residual deviance is defined as twice the
difference between the log likelihood of a model that provides a perfect fit (also
called the saturated model) for the model under study:

Residual deviance = 2 log(L(y; y)) − 2 log(L(y; μ)) = 2
∑

i

(yi log
yi

μi
− (yi − μi ))
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The notation y refers to a vector of all observations y1 to yn, and the same holds
for the mean μ. The null deviance is the residual deviance in the model that only
contains an intercept. Hence, the null deviance corresponds to the worst possible
model (only an intercept), the residual deviance of the model under study, and the
deviance of the saturated model from the best possible fit.

We do not have an R2 in GLM models, but the closest we can get is the explained
deviance, which is calculated as

100 × null deviance − residual deviance

null deviance
= 100 × 1071.4 − 390.9

1071.4
= 63.51%

So the explanatory variable distance to the park explains 63.51% of the variation
in road kills. Dobson (2002) called this proportional increase in explained deviance
the pseudo R2.

The smaller the residual deviance, the better is the model. Some statistics pro-
grams also quote a p-value as it is supposedly Chi-square distributed with n – p
degrees of freedom, where p is the number of regression parameters in the model and
n the number of observations. However, using the residual deviance as a goodness-
of-fit measure is not without controversy; see McCullagh and Nelder (pg. 118–119,
1989). They argue that (at least for the binomial GLM) a large value of the residual
deviance cannot always be seen as evidence of a poor fit.

The residual deviance is also sometimes called the deviance.

9.5.4 Sketching the Fitted Values

Before discussing how to assess the numerical output presented in Section 9.5.2, we
will outline what the model is doing. But first we need to calculate the predicted
values from the model and add these as a line in Fig. 9.3.

The function predict produces either predicted values on the scale of the pre-
dictor function or on the scale of the response variable. In the first case, we use
the values η(D.PARKi) = 4.13 – 0.0000106 × D.PARKi, and in the second case,
exp(η (D.PARKi)) = exp(4.13 – 0.0000106 × D.PARK i). If we want to show how
good (or bad) the model fits the observed data, we should use the predicted values
on the scale of the response variable (after taking the exponential).

Drawing the line is now simply a matter of sticking in a couple of values for
D.PARK and calculating the fitted values. Instead of doing this manually, we can do
it with a few commands in R. The code uses the plot command for Fig. 9.3 and
the glm command we have already run.

> MyData <- data.frame(D.PARK = seq(from = 0,

to = 25000, by = 1000))
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> G <- predict(M1, newdata = MyData, type = "link",

se = TRUE)

> F <- exp(G$fit)

> FSEUP <- exp(G$fit + 1.96 * G$se.fit)

> FSELOW <- exp(G$fit - 1.96 * G$se.fit)

> lines(MyData$D.PARK, F, lty = 1)

> lines(MyData$D.PARK, FSEUP, lty = 2)

> lines(MyData$D.PARK, FSELOW, lty = 2)

You will find similar (and more extensive code) in the so-called white book on
the S language (on which R is based), written by Chambers and Hastie (1992). We
first create a new data frame MyData. The variables inside this data frame must
have exactly the same names as the explanatory variables in the glm command; in
this case there is only D.PARK. In the data frame, you can specify new values for
the explanatory variables. The predict command takes as arguments the object
from the glm function (M1), the data frame with the new values of the explanatory
variables, an argument type that tells the predict function at which level to pre-
dict (either the scale of the predictor function, or the response variables, and whether
you want to have confidence intervals around the predicted line. We predicted at the
level of the predictor function; so we get confidence bands that do not contain 0
and are asymmetric. Obviously, we have to do some basic maths ourselves, and the
results are given in Fig. 9.4. Note the exponential shape of the curve and the increase
in the width of the confidence bands for larger fitted values.
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Fig. 9.4 Observed roadkills with a fitted Poisson GLM curve (solid line) and 95% confidence
bands (dotted lines). Note the clear exponential shape of the curve. For smaller fitted values, there
are groups of residuals above and below the fitted line. This is not good, and we need to deal with
this in the model validation!
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9.6 Model Selection in a GLM

9.6.1 Introduction

So far, we have only discussed the interpretation of the model in terms of an expo-
nential curve fitted through a set of points; we now concentrate on things like
model selection, hypothesis testing, and model validation. However, applying a
model selection with only one explanatory variable is a bit unrealistic, so we now
add a few more explanatory variables. The amphibian roadkills data set contains
17 explanatory variables. A list of these variables and abbreviations is given in
Table 16.1. Some of the explanatory variables were square root transformed because
of large values. Using variance inflation factors (Appendix A), a sub-selection of
nine variables is made in Chapter 16 and we use the same sub-selection here. Note,
this is still a relatively high number of explanatory variables for a data set with only
52 observations! A Poisson GLM for the roadkills data with nine variables is spec-
ified in a very similar way as in Equation (9.4), except that the systematic part now
contains all nine explanatory variables (we have no biological reasons to believe
there are interactions).

9.6.2 R Code and Output

The following R code implements the Poisson GLM with nine explanatory
variables.

> RK$SQ.POLIC <- sqrt(RK$POLIC)

> RK$SQ.WATRES <- sqrt(RK$WAT.RES)

> RK$SQ.URBAN <- sqrt(RK$URBAN)

> RK$SQ.OLIVE <- sqrt(RK$OLIVE)

> RK$SQ.LPROAD <- sqrt(RK$L.P.ROAD)

> RK$SQ.SHRUB <- sqrt(RK$SHRUB)

> RK$SQ.DWATCOUR <- sqrt(RK$D.WAT.COUR)

> M2 <- glm(TOT.N ˜ OPEN.L + MONT.S + SQ.POLIC +

D.PARK + SQ.SHRUB + SQ.WATRES + L.WAT.C +

SQ.LPROAD + SQ.DWATCOUR, family = poisson,

data = RK)

> summary(M2)

The code is self-explanatory, and the relevant output of the summary command
is given by

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.749e+00 1.567e-01 23.935 < 2e-16

OPEN.L -3.025e-03 1.580e-03 -1.915 0.055531
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MONT.S 8.697e-02 1.359e-02 6.398 1.57e-10

SQ.POLIC -1.787e-01 4.676e-02 -3.822 0.000133

SQ.SHRUB -6.112e-01 1.176e-01 -5.197 2.02e-07

SQ.WATRES 2.243e-01 7.050e-02 3.181 0.001468

L.WAT.C 3.355e-01 4.127e-02 8.128 4.36e-16

SQ.LPROAD 4.517e-01 1.348e-01 3.351 0.000804

SQ.DWATCOUR 7.355e-03 4.879e-03 1.508 0.131629

D.PARK -1.301e-04 5.936e-06 -21.923 < 2e-16

Dispersion parameter for poisson family taken to be 1

Null deviance: 1071.44 on 51 degrees of freedom

Residual deviance: 270.23 on 42 degrees of freedom

AIC: 529.62

9.6.3 Options for Finding the Optimal Model

We want to know which explanatory variables are important, and because some
terms are not significant, it is time for a model selection. The process is similar
to the one used for linear regression (Appendix A). We can use either a selection
criterion like the AIC or use a hypothesis testing approach.

Automatic forward, backward, and forward and backward selection can be
applied with the command step(M2). Results are not presented here, but a back-
ward selection indicates that no term should be dropped.

For the hypothesis testing approach, we have three options:

1. Test the null hypothesis H0: β i = 0 using the z-statistic. This is the equiva-
lent of the t-statistic in linear regression. This approach suggests to drop first
SQ.DWATCOUR as it is the least significant term and then to refit the model and
see whether there are still non-significant terms in the model.

2. Use the drop1(M2,test= "Chi") command, which drops one explanatory
variable, in turn, and each time applies an analysis of deviance test. We explain
this process below.

3. Use the anova(M2) command, which applies a series of analysis of deviance
tests by removing each term sequential. We explain at the end of Subsection 9.6.5
how this process works.

Steps 2 and 3 are similar to the anova and drop1 functions in linear regression,
except that in linear regression we used an F test based on residual sum of squares
of a full and a nested model. A nested model is defined as a model that is obtained
from the full model by setting certain parameters equal to 0. We do not have residual
sum of squares in Poisson GLM. Well, actually we do, but they are not used in these
tests (residuals are discussed in Section 9.8). Instead, we use the residual deviance
of two nested models.
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9.6.4 The Drop1 Command

Suppose we have two models: model M1 contains all nine explanatory variables,
and in model M2 we dropped the explanatory variable OPEN.L. So now the number
of parameters for M1 is p1 = 9 and for M2 is p2 = 8. Obviously, the deviance of M1

will always be equal or lower than the deviance of M2, simply because it has one
extra parameter. The null hypothesis is that the regression parameter β for OPEN.L
equals 0. Under the null hypothesis, both deviances are equal, and therefore, a large
difference between the deviances is evidence against the null hypothesis.

Let D1 and D2 be the deviances of models M1 and M2, respectively. The dif-
ference between D2 and D1 is asymptotically Chi-square distributed with p1 − p2

degrees of freedom. In formula

D2 − D1 ∼ X2
p1−p2

(9.7)

The drop1(M2,test = "Chi") command drops each explanatory variable
in turn, and each time it calculates the difference in Equation (9.7) and compares
the difference to a Chi-square distribution; see the following output.

Single term deletions

Model: TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC + SQ.SHRUB +

SQ.WATRES + L.WAT.C + SQ.LPROAD + SQ.DWATCOUR +

D.PARK

Df Deviance AIC LRT Pr(Chi)

<none> 270.23 529.62

OPEN.L 1 273.93 531.32 3.69 0.0546474

MONT.S 1 306.89 564.28 36.66 1.410e-09

SQ.POLIC 1 285.53 542.92 15.30 9.181e-05

SQ.SHRUB 1 298.31 555.70 28.08 1.167e-07

SQ.WATRES 1 280.02 537.41 9.79 0.0017539

L.WAT.C 1 335.47 592.86 65.23 6.648e-16

SQ.LPROAD 1 281.25 538.64 11.02 0.0009009

SQ.DWATCOUR 1 272.50 529.89 2.27 0.1319862

D.PARK 1 838.09 1095.48 567.85 < 2.2e-16

The model containing all explanatory variables has a deviance of 270.3. If we
drop OPEN.L, the deviance is 273.93: a difference of 3.69. The statistic X2 =
3.69 follows (approximately) a Chi-square distribution with 1 degree of freedom,
which gives a p-value of 0.054. This can be double checked with the R command:
1 – pchisq (3.69 ,1).

Note that the analysis of deviance does not give exactly the same p-value as the
z-statistic. This is because both tests are approximate. If in doubt, use the analysis
of deviance test. The advantage of using the analysis of deviance test is that it also
gives a p-value for a nominal variable.
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9.6.5 Two Ways of Using the Anova Command

The same p-value for OPEN.L can be obtained by fitting a model with all explana-
tory variables (which is M2), a model without OPEN.L, and then use the anova
command to compare the two models with an analysis of deviance. This is done
with the following R code:

> M3 <- glm(TOT.N ∼ MONT.S + SQ.POLIC + D.PARK +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR, family = poisson, data = RK)

> anova(M2, M3, test = "Chi")

The output is given by

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 42 270.232

2 43 273.925 -1 -3.693 0.055

If you use this output in a paper or report, then you should write that the dif-
ference in deviance is 3.69 and approximately follows a Chi-square distribution
with 1 degree of freedom. We have seen papers where a Chi-square distribution with
43 degrees of freedom was quoted from the output above, which is clearly wrong!

Be careful when using the command anova(M2); it applies an analysis of
deviance test, but now the terms are removed sequentially and the order depends
on the order they were typed. This is useful if all explanatory variables are indepen-
dent or if the last term is an interaction.

9.6.6 Results

Using the drop1 function, we decided to remove the variable SQ.DWATCOUR.
Refitting the model resulted in all explanatory variables being significant at the 5%
level. This suggests that we are finished with the model selection process, and can
proceed to the model validation process. However, things are never that easy. The
results of the summary command presented above had a small sentence that said:
‘overdispersion parameter for Poisson family taken to be 1’. This does not mean
that the overdispersion really is 1; it just says it was taken as 1.We promised more
misery, and overdispersion is the next stage.

In the next section, we show that all the results presented in this section can be
put in the bin, because of overdispersion. If you analyse your own data, you should
always first check for overdispersion, before doing any model selection or interpre-
tation of the results. The reason why we did not start by looking at overdispersion
was because we wanted to make sure you could read the output and judge whether
there is overdispersion. For your own data, you should always start by checking for
overdispersion and act accordingly. This is discussed in the next section.
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9.7 Overdispersion

9.7.1 Introduction

Overdispersion means the variance is larger than the mean. How do you know
your model is overdispersed? There are two options. The first is based on the X2

approximation of the residual deviance. If there is overdispersion, then D/φ is Chi-
square distributed with n – p degrees of freedom, and this leads to the following
estimator for φ:

φ̂ = D

n − p
(9.8)

In this case, it is 270.23/42 = 6.43. If this ratio is about 1, then you can safely
assume there is no overdispersion and proceed to the model validation process. In
this case the ratio is larger than 1 and provides evidence for overdispersion. Note this
only identifies overdispersion. The model (and software) does not take into account
of the overdispersion and we therefore cannot present the results as they are. Also
note that the use of the estimator in Equation (9.8) is not without criticism.

The second option is to use a different estimator based on the so-called Pearson
residuals and let the software make the corrections required for overdispersion (i.e.
correct the standard errors and tell us the magnitude of the overdispersion based on
the estimator using the Pearson residuals). But we have not yet discussed residuals
for Poisson GLMs yet. This will be done in Section 9.8.

9.7.2 Causes and Solutions for Overdispersion

Hilbe (2007) discriminates between apparent and real overdispersion. Apparent
overdispersion is due to missing covariates or interactions, outliers in the response
variable, non-linear effects of covariates entered as linear terms in the systematic
part of the model, and choice of the wrong link function. These are mainly model
misspecifications. There are a couple of interesting examples in Hilbe (pg. 52–61,
2007). For example, he simulates a Poisson variable using five explanatory vari-
ables X1 to X5, applies a Poisson model using only explanatory variables X2 to X4,
and shows how this causes overdispersion. Similar examples are given for the effects
of outliers and using the wrong link function.

Real overdispersion exists when we cannot identify any of the previous men-
tioned causes. This can be because the variation in the data really is larger than the
mean. Or there may be many zeros (which may, or may not, cause overdispersion),
clustering of observations, or correlation between observations.

If adding covariates and interactions does not help, there is a quick-fix that can
be tried before considering more complicated methods like the negative binomial
GLM.
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9.7.3 Quick Fix: Dealing with Overdispersion in a Poisson GLM

We can deal with overdispersion in the GLM by using a quasi-Poisson GLM, which
consists of the following steps:

1. The mean and variance of Yi are given by E(Yi) = μi and var(Yi) = φ × μi.
2. The systematic part is given by η(Xi1, . . . , Xiq) = α + β1 × Xi1 + . . . + βq × Xiq.
3. There is a logarithmic link between the mean of Yi and the predictor function

η(Xi1, . . . , Xiq).

The difference between the Poisson GLM and the Poisson GLM with overdis-
persion is that we no longer explicitly specify a Poisson distribution, but only a
relationship between the mean and variance of Yi.

Although we do not specify a Poisson distribution, we still use the same type of
model structure in terms of the link function and predictor function. If the dispersion
parameter φ = 1, we get the same results (in terms of estimated parameters and
standard errors) as the Poisson GLM.

If φ > 1, we talk about overdispersion, and if φ < 1, we have underdispersion.
The latter means that the variance of the response variable is smaller than you would
expect from a Poisson distribution. Reasons for underdispersion are the model is
fitting a couple of outliers rather too well or there are too many explanatory variables
or interactions in the model (overfitting). If this is not the case, then the consensus
is not to correct for underdispersion. Models that take underdispersion into account
are discussed in Chapter 7 of Hilbe (2007).

If φ > 1, we need to correct for the overdispersion, which basically means refit-
ting the model, estimating the parameter φ, and ‘making some corrections’. Before
addressing these corrections, we look at the following questions first:

1. How do we estimate the dispersion parameter φ?
2. How much larger than 1 should it be before we need to make a correction?
3. What is the effect of introducing a dispersion parameter φ?
4. At which point do we decide to do take an alternative approach?

The first question can only be answered in detail towards the end of Section
9.8 because the estimation of φ is based on residuals and we have not yet defined
residuals for a GLM. The second question can only be answered in light of the
third question. The price we pay for introducing a dispersion parameter φ, is that
the standard errors of the parameters are multiplied with the square root of φ. For
example, if φ is equal to 9, then all standard errors are multiplied by 3, and the
parameters become less significant. If the parameters of a Poisson GLM are highly
significant, then a small correction of the standard errors due to overdispersion, say
φ = 1.5, is not going to make any differences in the biological conclusions. But if
you have a parameter with a p-value of 0.03, then multiplying the standard error
with the square root of 1.5 may change the p-value in something that is no longer
significant at the 5% level. So, it all depends: In general a φ larger than 1.5 means



226 9 GLM and GAM for Count Data

that some action needs to be taken to correct it. Various tests for overdispersion are
discussed in Hilbe (2007). For the fourth question, if φ is larger than 15 or 20, then
you also need to consider other methods (e.g. the negative binomial GLM or zero-
inflated models), see the negative binomial model in Section 9.10 and the models
for zero-inflated data in Chapter 11.

9.7.4 R Code and Numerical Output

In R, the following command is required for this quick fix approach to correct for
overdispersion.

> M4 <- glm(TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR + D.PARK,

family = quasipoisson, data = RK)

You can see the only difference is specifying the family option as
quasipoisson instead of poisson. This gives the impression that there is a
quasi-Poisson distribution, but there is no such thing! All we do here is specify the
mean and variance relationship and an exponential link between the expected values
and explanatory variables. It is a software issue to call this ‘quasipoisson’. Do not
write in your report or paper that you used a quasi-Poisson distribution. Just say that
you did a Poisson GLM, detected overdispersion, and corrected the standard errors
using a quasi-GLM model where the variance is given by φ × μ, where μ is the
mean and φ the dispersion parameter. To get the numerical output for this model,
use summary(M4), which gives

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.749e+00 3.814e-01 9.830 1.86e-12

OPEN.L -3.025e-03 3.847e-03 -0.786 0.43604

MONT.S 8.697e-02 3.309e-02 2.628 0.01194

SQ.POLIC -1.787e-01 1.139e-01 -1.570 0.12400

SQ.SHRUB -6.112e-01 2.863e-01 -2.135 0.03867

SQ.WATRES 2.243e-01 1.717e-01 1.306 0.19851

L.WAT.C 3.355e-01 1.005e-01 3.338 0.00177

SQ.LPROAD 4.517e-01 3.282e-01 1.376 0.17597

SQ.DWATCOUR 7.355e-03 1.188e-02 0.619 0.53910

D.PARK -1.301e-04 1.445e-05 -9.004 2.33e-11

Dispersion parameter for quasipoisson family taken to

be 5.928003

Null deviance: 1071.44 on 51 degrees of freedom

Residual deviance: 270.23 on 42 degrees of freedom

AIC: NA
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Note that the ratio of the residual deviance and the degrees of freedom is still
larger than 1, but that is no longer a problem as we now allow for overdispersion.
The dispersion parameter φ is estimated as 5.93. This means that all standard errors
have been multiplied by 2.43 (the square root of 5.93), and as a result, most para-
meters are no longer significant! We can move onto model selection.

9.7.5 Model Selection in Quasi-Poisson

The model selection process in quasi-Poisson GLMs is similar to Poisson GLMs;
however, there are small, but important differences. First of all, in quasi-Poisson
models the AIC is not defined. Hence, there is no automatic backward or forward
selection with the step function! The hypothesis testing approach is also slightly
different. The analysis of deviance approach to compare two nested models M1 (full
model) and M2 (nested model) uses a different test statistic:

D2 − D1

φ(p1 − p2)
∼ Fp1−p2,n−p1 (9.9)

where φ is the overdispersion parameter, and p1 + 1 and p2 + 1 are the number of
regression parameters in models M1 and M2, respectively. The ‘+1’ is for the inter-
cept. Under the null-hypothesis, the regression parameters of the omitted explana-
tory variables are equal to zero, and the F-ratio follows an F-distribution with
p1 − p2 and n – p1 degrees of freedom (n is the number of observations).

Using the command drop1(M4,test = "F") gives us the equivalent of the
drop1 function for the Poisson GLM; one term is dropped in turn. The output is as
follows.

Single term deletions

Model: TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC + SQ.SHRUB +

SQ.WATRES + L.WAT.C + SQ.LPROAD + SQ.DWATCOUR + D.PARK

Df Deviance F value Pr(F)

<none> 270.23

OPEN.L 1 273.93 0.5739 0.452926

MONT.S 1 306.89 5.6970 0.021574

SQ.POLIC 1 285.53 2.3776 0.130585

SQ.SHRUB 1 298.31 4.3635 0.042814

SQ.WATRES 1 280.02 1.5217 0.224221

L.WAT.C 1 335.47 10.1389 0.002735

SQ.LPROAD 1 281.25 1.7129 0.197727

SQ.DWATCOUR 1 272.50 0.3526 0.555802

D.PARK 1 838.09 88.2569 7e-12

These results suggest dropping SQ.DWATCOUR from the model and then refit-
ting the model with the remaining terms to see if there are still any non-significant
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Fig. 9.5 Fitted line of the optimal quasi-Poisson model using only D.PARK as the explanatory
variables. R code to make this graph is given on the book’s website

terms. After doing this, some terms are still non-significant so the process has
to be repeated. The variables were dropped in the following order: OPEN.L,
SQ.WATRES, SQ.LPROAD, SQ.SHRUB, SQ.POLIC, MONT.S, and L.WAT.C.
Finally, we ended up with a model that only contained D.PARK. So, ignoring
overdispersion can result in a completely different biological conclusion!

We finally present the numerical output of the quasi-Poisson model that uses
only D.PARK. Its estimated parameters, standard errors, etc. are given below and
the fitted line is presented in Fig. 9.5. Note that the confidence intervals around the
line are now larger than before due to the overdispersion correction.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.316e+00 1.194e-01 36.156 < 2e-16

D.PARK -1.058e-04 1.212e-05 -8.735 1.24e-11

Dispersion parameter for quasipoisson family taken to

be 7.630148

Null deviance: 1071.4 on 51 degrees of freedom

Residual deviance: 390.9 on 50 degrees of freedom

9.8 Model Validation in a Poisson GLM

Just as in linear regression, we have to apply a model validation after we have
decided on the optimal GLM, and the residuals are an important tool for this. Earlier
in linear regression and additive modelling, these were defined as

Linear regression : ε̂i = yi − μ̂i = yi − α̂ − β̂1 × Xi1 − · · · − β̂q × Xiq

Additive modelling : ε̂i = yi − μ̂i = yi − α̂ − f̂1(Xi1) − · · · − f̂q (Xiq )
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We used the notation ˆ to indicate that we are working with estimated values,
parameters, or smoothing functions. To save space, we focus on the GLM, but the
approach is identical for the GAM.

The question is as follows: What are residuals in a GLM? An obvious starting
point would be to define residuals in exactly the same way as we do for linear
regression using yi − μi, which is the vertical distance between an observation and
the solid line in Fig. 9.5. The next question is whether a large residual at D.PARK=
1000 m is any worse than a large residual at D.PARK = 20000 m? The answer is
not as easy as it may look, and we discuss this next!

9.8.1 Pearson Residuals

As for larger fitted values (left part of the fitted line) with Poisson distributions, we
can allow for more variation around the line than with other distributions. Therefore,
while we still want to see small residuals yi − μi for small values of μi, residuals are
allowed to be larger for larger μi. That makes a plot of the residuals yi − μi versus
fitted values μi, one of our prime graphs in Chapters 2 and 4, not particularly useful
here.

In Chapter 4, we had a similar problem and our solution was to divide the resid-
uals yi − μi by the square root of the variance of Yi, also called the normalised
residuals. Here, we can do the same and call them the Pearson residuals.

ε̂P
i = yi − μ̂i√

var(Yi )
= yi − μ̂i√

μ̂i
(9.10)

For this, each residual is divided by the square root of the variance. The name
‘Pearson’ (for a Poisson GLM) is because squaring and summing all the Pearson
residuals gives you the familiar Pearson Chi-square goodness of fit criteria.

When we use an overdispersion parameter φ, the variance is adjusted with this
parameter, and we divide the residuals yi − μi by the square root of φμi.

It is also possible to define standardised Pearson residuals by dividing the Pearson
residuals by the square root of 1 – hi, where hi is the leverage of observation i; see
also Appendix A.

9.8.2 Deviance Residuals

Recall that the residual deviance is the GLM equivalent of the residual sum of
squares; the smaller the better. It would be nice to know the contribution of each
observation (case) to the residual deviance. Perhaps some observations are not fitted
well by the model, and this can be detected by looking at the deviance residuals.
They are defined by

ε̂D
i = sign(yi − μi )

√
di (9.11)
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The notation ‘sign’ stands for sign and has the value 1 if yi is larger than μi, and
−1 if yi is smaller than μi. The quantity di is the contribution of the ith observation
to the deviance. The di was formulated in Section 9.5.3. The sum of squares of the
deviance residuals di equals the residual deviance D.

9.8.3 Which One to Use?

So, we have three types of residuals in a GLM: (i) the ordinary residuals yi − μi, also
called the response residuals, (ii) the Pearson residuals, and (iii) deviance residuals.
In fact, there are more types of residuals (e.g. working residuals and Anscombe
residuals, see McCullagh and Nelder (1989)), but these are the most popular ones
for the purpose of model validation. Which one should we use?

By default, R uses the deviance residuals, and for most data sets used in this book,
there is not much difference between using Pearson or deviance residuals for a Pois-
son GLM. This may not, however, be the case for data sets with lots of zeros (small
variance) or for Binomial GLMs. McCullagh and Nelder (p. 398, 1989) recommend
using the deviance residuals for model checking as these have distributional proper-
ties that are closer to the residuals from a Gaussian linear regression model than the
alternatives; use Pierce and Schafer (1986) for a justification.

However, it should be noted that we are not looking for normality from the
Pearson or deviance residuals. It is all about lack of fit and looking for patterns
in the deviance or Pearson residuals.

9.8.4 What to Plot?

We need to take the residuals of choice (e.g. deviance) and plot them against (i) the
fitted values, (ii) each explanatory variable in the model, (iii) each explanatory vari-
able not in the model (the ones not used in the model, or the ones dropped during the
model selection procedure), (iv) against time, and (v) against spatial coordinates, if
relevant. We do not want to see any patterns in these graphs. If we do, then there is
something wrong, and we need to work out what it is.

If there are patterns in the graph with residuals against omitted explanatory vari-
ables, then the solution is simple; include them in the model. If there are patterns
in the graph showing residuals against each explanatory variable used in the model,
then either include quadratic terms, use GAM, or conclude that there is violation
of independence. If you plot the residuals against time or spatial coordinates, and
there are patterns, conclude you are violating the assumption of independence. Pat-
terns in spread (detected by plotting residuals against fitted values) may indicate
overdispersion or use of the wrong mean-variance relationship (e.g. wrong choice
of distribution).

Violation of independence nearly always means that an important covariate was
excluded from the model. If you did not measure it, then if possible, go back into
the field and measure it now. That is assuming you have any idea of what the
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missing covariate might be! If this is not an available solution, then curse yourself
for a poor experimental design and hope that applying a generalised linear mixed
model or generalised estimation equation (GEE) will bale you out. See Chapters 12
and 13.

9.9 Illustration of Model Validation in Quasi-Poisson GLM

To explain model validation, we use the optimal quasi-Poisson GLM for the amphib-
ian roadkills data. Recall from Section 9.7.5 that there was an overdispersion of 7.63
and that the only significant explanatory variable was D.PARK. Figure 9.6 shows the
standard output from a plot command, and Fig. 9.7 contains the response residu-
als, Pearson residuals, scaled Pearson residuals (we divided the Pearson residuals by
the square root of the overdispersion parameter), and the deviance residuals. Both
figures indicate that there is a clear pattern in the residuals. Note that it is hard
to detect any differences between Pearson and deviance residuals. Some additional
exploration into the residuals against other explanatory variables and spatial loca-
tions is done in Chapter 16.

As in linear regression, we can also use leverage and the Cook distance statistic.
There are no influential observations.

The following R code was used to produce Figs. 9.6 and 9.7.

> M5 <- glm(TOT.N ∼ D.PARK, family = quasipoisson, data = RK)

> EP <- resid(M5, type = "pearson")

> ED <- resid(M5, type = "deviance")

> mu <- predict(M5, type = "response")

> E <- RK$TOT.N - mu

> EP2 <- E / sqrt(7.630148 * mu)

> op <- par(mfrow = c(2, 2))

> plot(x = mu, y = E, main = "Response residuals")

> plot(x = mu, y = EP, main = "Pearson residuals")

> plot(x = mu, y = EP2,

main = "Pearson residuals scaled")

> plot(x = mu, y = ED, main = "Deviance residuals")

> par(op)

The first line re-applies the quasi-Poisson model, even though we could have
omitted it as we had already applied it in the previous subsection. EP and ED
are the Pearson and deviance residuals, respectively. Unfortunately, the function
resid ignores the overdispersion; so we need to manually divide the Pearson
residuals by the square root of 7.63 or calculate these residuals from scratch
(as we did here). The rest of the code plots the residuals and should be self
explanatory.
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Fig. 9.6 Standard output from a GLM function applied on the amphibian roadkills data obtained
by the plot command
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Fig. 9.7 Response residuals (observed minus fitted values, also called ordinary residuals), Pearson
residuals, scaled Pearson residuals (the overdispersion is taken into account) and the deviance
residuals for the optimal quasi-Poisson model applied on the amphibian roadkills data
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The last thing we explain is how the overdispersion parameter φ in a Poisson
GLM is estimated by R. It takes the Pearson residuals, squares them, adds them all
up, and then divides the sum by n – p, where n is the number of observations and
p the number of regression parameters (slopes) in the model. Check it with the R
command sum(EP ˆ2) / (52 – 1).

9.10 Negative Binomial GLM

9.10.1 Introduction

In the previous sections of this chapter, we applied Poisson GLM on the amphibian
roadkills data set and found that there is an overdispersion of 7.63. Consequently,
all standard errors were corrected by multiplying them with the square root of 7.63
when we applied the quasi-Poisson model. An alternative approach is to apply the
negative binomial model. In Chapter 16, a negative binomial GAM is applied on
the amphibian roadkills data, but for illustration purposes we apply the negative
binomial GLM here.

Books that contain a chapter on the negative binomial GLM are for example
Venables and Ripley (2002), Agresti (2002), or Gelman and Hill (2007). A book
dedicated to negative binomial regression is Hilbe (2007). If you are going to apply
the negative binomial GLM, then this book is a ‘must read’. It even discusses neg-
ative binomial GLMM models. Stata, rather than R, is used for this book, but this
does not dominate the text.

Just as for Gaussian and Poisson GLMs, we specify the model with three steps.
The NB GLM is given by

1. Yi is negative binomial distributed with mean μi and parameter k (see also Chap-
ter 8). By definition, the variance of Yi is also equal to μi and its variance is
μi + μi

2 / k.
2. The systematic part is given by η(Xi1, . . . , Xiq) = α + β1 × Xi1 + . . . + βq × Xiq.
3. There is a logarithm link between the mean of Yi and the predictor function

η(Xi1,. . ., Xiq). The logarithmic link (also called log link) ensures that the fitted
values are always non-negative.

As a result of these three steps, we have

Yi ∼ N B(μi , k)

E(Yi ) = μi and var(Yi ) = μi + μ2
i

k
log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1,··· ,Xiq )

(9.12)

To estimate the regression parameters, we need to specify the likelihood criterion,
and obtain the first-order and second-order derivatives. The process is the same as
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for the Poisson GLM in Section 9.4. To avoid repetition, we only show how the log
likelihood criterion is derived.

Recall from Chapter 8 that the negative binomial probability function is given by

f (yi ; k, μi ) = Γ(yi + k)

Γ(k) × Γ(yi + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)y

(9.13)

These probability functions are then used in the log likelihood criterion:

log(L) =
∑

i
log( f (yi ; k, μi )) (9.14)

It is now a matter of substituting Equation (9.13) into the log likelihood function
in (9.14), and using high school mathematics to simplify things. There is some con-
tradiction in the literature regarding how much you should simplify this equation.
For example, Equation (5.30) in Hilbe (2007) looks very different from the one we
have here, but it is exactly the same thing, just written down differently. If you start
inspecting these equations, do not panic if you find differences; some textbooks have
small mistakes! Keeping it simple gives us

log(L) =
∑

i
log( f (yi ; k, μi ))

=
∑

i
(k × log

(
k

μi + k

)
+ yi × log

(
μi

μi + k

)
+ log(Γ(yi + k))

− log(Γ(k)) − log(Γ(yi + 1)))

(9.15)

This can be further simplified. It is also possible to express the NB probability
function in Equation (9.13) as an exponential function. The advantage of this is that
the whole model can be written in the same notation as the other GLMs; see also
Section 13.2.2 in Hardin and Hilbe (2007).

The function glm.nb from the MASS package can be used to apply the negative
binomial GLM in R. We start with all 11 explanatory variables again.

> library(MASS)

> M6 <- glm.nb(TOT.N ∼ OPEN.L + MONT.S + SQ.POLIC +

SQ.SHRUB + SQ.WATRES + L.WAT.C + SQ.LPROAD +

SQ.DWATCOUR + D.PARK, link = "log", data = RK)

You can choose from the logarithmic, identity, and square root link function, and
an example with the identity link can be found in Agresti (2002). Here, we use the
logarithmic link (which is also the default link in the function glm.nb, but not
the canonical link function); so we can compare the results with those from the
Poisson GLM. The command summary(M6, cor = FALSE) gives the relevant
numerical output.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.951e+00 4.145e-01 9.532 <2e-16

OPEN.L -9.419e-03 3.245e-03 -2.903 0.0037

MONT.S 5.846e-02 3.481e-02 1.679 0.0931

SQ.POLIC -4.618e-02 1.298e-01 -0.356 0.7221

SQ.SHRUB -3.881e-01 2.883e-01 -1.346 0.1784

SQ.WATRES 1.631e-01 1.675e-01 0.974 0.3301

L.WAT.C 2.076e-01 9.636e-02 2.154 0.0312

SQ.LPROAD 5.944e-01 3.214e-01 1.850 0.0644

SQ.DWATCOUR -1.489e-05 1.139e-02 -0.001 0.9990

D.PARK -1.235e-04 1.292e-05 -9.557 <2e-16

Dispersion parameter for Negative Binomial(5.5178)

family taken to be 1

Null deviance: 213.674 on 51 degrees of freedom

Residual deviance: 51.803 on 42 degrees of freedom

AIC: 390.11

Theta: 5.52

Std. Err.: 1.41

2 x log-likelihood: -368.107

The output is similar to the Poisson GLM output, except we also get a parameter
theta, which is the k in the negative binomial variance function. We also get its
standard error, but care is needed with its use as the interval is not symmetric and
we are testing on the boundary. Note that as half of the regression parameters are
not significant at the 5% level, a model selection is required.

The available tools for a model selection are similar to those we have seen in the
previous section: hypothesis testing and using a model selection tool like the AIC.
For hypothesis testing, we can use

1. The z-statistic (table above).
2. Analysis of deviance tables obtained by the anova(M6, test = "Chi")

command (this is doing sequential testing).
3. Drop each term in turn and compare the full model with a nested model using

the drop1(M6, test = "Chi")command.
4. Manually specifying a nested model, call it for example M7, and use the com-

mand anova(M6, M7, test = "Chi").

An automatic backward (or forward) selection procedure based on the AIC can
be applied by the command step(M6) or stepAIC(M6). The latter option is the
main advantage over quasi-Poisson, where we do not have a likelihood function and
therefore cannot use AIC and automatic selection procedures.

A negative binomial model can also be overdispersed, and the approach described
earlier of using the ratio of the residual deviance and the degrees of freedom can
be used. In this case, there is a small amount of overdispersion. A quasi-negative
binomial option does not exist.
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Hilbe (2007) discusses a large range of extensions that can be applied (see his
Table 5.1). It is even possible to model the parameter k as a function of covari-
ates, but you may have to program your own model in R. Another exotic cousin
of the negative binomial model is the NB-P model, which has as variance μi +
μi

p/k. If p = 2, we end up with the ordinary NB GLM again. These are all use-
ful options if there is overdispersion in the NB GLM, but appropriate R software
is scarce.

9.10.2 Results

The intermediate results of the model selection (using first the AIC and then some
fine tuning using hypothesis testing) is not given here, but the final model con-
tains the explanatory variables OPEN.L and D.PARK. You could also decide to use
L.WAT.C as well because its p-value in a model with OPEN.L and D.PARK is
0.02. We decided to drop it, because these p-values are approximate, and it is so
close to the magic 5% level.

Our optimal model and its numerical and graphical output are obtained by the
following R code.

> M8 <- glm.nb(TOT.N ∼ OPEN.L + D.PARK, link = "log",

data = RK)

> summary(M8)

> drop1(M8, test = "Chi")

> op <- par(mfrow = c(2, 2))

> plot(M8)

> par(op)

The output from the drop1 function is given below. Both explanatory variables
are significant at the 5% level.

Single term deletions

Model: TOT.N ∼ OPEN.L + D.PARK

Df Deviance AIC LRT Pr(Chi)

<none> 51.84 385.43

OPEN.L 1 59.73 391.32 7.89 0.004967

D.PARK 1 154.60 486.19 102.76 < 2.2e-16

The summary command gives

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.6717034 0.1641768 28.455 <2e-16

OPEN.L -0.0093591 0.0031952 -2.929 0.0034

D.PARK -0.0001119 0.0000113 -9.901 <2e-16
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Dispersion parameter for Negative Binomial(4.1328)

family taken to be 1

Null deviance: 170.661 on 51 degrees of freedom

Residual deviance: 51.839 on 49 degrees of freedom

AIC: 387.43

Theta: 4.133

Std. Err.: 0.980

2 x log-likelihood: -379.432

Theta is the parameter k from the variance function. Note that the analysis of
deviance results gives slightly different p-values compared to the z-statistics, but the
biological conclusions will be similar. The graphical validation plots are presented
in Fig. 9.8 and do not show any problems.

The model seems to suggest that the further away you are from the park, the
fewer roadkills. Open land cover also has a negative effect of roadkill numbers.

So, which model is better, the quasi-Poisson or the negative binomial GLM?
The answer is simple: the quasi-Poisson model has patterns in the residuals and the
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Fig. 9.8 Graphical validation tools for the negative binomial GLM. The graphs do no indicate
any problems. We also plotted Pearson residuals versus the fitted values (not shown here), and this
graph did not show any problems neither
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negative binomial has no patterns, so this is the preferred model. Adding OPEN.L
as an explanatory variable to the quasi-Poisson model does not remove the pattern.
A bonus of the negative binomial GLM is that the AIC is defined, which allows us
to do automatic selection procedures.

If the residual graphs do not show a clear winner, then you can also apply a test
to compare the NB and Poisson GLMs; they are nested. The variance of the Poisson
is: var(Yi) = μi, and for the NB we have var(Yi) = μi + μi

2/k. We can also write
the variance of the NB model as var(Yi) = μi + α × μi

2. The models will give the
same variance if α = 0; so we can use a likelihood ratio test and the null hypothe-
sis is H0: α = 0. However, we are testing on the boundary again (the alternative is
H1: α > 0. We saw a similar problem when we tested the significance of a ran-
dom effect in Chapter 5, and the same solution of dividing the p-value by 2 can be
applied. The Poisson model with OPEN.L and D.PARK is fitted with

> M9 <- glm(TOT.N ∼ OPEN.L + D.PARK, family = poisson,

data = RK)

The log likelihood test is obtained by

> llhNB = logLik(M8)

> llhPoisson = logLik(M9)

> d <- 2 * (llhNB - llhPoisson)

> pval <- 0.5 * pchisq(as.numeric(d), df = 1,

lower.tail = FALSE)

The statistic is equal to 244.66, and the p-value is p < 0.001. Note that we divided
the p-value by 2. Hence, there is strong support for the negative binomial model.
The same result can be obtained with the command odTest(M8) from the pscl
package, which is not part of the base installation.

The amphibian roadkills data set is further analysed in Chapter 16. A compari-
son of the Poisson, quasi-Poisson, negative binomial, and three alternative models
in case there are lots of zeros (the hurdle model, zero-inflated Poisson, and zero-
inflated negative binomial models) is presented in Chapter 11.

9.11 GAM

Having explained Gaussian additive models in detail in Chapter 3 and the Poisson
and negative binomial GLM in detail in earlier sections in this chapter, it is rather
simple to explain Poisson or negative binomial GAM. A Poisson GAM has these
assumptions:

1. Yi is Poisson distributed with mean μi. By definition the variance of Yi is also
equal to μi.



9.11 GAM 239

2. The systematic part is given by η(Xi1, . . ., Xiq) = α + f1(Xi1) + . . . + fq(Xiq), where
the fjs are smoothing functions.

3. There is a logarithm link between the mean of Yi and the predictor function
η(Xi1, . . ., Xiq). The logarithmic link ensures that the fitted values are always
non-negative.

As a result of these three assumptions, we have

Yi ∼ P(μi )

E(Yi ) = μi and var(Yi ) = μi

log(μi ) = η(Xi1, · · · , Xiq ) or μi = eη(Xi1,··· ,Xiq )

(9.16)

For a negative binomial GAM, we only have to change step 1 from the Poisson
distribution to a negative binomial distribution and the variance is then given by
μi + μi

2/k. A detailed example of the negative binomial GAM is given in
Chapter 16. Below, we present a short example of a GAM that also illustrates the
use of the offset variable in Poisson and NB GLMs and GAMs.

9.11.1 Distribution of larval Sea Lice Around Scottish Fish Farms

The data used in this example are taken from Penston et al. (2008). Plankton tows
were taken approximately weekly at two depths (0 and 5 m) at five stations for two
years. In the original paper, numbers of nauplii and copepodids were analysed in
two separate univariate analysis where production week (time expressed in weeks
since March 2002, when the local farms stocked their cages with lice-free, juvenile
fish), station, and depth were the covariates. There are five stations labelled as A,
C, E, F, and G. Stations C and G are beside salmon farms, stations A and F are
landward of these farms, and station E is seaward of the farms. Here, we only use
copepodids. Further biological details can be found in Penston et al. (2008).

There are three potential problems with the analysis of these data: we have lon-
gitudinal (over time) data at each station, there may be correlation between adjacent
stations, and there is a large variation in the sampled water volume. As to the first
two problems, we follow the same strategy as the paper by showing there is no tem-
poral correlation within each of the residual time series, and that there are no strong
Pearson correlations between the 5 residual time series. The third problem of differ-
ent volumes per observation was discussed in Chapter 8. Define Yi as the number of
copepodids measured for observation i. We could have used a notation Ysk, referring
to observation s at station k, but we will keep the notation simple and stick to Yi. As
Yi is a count, a Poisson, negative binomial or geometric distribution is appropriate.
We start with the Poisson distribution. So far in this chapter, we assumed that Yi

is Poisson distributed with mean μi, which we wrote as P(μi) with its probability
function as
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f (yi ; μi ) = μ
yi

i e−μi

yi !
yi ≥ 0, yi integer (9.17)

The problem with these data is that the water volumes differ per observation,
see Fig. 9.9. We may measure a large number of copepodids simply because the
water volume was large. The easiest solution is to work with densities, and analyse
these with a Gaussian distribution. The disadvantage of this is that the fitted values
may become negative, there may be heterogeneity, etc. It is also an option to use
Volume as an explanatory variable, but then you would be modelling a functional
relationship between Volume and numbers of copepodids. A neater approach is to
use Volume as an offset; this process works as follows.

Assume that Yi is Poisson distributed with mean μi × Vi. Vi is also called the
exposure or intensity parameter of the Poisson process, and μi is the expected num-
ber of copepodids for a one unit volume. The expected value and variance are:
E(Yi) = μi × Vi and var(Yi) = μi × Vi. The following simple algebra leads to a
GLM (or GAM) with an offset variable.

E(Yi ) = μi × Vi ⇒ log(E(Yi )) = log(μi ) + log(Vi ) = α + β × Xi1

+ f (X2i ) + log(Vi )

The term log(Vi), where log is the natural log, is the offset. Using basic math-
ematics, we have placed the Vi inside the predictor function, but note there is no
regression parameter in front of this term. The other terms α and β are the regression
parameters and f() is a smoothing function. R will estimate the regression parame-
ters and smoothers, and you can express the fitted values of the model either as μi

or as μi × Vi.
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Fig. 9.9 Cleveland dotplot
of the sampled volumes.
Note that there are
considerable differences in
volumes! The graph was
produced with the R
command dotchart
(Volume, xlab =
"Value" , ylab =
"Observations")
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The offset can be used for a Poisson, negative binomial, and geometric distribu-
tion. The advantages of the offset approach compared to analysing densities are that
the fitted values are always positive, the confidence intervals around the fitted values
do not contain negative values, and we allow for heterogeneity within the context of
a Poisson or NB distribution.

To use an offset variable in a GLM or GAM in R, use the following code.

> library(AED); data(Lice)

> Lice$LVol <- log(Lice$Volume)

> Lice$fStation <- factor(Lice$Station)

> L0 <- glm(Copepod ∼ offset(LVol) + fStation,

family = poisson, data = Lice)

The first two commands import the data. The variable LVol contains the natural
log transformed volumes, and offset(LVol) ensures that the glm function is
not putting a parameter in front of it. The only problem is that unfortunately, the
model itself is rubbish; we have only shown it to illustrate how to use an offset in a
GLM or GAM. So we will now move on and do it for real. There are three explana-
tory variables, Station, Depth (both are factors), and Production week.
Simple scatterplots indicate no clear relationships, and we therefore used a GAM.
We start with a Poisson distribution. The most complicated model that we can
apply contains a smoother for production week for each station and depth com-
bination, the main terms station and depth, and the interaction between station
and depth. This is the GAM equivalent of 3-way interaction. The problem is that
such a model ended in an error message (numerical convergence problems), and
we therefore switched to a negative binomial distribution. The following code
was used.1

> library(mgcv)

> Lice$PW <- Lice$Production week #saves some space

> Lice$fDepth <- factor(Lice$Depth)

> L1 <- gam(Copepod ∼ offset(LVol)+

s(PW, by=as.numeric(Depth=="0m" & Station=="A")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="C")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="E")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="F")) +

s(PW, by=as.numeric(Depth=="0m" & Station=="G")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="A")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="C")) +

s(PW, by=as.numeric(Depth=="5m" & Station=="E")) +

1We used R version 2.6.0. More recent R versions require slightly different code; see the book
website for updated code.
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s(PW, by=as.numeric(Depth=="5m" & Station=="F")) +

s(PW, by = as.numeric(Depth=="5m" & Station=="G")) +

fDepth * fStation,

family = negative.binomial(1), data = Lice)

This model also gave a warning message, but including the option gamma =
1.4 allows the code to run. This option helps against overfitting by the smoothers
(Wood, 2006); it puts a heavier penalty on each degrees of freedom in the GCV
score (Chapter 3).

A backward selection resulted in various numerical problems, and therefore in
the original paper, Penston et al. (2008) adopted a slightly different approach for the
model selection process. They estimated the parameter k (used in the NB variance
function) from one of the larger models, e.g. from L3, and kept it fixed during the
backwards selection. This gave an optimal model, and the whole backward selection
process was then repeated using the k from the first optimal model. Both selection
rounds ended up in the same model, namely,

> L3 <- gam(Copepod ∼ offset(LVol) +

s(PW, by = as.numeric(Depth=="0m")) +

s(PW, by = as.numeric(Depth=="5m")) +

fDepth + fStation, data = Lice,

family = negative.binomial(1), gamma = 1.4)

This model contains a smoother for production week for each depth together with
depth and station as factors. We can compare this model with its Poisson equivalent
using the likelihood ratio test:

> L4 <- gam(Copepod ∼ offset(LVol) +

s(PW,by = as.numeric(Depth=="0m")) +

s(PW,by = as.numeric(Depth=="5m")) +

fDepth + fStation, data = Lice,

family = poisson, gamma = 1.4)

> llhNB <- logLik(L3); llhPoisson <- logLik(L4)

> d <- 2 * (llhNB - llhPoisson)

> pval <- 0.5 * pchisq(as.numeric(d), df = 1,

lower.tail = FALSE)

The likelihood ratio statistic is 2137.20, which is strong evidence to choose the
NB GAM over the Poisson GAM. The numerical output of the NB GAM is obtained
by the summary(L3) command:

Family: Negative Binomial(0.3569). Link function: log

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.7030 0.1956 -8.708 < 2e-16

factor(Depth)5m -1.3921 0.2203 -6.319 5.2e-10
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factor(Station)C -0.3496 0.2513 -1.391 0.16470

factor(Station)E -0.4661 0.2546 -1.830 0.06769

factor(Station)F -0.8455 0.2656 -3.183 0.00153

factor(Station)G 0.1102 0.2524 0.437 0.66253

Approximate significance of smooth terms:

edf F p-value

s(PW):as.numeric(Depth=="0m") 8.36 15.62 < 0.001

s(PW):as.numeric(Depth=="5m") 6.14 5.45 < 0.001

R-sq.(adj) = 0.212. Deviance explained = 72.6%

GCV score = 1.0644. Scale est. = 1. n = 608

The model explains 72.6% of the null deviance. The p-values for the levels of
station only indicate which stations are significantly different from the baseline sta-
tion A (Dalgaard, 2002). A post-hoc test can be applied to investigate which sites
are different from each other. The fitted values are given in Fig. 9.10.

Further discussions on the results, model validation (there was no significant
temporal auto-correlation within the four residual time series), biological interpre-
tation, and analyses can be found in Penston et al. (2008). Besides the NB GAM, it
may also be an option to apply a zero-inflated GAM. These models are discussed in
Chapter 11.
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Fig. 9.10 Estimated smoothing curves for depth at the surface (left) and depth and 5 m (right).
The solid line is the smoother and the dotted lines are 95% point-wise confidence bands



Chapter 10
GLM and GAM for Absence–Presence
and Proportional Data

10.1 Introduction

In the previous chapter, count data with no upper limit were analysed using Poisson
generalised linear modelling (GLM) and negative binomial GLM. In Section 10.2
of this chapter, we discuss GLMs for 0−1 data, also called absence–presence or
binary data, and in Section 10.3 GLM for proportional data are presented. In the final
section, generalised additive modelling (GAM) for these types of data is introduced.
A GLM for 0−1 data, or proportional data, is also called logistic regression.

When we wrote Chapters 8, 9, 10, and 11, we had a dilemma how to structure
the material. The options were as follows:

1. First present the GLM as abstract formulae, and then show the Poisson, negative
binomial, and logistic GLMs as special cases. The disadvantage of this approach
is that the reader has to go through a grilling mathematical section. This approach
may work for the more mathematically skilled reader, but it did not seem appro-
priate for our target audience.

2. Present every GLM family in detail, and explain all the procedures every time.
This approach may be better for a ‘GLM-only’ book, but it duplicates a lot of
text.

3. First present the Poisson GLM in detail, and then present logistic regression
(and other GLMs) with help of a couple of examples. The disadvantage of this
approach is that the reader has to read the Poisson GLM chapter, even if he or
she has absence–presence data.

We decided to go for the third approach because we want to discuss not only
the Poisson GLM, but also the logistic GLM, negative binomial GLM, and in
Chapter 11 zero-truncated, and zero-inflated GLMs. In Chapter 9, we used a con-
siderable number of pages explaining the Poisson GLM, and the good news is that
the mathematical background for this chapter is much the same. However, this does
mean you need to have read Chapters 8 and 9 before starting this chapter.

Many statistical textbooks describe logistic regression and we could fill an entire
page with references. Some books are dedicated entirely to logistic regression and

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 10,
C© Springer Science+Business Media, LLC 2009
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some only contain a chapter. Some are for medical science, some for econometrics,
and some for ecology. Our favourites are McCullagh and Nelder (1989), Agresti
(2002), and Fitzmaurice et al. (2004). The second reference is probably a ‘must
read’, and the first one is a ‘must cite’.

10.2 GLM for Absence–Presence Data

We illustrate the binomial GLM for absence–presence data with help of two exam-
ples. In Section 10.2.1, we model the probability that a wild boar has tuberculosis
(Tb) as a function of the length of the animal (length from the nose to the tail joint
along the back of the animal, expressed in centimetres). Another potential explana-
tory variable is age, but it is collinear with length and unbalanced. This example
serves as a simple explanation of binomial GLM. A more detailed binomial GLM is
presented in Section 10.2.2, which deals with the presence and absence of parasites
in cod.

10.2.1 Tuberculosis in Wild Boar

Vicente et al. (2006) analysed the distribution of tuberculosis-like lesions in wild
boar Sus scrofa to explore the potential importance of wild boar in the maintenance
of tuberculosis in south central Spain. Here, we model Tb as a function of the con-
tinuous explanatory variable length (as defined above); it is denoted by LenghtCT
(CT is an abbreviation of cabeza-tronco, which is Spanish for head-body). Tb is a
vector of zeros and ones, representing absence and presence of Tb, respectively.

The first thing we do in any data analysis is a data exploration. Useful
tools for most types of data are a boxplot and a scatterplot; see Fig. 10.1.
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Fig. 10.1 A: Boxplot of LengthCT conditional on the variable TB. B: Scatterplot of LengthCT
versus TB. A regression line was added to aid visual interpretation
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The boxplot of LengthCT conditional on Tb (Fig. 10.1A) shows that animals with
Tb have larger LengthCT values. The pairplot is less useful due to the 0–1 nature of
Tb. When we make a pairplot, we tend to add the fit of a linear regression model. In
this case:

T bi = α + β × CTLengthi + εi .

The question is now as follows: How sensible is it to apply linear regression on
these data, and what is the interpretation of the fitted line? Let us start with the
latter question. The fitted line in Fig. 10.1B suggests that an animal of LengthCT =
100 cm has approximately 0.35 Tb. However, this is a rather strange statement; an
animal has Tb or it does not have Tb. It cannot have 0.35 Tb! It seems that our linear
regression model is impractical.

To produce a model with fitted values that make more sense, define πi as the
probability that animal i is infected with Tb, and 1 − πi is the probability that it is
not infected. If we now imagine the vertical axis in Fig. 10.1B showing πi, we can
say that an animal of LengthCT = 100 cm has a probability of 0.35 of being infected
with Tb. At least, the fitted values of the linear regression model now make a little
bit more sense.

So, the vertical axis in Fig. 10.1B represents the probability that an animal is
infected with Tb. Based on the line in Fig. 10.1B, this means that an animal with
LengthCT = 47 cm, has a probability of −0.03 of being infected. But probabilities
are supposed to be between 0 and 1! And the underlying theory of linear regres-
sion tells us that there are realisations (possible outcomes) with probabilities larger
than 1 or smaller than 0. It seems we have a serious problem with the linear regres-
sion model applied on presence and absence data! The binomial GLM provides a
framework to solve all these problems.

To formulate the binomial GLM in a general notation, let Yi be 1 if animal i is
infected with TB and 0 if not infected. A binomial GLM is specified with the same
three steps as the Poisson and negative binomial GLMs:

1. An assumption on the distribution of the response variable Yi. This also defines
the mean and variance of Yi.

2. Specification of the systematic part. This is a function of the explanatory
variables.

3. The relationship between the mean value of Yi and the systematic part. This is
also called the link between the mean and the systematic part.

We discuss each of these points in more details next.
Step 1: We assume that Yi is binomial distributed with probability πi

and ni = 1 independent trials; see also Section 8.6. Recall that this is actually a
Bernoulli distribution. As a result, the expected mean and variance of Yi are given
by: E(Yi) = πi and var(Yi) = πi × (1 − πi). The πi plays the same role as the μi in
Poisson regression and negative binomial regression.
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Step 2: The systematic part of the model is specified by the predictor function:

η(LengthCTi ) = α + β × LengthCTi

Step 3: In this step, we need to define the relationship between the expected
value of Yi, πi, and the predictor function η. We already argued that the identity
link (as imposed by the linear regression model) gives non-sensible results; fitted
probabilities and possible realisations are smaller than 0 or larger than 1. So, we
need a function that maps the values of η between 0 and 1. There are various options,
e.g. the logit link, probit link, clog–log link, and log–log link, but the logit link is
the default (canonical) link and is probably the most used one. We will explain it
first and then quickly discuss the differences with some of the other ones.

The logit link works as follows. Recall that the problem is that πi is bounded by
a lowest value of 0 and a highest value of 1, and the fitted values obtained by the
predictor function η and identity link function ignore this on both sides. Define the
odds as follows:

Oi = πi

1 − πi

The odds are an unusual concept for most scientists. We are familiar with prob-
abilities; it tells us how likely things are with a value between 0 and 1. The odds
are doing the same thing, but on a different numerical scale. They are used in for
example gambling offices; the odds that a race horse will win can be 9 to 1. This
means that if you organise 10 races, it is likely that the horse will win 9 times and
lose once. In terms of probabilities: the probability that a particular horse will win
is 0.9. This is the same statement as saying that the odds are 9. The nice thing about
odds is that they do not have an upper bound. Take a series of values for πi, say
0.1, 0.2, 0.3, . . .), and 0.9, and calculate the odds; they go from something close to
zero to something very large. See also Table 10.1where it shows how probabilities
between 0 and 1 are transformed into odds between 0 and infinity.

So, by going from probabilities to odds, we managed to get rid of the upper
boundary, but we still have the lower boundary; odds still cannot be negative. The
solution is simple; take the natural logarithm of the odds, also called the log odds.
The last row in Table 10.1 gives examples of log odds, which are no longer bounded

Table 10.1 Various probabilities, odds, and log odds. The table shows how odds and log odds are
calculated from probabilities. The table was taken from Zuur et al. (2007)

Pi 0.001 0.1 0.3 0.4 0.5 0.6 0.7 0.9 0.999

1 − Pi 0.999 0.9 0.7 0.6 0.5 0.4 0.3 0.1 0.001
Oi 0.001 0.11 0.43 0.67 1 1.5 2.33 9 999
Ln(Oi) −6.91 −2.20 −0.85 −0.41 0 0.41 0.85 2.20 6.91
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by a lower or upper limit. In a logistic regression, we model the log odds as a linear
function of the explanatory variables. This gives the following:

log(Oi ) = η(LengthCT)

Instead of log(Oi) we can also write logit(πi). The entire binomial GLM for the
Tb data is now given by

Yi ∼ B(1, πi )

E(Yi ) = πi and var(Yi ) = πi × (1 − πi )

logit(πi ) = α + β × LengthCTi

The last line can also be written with some simple mathematics as

πi = eα+β×LengthCTi

1 + eα+β×LengthCTi

Whatever the values of α, β and LengthCTi, the fitted values for πi are always
between 0 and 1. As this model cannot produce fitted values outside the 0 − 1 range,
the binomial distribution ensures we only get sensible realisations.

10.2.1.1 R Code, Results and Fitted Values

The following R code accesses the data, applies the GLM, and presents the numeri-
cal output.

> library(AED); data(Boar)

> B1 <- glm(Tb ∼ LengthCT, family = binomial,

data = Boar)

> summary(B1)

The output is:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.892109 0.671152 -5.799 6.67e-09

LengthCT 0.031606 0.005588 5.656 1.55e-08

Dispersion parameter for binomial family taken to be 1

Null deviance: 700.76 on 507 degrees of freedom

Residual deviance: 663.56 on 506 degrees of freedom

149 observations deleted due to missingness

AIC: 667.56

For the moment, we are focussing on the estimated parameters, and the conse-
quences for the graphical interpretation of the model. Deviances, overdispersion,
and AIC are discussed in the next example.
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The estimated intercept and slope are −3.89 and 0.03 respectively, and are
significant at the 5% level. This means that the probability that an animal is of
LengthCTi is infected, is given by:

πi = e−3.89+0.03×LengthCTi

1 + e−3.89+0.03×LengthCTi

If we fill in a couple of values for LengthCTi, we can calculate the corresponding
πi, and make a sketch of the relationship. Instead of doing this manually, we use the
predict command in R:

> MyData <- data.frame(LengthCT = seq(from = 46.5,

to = 165, by = 1))

> Pred <- predict(B1, newdata = MyData, type = "response")

> plot(x = Boar$LengthCT, y = Boar$Tb)

> lines(MyData$LengthCT, Pred)

We first created a data frame MyData with new values for the covariate between
46.5 and 165, with steps of 1 cm. The values 46.5 and 165 are the smallest and
largest values of the observed animals, and using this range prevents predictions
outside the range of observed values. The resulting graph is given in Fig. 10.2. The
fitted line shows the pattern of a typical sigmoid curve. Note that the fitted values are
always between 0 and 1! At small lengths, the probability of sampling Tb infected
animals is small, whereas the probability increases rapidly from about 70–80 cm
up to about 140 cm, and then the rate of change becomes smaller again (but the
probability of infection stays high).
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10.2.1.2 General Comments

For a binomial GLM applied on binary data, the mean is given by πi and the vari-
ance by πi × (1 − πi). To visualise the mean–variance relationship, we plotted the
estimated values of πi versus πi × (1 − πi), see Fig. 10.3. Note that the variance is
the largest for intermediate values of πi.

Besides the logit link, other link functions are available and a comparison of
GLMs with different link functions can be found in, for example, Hardin and Hilbe
(2007). Most binary GLMs in the literature use the logit link, but the probit link is
a good second choice. We will not discuss the probit link or any of the other link
functions here, but the main difference is the shape of the fitted line in Fig. 10.2. In
fact, we suggest that you plot the fitted curves obtained from a probit link and a clog–
log link yourself. All that is needed is to modify the code in the family option
inside the glm command to family = binomial(link = "probit") or
family = binomial(link = "cloglog"). You will see that the fitted
curve is slightly different in the lower and upper parts.

The logit and probit link functions assume that you have approximately an equal
number of zeros and ones. The clog–log may be an option if you have consid-
erably more zeros than ones, or vice versa; the sigmoidal curve is asymmetrical.
If you do decide to use any of the non-standard link functions (that is other than
the logit) for a binary GLM, Hardin and Hilbe (2007) give examples how you can
compare different link functions and some tools are based on the AIC, BIC, and
deviance.
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10.2.2 Parasites in Cod

The red king crab Paralithodes camtschaticus was introduced to the Barents Sea in
the 1960s and 1970s from its native area in the North Pacific. The leech Johanssonia
arctica uses the carapace of this crab to deposit eggs. The leech is a vector for a
trypanosome blood parasite of marine fish, including cod. Hemmingsen et al. (2005)
examined a large number of cod for trypanosome infections during annual cruises
along the coast of Finnmark in North Norway. These cruises covered three years and
were divided in four ‘stations’ or areas. Full details of the research and results can
be found in their paper. Their statistical analyses were carried out using Chi-square
statistics and analysis of variance and are in principle all correct. Here, we use a
subset of the data and repeat their analyses with GLM.

The response variable is Prevalence, which is coded as 1 if the parasite is present
and 0 else. Possible explanatory variables are year, area, and the depth that fish were
caught. The problem is that not all areas have the same depth; hence, purely because
of the study design, depth and area are collinear (just make a boxplot of depth con-
ditional on area, and you will see that this is indeed the case). Other explanatory
variables are sex, length, weight, stage, and age of the fish. Except for sex, all these
variables are highly collinear and an arbitrary choice on which one to use has to
be made. However, the aim of this text is not to present a full blown analysis, but
merely to explain binomial GLM. Hemmingsen et al. (2005) used a model with the
main terms year, area, and length, and an interaction term year × area, and we will
also use this set of covariates. We have 1254 observations, but with a few missing
values in the spreadsheet. We could remove them, but we prefer using the data as
they are and guide you through the problems.

This is clearly a binomial GLM as the response variable is coded as 0 − 1. The
following model is applied.

Yi ∼ B(1, πi )

E(Yi ) = πi and var(Yi ) = πi × (1 − πi )

logit(πi ) = Yeari + Areai + Yeari × Areai + Lengthi

We have written down the systematic part of the model in a semi-mathematical
notation because Yeari and Areai are fitted as factors (each have three levels) and
Lengthi is a continuous variable. The R code to fit this model is given by

> library(AED); data(ParasiteCod)

> ParasiteCod$fArea <- factor(ParasiteCod$Area)

> ParasiteCod$fYear <- factor(ParasiteCod$Year)

> Par1 <- glm(Prevalence ∼ fArea * fYear + Length,

family = binomial, data = ParasiteCod)

The family = binomial option and a response variable with zeros and
ones is the only difference compared the GLMs used in the previous chapters.
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The summary(Par1) command gives a lot of output due to the three levels for
Area and Year. If we omit for the moment, the estimated values, standard errors,
z-values, and p-values, we have

...

Dispersion parameter for binomial family taken to be 1

Null deviance: 1727.8 on 1247 degrees of freedom

Residual deviance: 1495.2 on 1235 degrees of freedom

6 observations deleted due to missingness

AIC: 1521.2

The good news is that in a Bernoulli GLM (the response variable is a vector with
zeros and ones), overdispersion cannot occur. A justification for this can be found
in McCullagh and Nelder (p. 125, 1989). The rest of the information is similar as
for the Poisson GLM (Chapter 9). For example, the AIC can be used for model
selection. And we also have the step function, which can be used for automatic
model selection. The hypothesis testing procedures are also identical to Poisson
GLM. Because we have factors with more than two levels in the model, we use
drop1(Par1, test = "Chi") as it gives one p-value for the interaction. The
output below shows that the Area × Year interaction is highly significant at the 5%
level, but not the variable Length.

Single term deletions. Model:

Prevalence ∼ fArea * fYear + Length

Df Deviance AIC LRT Pr(Chi)

<none> 1495.16 1521.16

Length 1 1498.64 1522.64 3.47 0.06

fArea:fYear 6 1537.60 1551.60 42.44 <0.001

The full output from the summary command is not shown here, but just as in
linear regression and Poisson GLM, it tells you which levels of a factor are differ-
ent from the baseline level, and in the case of an interaction, which combinations
are different from the baseline (Area 1 and Year 1999). To see which area−year
combinations are different from each other, you can change these baselines to other
values, and do some post-hoc testing (see Chapter 10 in Dalgaard (2002)).

The graphical model validation in a Binomial GLM with a 0 − 1 response vari-
able is some sort of an art, and Fig. 10.4 shows why. So far, we said: You should not
see any patterns in the residuals. Because the observed data are zeros and ones, we
now see two clear bands in these graphs. This makes it rather difficult to say any-
thing sensible about these graphs, and one can wonder whether there is any point in
using them. In cases where you have a large data set, like we have in this example
(1254 observations), it may be an option to extract the residuals, put them in groups
of, say 10, calculate an average of the residuals per group, and use these in graphical
validation plots. The groups can be based on the order of the fitted values, or on the
order of a covariate.
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Fig. 10.4 Standard graphical validation tools for a GLM. Because we are working with a response
variable that has only zeros and ones, we can see two bands of points in all but the leverage plot

The easy mistake to make with the model selection process for this data set is
ignoring the missing values. Once an explanatory variable with missing values is
dropped from the selection process, the new data set may have more observations,
and therefore, AICs are not comparable! This also holds for analysis of deviance
tables. But luckily, the drop1 command does it properly by removing the observa-
tions with NAs, but that only works for one round. It is therefore better to remove
missing values before doing the model selection process.

10.3 GLM for Proportional Data

In the previous section, the response variable Yi was binary and a Bernoulli distri-
bution was used. The notation for this was B(1, πi), where πi is the probability on
‘success’.

Vicente et al. (2006) analysed data from a number of estates with wild boar and
red deer in Spain. At each estate i, a group of ni animals was sampled. The data
set contains information on the tuberculosis (Tb) disease in both species, and on
the parasite Elaphostrongylus cervi, which only infects red deer. Both variables are
recorded as the number of animals that are positive for Tb or have the parasite
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E. cervi. So the response variable Yi is the number of animals that test positive out
of ni animals. There is also information on the main characteristics of the habitat
and management (fencing) at each estate: The percentage of open land, scrubs and
pine plantation, number of quercus plants per area, number of quercus trees per
area, a wild boar abundance index, a reed deer abundance index, estate size (ha),
and whether the estate is fenced (1 = yes, 0 = no).

Data like these are typically analysed using a GLM with a binomial distribution
(Chapter 8). Let us focus first on E. cervi in deer. Define Yi as the number of deer at
estate i that have E. cervi, and ni is the number of sampled deer. The binomial GLM
is as follows:

Yi ∼ B(ni , πi )

E(Yi ) = πi × ni and var(Yi ) = ni × πi × (1 − πi )

logit(πi ) = α + β1 × OpenLandi + β2 + ScrubLandi + · · · β8 × Fencedi

We also assume that the ni deer are independent and that each animal at estate
i has the same probability πi of having the parasite. If this is not the case, then
you should work with the individual binary data per animal and use generalised
linear mixed modelling techniques (Chapter 13). The logistic regression model can
be fitted in R with the following code. The first two commands import the data.
The function corvif is our own function that calculates variance inflation factors
to detect collinearity. It is available in the AED package, but a similar function can
be obtained from the car package. The variable PinePlantation was dropped
due to collinearity. The remaining code applies the binomial GLM.

> library(AED); data(Tbdeer)

> Z <- cbind(Tbdeer$OpenLand, Tbdeer$ScrubLand,

Tbdeer$QuercusPlants, Tbdeer$QuercusTrees,

Tbdeer$ReedDeerIndex, Tbdeer$EstateSize,

Tbdeer$Fenced)

> corvif(Z)

> DeerNegCervi <- Tbdeer$DeerSampledCervi -

Tbdeer$DeerPosCervi

> Tbdeer$fFenced <- factor(Tbdeer$Fenced)

> Deer1 <-glm(cbind(DeerPosCervi, DeerNegCervi)∼
OpenLand + ScrubLand + QuercusPlants +

QuercusTrees + ReedDeerIndex + EstateSize + fFenced,

family = binomial, data = Tbdeer)

> summary(Deer1)

Note that the response variable is a data frame consisting of two columns; the
number of positives and the number of negatives (which is DeerNegCervi). It is
also possible to fit the model with the following code:
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> Tbdeer$DeerPosProp <- Tbdeer$DeerPosCervi /

Tbdeer$DeerSampledCervi

> Deer2 <- glm(DeerPosProp ∼ OpenLand + ScrubLand +

QuercusPlants + QuercusTrees +

ReedDeerIndex + EstateSize + fFenced,

family = binomial, data = Tbdeer,

weights = DeerSampledCervi)

The variable DeerPosProp contains the proportion (as a value between 0
and 1) of animals that are positive (presence of the parasite). Both approaches give
exactly the same results. The summary output from model Deer2 is as follows.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.843e+00 7.772e-01 4.945 7.61e-07

OpenLand -3.950e+00 6.383e-01 -6.187 6.12e-10

ScrubLand -7.696e-01 6.140e-01 -1.253 0.210042

QuercusPlants -3.633e-04 2.308e-02 -0.016 0.987439

QuercusTrees 2.290e-03 5.326e-02 0.043 0.965707

ReedDeerIndex 6.689e-02 2.097e-02 3.191 0.001419

EstateSize -8.218e-05 2.478e-05 -3.316 0.000913

fFenced1 -2.273e+00 5.954e-01 -3.819 0.000134

Dispersion parameter for binomial family taken to be 1

Null deviance: 234.85 on 22 degrees of freedom

Residual deviance: 152.79 on 15 degrees of freedom

(9 observations deleted due to missingness)

AIC: 227.87

This output is similar to the output of the Poisson GLM in Chapter 9. In a bino-
mial GLM with ni > 1, we can have overdispersion. This seems to be the case here,
and we have to fit a quasi-binomial model. This is doing the same thing as in a
quasi-Poisson GLM by adding an overdispersion parameter φ to the variance of Yi;
Var(Yi) = φ × ni × πi × (1 – π i). The R programming process is similar to a quasi-
Poisson process; first we need to fit a model with the family= quasibinomial
option (call the resulting object Deer3) and the drop1(Deer3, test = "F")
command can be used to assess which term to drop. The final model contains only
OpenLand:

> Deer4 <- glm(cbind(DeerPosCervi,DeerNegCervi) ∼
OpenLand, data = Tbdeer,

family = quasibinomial)

> drop1(Deer4, test = "F")

The analysis of deviance test with the drop1 command is not presented here,
but it gives a p-value of 0.02 for OpenLand, and the summary command gives
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Fig. 10.5 Fitted values (solid line) and 95% confidence bands for the optimal binomial GLM
model applied on the red deer data

a negative slope. These results suggest that the larger the percentage of open land,
the smaller the probability of sampling deer with E. cervi. The results can also be
visualised (Fig. 10.5) using the R code:

> MyData <- data.frame(OpenLand =
seq(from = min(Tbdeer$OpenLand),

to = max(Tbdeer$OpenLand), by = 0.01))

> P1 <- predict(Deer4, newdata = MyData, type = "link",

se = TRUE)

> plot(MyData$OpenLand, exp(P1$fit) / (1+exp(P1$fit)),

type = "l", ylim = c(0, 1),

xlab = "Percentage open land",

ylab = "Probability on E. cervi")

> lines(MyData$OpenLand, exp(P1$fit+1.96*P1$se.fit) /

(1 + exp(P1$fit + 1.96 * P1$se.fit)), lty = 2)

> lines(MyData$OpenLand, exp(P1$fit-1.96*P1$se.fit) /

(1 + exp(P1$fit - 1.96 * P1$se.fit)), lty = 2)

> points(Tbdeer$OpenLand, Tbdeer$DeerPosProp)

The data frame MyData contains new values for the explanatory variable
OpenLand, and we use these for the predictions. The predict function predicts
at the level of the predictor function, and therefore, we need to transform the fitted
values (and the confidence bands) with the logistic link function. This ensures that
the confidence bands are between 0 and 1.

The model validation process in a binomial GLM is identical to the one in a
Poisson GLM; plot the Pearson or deviance residuals against the fitted values and
plot the residuals versus each explanatory variable in the model (and also against
the variables that were dropped).
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10.4 GAM for Absence–Presence Data

Having explained additive modelling in detail in Chapter 2 and binomial GLM in
detail in all the earlier sections in this chapter, binomial GAM is just a combination
of the two, and we now give a short example to illustrate the method. In Section 10.2,
we analysed the presence of parasites in cod, and assumed that Yi ∼ B(1, πi) and

logit(πi ) = α + Yeari + Areai + Yeari × Areai + Lengthi

Because all explanatory variables are nominal or continuous, the model is called
a generalised linear model. If you are unsure that length has a linear effect, or if a
plot of residuals (obtained by a GLM) against Length shows a clear pattern, we can
use:

logit(πi ) = α + Yeari + Areai + Yeari × Areai + f (Lengthi )

where f(Lengthi) is a smoothing function of Length. Such a model is called a gener-
alised additive model. The only difference between a GLM and a GAM is that the
latter contains at least one smoothing function in the predictor function. The follow-
ing R code applies a GAM on the cod parasite data. Length is fitted as a smoother.

> library(AED); data(ParasiteCod)

> library(mgcv)

> ParasiteCod$fArea <- factor(ParasiteCod$Area)

> ParasiteCod$fYear <- factor(ParasiteCod$Year)

> P2 <- gam(Prevalence ∼ fArea * fYear + s(Length),

family = binomial, data = ParasiteCod)
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Fig. 10.6 Estimated smoother
for Length obtained by the GAM
applied on the cod parasite data.
The solid line is the smoother,
and the dotted lines are 95%
confidence bands
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The only difference compared to the gam commands in Chapter 3 is the
family = binomial option. The same model selection and model validation
steps should be applied as we did with logistic regression and discussed in previ-
ous sections. The anova(P2), summary(P2), and plot(P2) commands can
be used. No numerical output is presented here, but the smoother of Length is sig-
nificant at the 5% level (2.63 degrees of freedom, X2 = 17.08, p = 0.009). The
estimated smoother is presented in Fig. 10.5. Although 2.63 degrees is not strong
evidence against a GLM (1 degree of freedom is identical to a GLM), the curve
clearly shows a non-linear Length effect. Fish around 60 have a higher probability
of having parasites than smaller and larger fishes (Fig. 10.6).

10.5 Where to Go from Here?

In Chapters 12 and 13, we extend GLM and GAM to allow for nested data, and
temporal and spatial correlations, leading to the methods of generalised estimation
equations, generalised linear mixed modelling, and generalised additive mixed mod-
elling.



Chapter 11
Zero-Truncated and Zero-Inflated Models
for Count Data

11.1 Introduction

In this chapter, we discuss models for zero-truncated and zero-inflated count data.
Zero truncated means the response variable cannot have a value of 0. A typical
example from the medical literature is the duration patients are in hospital. For eco-
logical data, think of response variables like the time a whale is at the surface before
re-submerging, counts of fin rays on fish (e.g. used for stock identification), dol-
phin group size, age of an animal in years or months, or the number of days that
carcasses of road-killed animals (amphibians, owls, birds, snakes, carnivores, small
mammals, etc.) remain on the road. These are all examples for which the response
variable cannot take a value of 0.

On their own, zero-truncated data are not necessarily a problem. It is the under-
lying assumption of Poisson and negative binomial distributions that may cause
a problem as these distributions allow zeros within their range of possible val-
ues. If the mean is small, and the response variable does not contain zeros, then
the estimated parameters and standard errors obtained by GLM may be biased. In
Section 11.2, we introduce zero-truncated Poisson and zero-truncated negative bino-
mial models as a solution for this problem. If the mean of the response variable is
relatively large, ignoring the truncation problem, then applying a Poisson or nega-
tive binomial (NB) generalised linear model (GLM), is unlikely to cause a problem.
In such cases, the estimated parameters and standard errors obtained by Poisson
GLM and truncated Poisson GLM tend to be similar (the same holds for the nega-
tive binomial models).

In ecological research, you need to search very hard to find zero-truncated data.
Most count data are zero inflated. This means that the response variable contains
more zeros than expected, based on the Poisson or negative binomial distribution.
A simple histogram or frequency plot with a large spike at zero gives and early
warning of possible zero inflation. This is illustrated by the graph in Fig. 11.1, which
shows the numbers of parasites for the cod dataset that was used in Chapter 10 to
illustrate logistic regression. In addition to presence and absence of parasites in
cod, Hemmingsen et al. (2005) also counted the number of parasites, expressed as
intensity.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 11,
C© Springer Science+Business Media, LLC 2009
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Fig. 11.1 Plot of the frequencies for the response variable Intensity from cod parasite data.
There are 654 zeros, 108 ones, 71 twos, 52 threes, 44 fours, 31 fives, etc. Note the large numbers
of zeros indicating zero inflation. R code to make this graph is presented in Section 11.4

In this chapter, four models are discussed that can deal with the excessive num-
ber of zeros; zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB)
models, zero-altered Poisson (ZAP), and zero-altered negative binomial (ZANB)
models. There are two main distinctions in these abbreviations; ZI versus ZA, and
P versus NB. The latter pair of Poisson versus negative binomial should be familiar
territory with the negative binomial models (ZINB and ZANB) coping with a cer-
tain degree of overdispersion. Furthermore, because a Poisson GLM is nested in a
NB GLM, the ZIP is nested in a ZINB, and a ZAP is nested in a ZANB. The differ-
ence between ZI and ZA is slightly more complicated and is related to the nature of
the zeros. We discuss this further in Sections 11.3 and 11.4. What we call ZI is also
called mixture models in the literature, and our ZA is normally known as two-part
models.

In the past, software for mixture and two-part models used to be in obscure func-
tions, and different software packages gave different results. It is only recently that
these methods have become more popular and a growing number of people are using
the software. This means that most of the bugs have now been filtered out, and pub-
lications with mixture and two-part models applied on ecological data are appear-
ing more frequently (Welsh et al., 1996; Agarwal et al., 2002; Barry and Welsh,
2002; Kuhnert et al., 2005; Minamia et al., 2007; and Potts and Elith, 2006 among
several others). There are also many applications outside ecology; see, for exam-
ple, Lambert (1992), Ridout et al. (1998), Xie et al. (2001), and Carrivick et al.
(2003) among many others in the fields of social science, traffic accident research,
econometrics, psychology, etc. A nice overview and comparison of Poisson, NB,
and zero-inflated models in R is given in Zeileis et al. (2008). This paper also gives
a couple of useful references to publications using mixture and two-part models.

If you start digging into zero-inflated models, you have to rely mainly on papers
as few statistical textbooks cover this topic in any detail. A few exceptions are
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Cameron and Trivedi (1998), Hardin and Hilbe (2007), or Hilbe (2007), but only
a small number of pages are dedicated to mixture and two-part models. As papers
tend to present things in a compact and condensed format, we decided to use this
chapter to explain these methods in more detail. We assume that you are fully famil-
iar with the methods discussed in Chapters 8, 9, and 10.

A detailed explanation of the underlying principle of mixture and two-part mod-
els is given in Sections 11.2–11.5, and in Section 11.6, we compare the different
models and discuss how to choose between them.

11.2 Zero-Truncated Data

In this section, we discuss models that can be used when the response variable is
a count and cannot obtain the value of zero. In this case, we refer to the variable
as being zero truncated. In Section 11.2.1, we discuss the underlying mathematics
for zero-truncated Poisson models and the negative binomial equivalent. In Section
11.2.2, we give an example and discuss software. If you are not interested in the
underlying mathematics, you can skip Section 11.2.1 (but you should still try and
read the summary at the end of that section) and go straight to the example.

Knowledge of the material discussed in this section is required for ZAP and
ZANB models discussed in Section 11.5.

11.2.1 The Underlying Mathematics for Truncated Models

11.2.1.1 Mathematics for the Zero-Truncated Poisson Model

Let Yi be the response variable for observation i. We assume it is Poisson distributed
with mean μi. We have already discussed in Chapter 8, how the Poisson probability
function can be adjusted to exclude zeros, and we briefly revisit it here. The starting
point was the Poisson probability function:

f (yi ; μi |yi ≥ 0) = μyi × e−μi

yi !
(11.1)

Recall that yi is a possible outcome of Yi. The function gives the probability
for each integer value of yi that is equal or larger than 0 for a given mean μi. For
example, the probability that yi = 0 is

f (0; μi ) = μ0 × e−μi

0!
= e−μi

Recall from Chapter 8 that we can exclude the probability that yi = 0 from the
Poisson distribution by dividing its probability function in Equation (11.1) by 1
minus the probability that yi = 0, resulting in
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f (yi ; μi |yi > 0) = μyi × e−μi

(1 − e−μi ) × yi !
(11.2)

From this point onwards, truncated Poisson GLM follows ordinary Poisson
GLM. We use the same mean and variance relationships, the same systematic com-
ponent, and the same link function. Hence, the mean value μi is modelled as an
exponential function of the predictor function:

μi = eα+β1×X1i +···+βq×Xiq

To find the regression parameters, we need to specify a likelihood criterion. The
only difference with Poisson GLM is that we use the probability function in Equa-
tion (11.2) instead of the one in Equation (11.1), and this gives

L =
∏

i
f (yi ; μi |yi > 0) =

∏
i

μyi × e−μi

(1 − e−μi ) × yi !
(11.3)

In Chapter 9, we explained that this expression is based on the probability rule
that Pr(A and B) = Pr(A) × Pr(B) if A and B are independent. The fs in Equation
(11.3) are the probabilities. The principle of maximum likelihood states that for the
given data, we need to maximise L as a function of the regression parameters. To aid
the numerical optimisation routines, we use the log-likelihood so that we can work
with a sum instead of a product:

log(L) =
∑

i
log( f (yi ; μi |yi > 0)) =

∑
i
log

(
μ

yi

i × e−μi

(1 − e−μi ) × yi !

)
(11.4)

Using matrix notation, we replace the β1 × X1i + . . . + βq × Xqi by Xi × β, where
β = (β1, . . ., βq), and Xi contains all explanatory variables for observation i. A bit
of high school mathematics gives

log(L) = −
∑

i
eXi ×β +

∑
i

yi × Xi × β −
∑

i
log(1 − eXi ×β)

−
∑

i
log(Γ(yi + 1))

(11.5)

Just as for the Poisson GLM, we end up with a maximum likelihood criterion that
needs to be maximised as a function of the regression parameters. The algorithm
needs first-order and second-order derivatives (which can easily be determined and
we leave this as an exercise for the reader), and then it is purely a matter of numerical
optimisation, though we end up with a slightly different algorithm compared to
Poisson GLM. Details can be found in Barry and Welsh (2002) or Hilbe (2007).
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11.2.1.2 Mathematics for the Negative Binomial Truncated Model

The NB truncated model follows the same steps. The starting point is the probability
function for y larger or equal to 0 (Chapter 9):

f (yi ; k, μi |yi ≥ 0) = Γ(yi + k)

Γ(k) × Γ(yi + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)yi

(11.6)

The probability that yi = 0 is given by

f (0; k, μi ) = Γ(0 + k)

Γ(k) × Γ(0 + 1)
×

(
k

μi + k

)k

×
(

1 − k

μi + k

)0

=
(

k

μi + k

)k

To exclude the probability that yi = 0, we divide the probability function in Equa-
tion (11.6) by 1 minus the probability that yi = 0, resulting in

f (yi ; μi |yi > 0) = Γ(yi +k)
Γ(k)×Γ(yi +1) ×

(
k

μi +k

)k
×

(
1 − k

μi +k

)yi
/

(
1 − ( k

μi +k )k
)

(11.7)

We can follow the same steps as in Equations (11.3) and (11.4) and also use the
logarithmic link function. The end result is as follows:

log(L) = log(LNB) − log

(
1 −

(
k

μi + k

)k
)

(11.8)

where log(LNB) is the log likelihood from the NB GLM (see Chapter 9). Note that
the notation in Hardin and Hilbe (2007) and Hilbe (2007) uses a slightly different
parameterisation of k = 1/α.

11.2.1.3 Summary

For those of you who skipped all the mathematical text in this subsection, here is a
short summary. We adjusted the probability functions for the Poisson and negative
binomial (NB) distributions to exclude the probability of a zero observation. We
then specified the log likelihood criterion for the zero-truncated Poisson and NB
models. First-order and second-order derivatives can easily be derived. It is now
only a matter of numerical optimisation to find the regression parameters. Software
code exists to fit these models in R, and an example is given in the next section.

11.2.2 Illustration of Poisson and NB Truncated Models

In this section, we illustrate zero-truncated models. The data are unpublished (at
the time of writing) and were donated by António Mira (University of Évora,
Portugal). The response variable is the number of days that carcasses of road-killed
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animals remain on the road. For illustrative purposes, we only use snakes (Coronella
girondica, Coluber hippocrepis, Elaphe scalaris, and Macroprotodon cucullatus).
We removed some observations because of the unbalanced design (different sample
sizes), and the remaining data set contains 130 observations. There are also potential
issues with spatial and temporal correlation, but in this subsection, we only focus
on the zero truncation.

Figure 11.2 shows a frequency plot of the number of days that snake carcasses
remain on a road. The value of 1 does not represent 24 hours exactly, rather it is just
that we start counting with 1 because each carcass is on the road for at least a couple
of hours. The number of days will never be zero. Except for the lucky snakes that
made it to the other side of the road. They will have a value of zero, but of course,
are not (yet) part of this dataset.

The following R code accesses the data and produces the frequency plot in
Fig. 11.2. The code is self explanatory.

> library(AED); data(Snakes)

> plot(table(Snakes$N days))

Ignoring the zero truncation problem and analysing these data with a Pois-
son GLM is already a major challenge! The explanatory variables are Size cm
(mean size of adults of each species), PDayRain (proportion of days with rain),
Tot Rain (total rainfall in mm), Temp avg (average daily mean temperature),
Road (identity of the road representing traffic intensity; EN114 has high traffic,
EN4 has medium traffic, and EN370 EN114 4 has low traffic), Road Loc (loca-
tion on the road; L = paved lane and V = paved verge), Season, and Species.
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Fig. 11.2 Frequency plot of the response variable N days, the number of days snake carcasses
remain on the road. Note that a value of 0 cannot occur
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The variables Size cm, PDayRain, Tot Rain, and Temp avg are continuous;
all others are nominal.

Exploring these data using pairplots and correlation coefficients for the contin-
uous variables, and boxplots of each continuous explanatory variable conditional
on each nominal explanatory variable, showed that Season is collinear with both
Temp avg and Tot Rain, and there is also collinearity between PDayRain and
Temp avg. We therefore omitted Season and Temp avg. All observations from
the same species had the same size, and therefore, the covariate Species was also
dropped. From a biological point of view, it may be argued that Species is a
more useful covariate than size; however, the degrees of freedom rapidly increase if
various two-way interactions with species are included in the model.

Using common sense, it can be argued that there may be interactions; perhaps,
carcasses of bigger animals at sites with less rain stay longer on the road? Not
all 2-way interactions can be fitted due to the experimental design. We started our
data analysis with a Poisson GLM and quickly noticed overdispersion. Therefore,
a quasi-Poisson model was applied. The results of this model are not presented
here, but there is an overdispersion of 1.5 and various terms are not significant. The
aim of this section is to show the difference between a GLM and a zero-truncated
GLM, and because there is no such thing as a zero-truncated quasi-Poisson model,
we switch to a negative binomial model as NB models allow for a more flexible
approach to overdispersion. R code for the NB GLM, ignoring the zero truncation,
is given by

> library(MASS)

> M1 <- glm.nb(N days ∼ Size cm + PDayRain + Tot Rain +

Road + Road Loc + Size cm:PDayRain +

Size cm:Tot Rain + Size cm:Road +

Size cm:Road Loc + PDayRain:Tot Rain +

PDayRain:Road + PDayRain:Road Loc +

Tot Rain:Road, data = Snakes)

Similar code was used in Chapter 9. The results of the summary(M1) command
are not presented here, but show that various terms are not significant at the 5% level.
The optimal model was found using step(M1), and further fine tuning was done
with the drop1(M1, test = "Chi") command. The optimal model is given
by

> M2A <- glm.nb(N days ∼ PDayRain + Tot Rain +

Road Loc + PDayRain:Tot Rain, data = Snakes)

The two-way interaction PDayRain:Tot Rain and the main term Road Loc
were significant at the 5% level. The explained deviance of this model is 40%. The
parameter k (theta in the R output) in the variance function μi + μi

2/k is equal to
6.72. Interestingly, the model selection process for the quasi-Poisson GLM gave the
same results.
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So far, we have used the glm.nb function from the MASS package for negative
binomial GLM; but it can also be done in other packages, for example, in the VGAM
(Vector Generalized Additive Models) package with the code:

> library(VGAM)

> M2B <- vglm(N days ∼ PDayRain + Tot Rain + Road Loc +

PDayRain:Tot Rain, family = negbinomial,

data = Snakes)

> summary(M2B)

The VGAM package does not come with the base installation of R; so you will
need to download and install it. Actually, this package is rather interesting as it
contains many statistical techniques closely related to those we use in this book.
For example, it has tools for multivariate (multiple response variables) GLMs and
GAMs (Yee and Wild, 1996), and it is one of the few packages that can do zero-
truncated models! It is certainly worthwhile having a look at the package description
at www.stat.auckland.ac.nz/∼yee/VGAM. The zero-truncated NB model is run with
the following R code.

> M3A <- vglm(N days ∼ PDayRain + Tot Rain + Road Loc +

PDayRain:Tot Rain, family = posnegbinomial,

control = vglm.control(maxit = 100),

data = Snakes)

The family = posnegbinomial argument ensures that a zero-truncated
NB model is applied. The summary command can be used to obtain estimated
parameters and standard errors, but the anova and drop1 functions have not yet
been implemented in the VGAM package.

The option family = pospoisson runs a zero-truncated Poisson GLM,
and if vglm is replaced by vgam, we obtain a zero-truncated GAM. To run an ordi-
nary Poisson GLM, use family = poissonff; the extra ff is due to VGAM’s
incompatibility with the ordinary family option in R and is specific to this pack-
age. Another ‘problem’ with VGAM is that it overwrites existing functions. You
can overcome this by using, for example, stats::resid after you have typed
the library(VGAM) command. The stats:: ensures that you use the resid
function from the stats package (which is the one used in all chapters so far)
and not VGAM’s resid function, which is not compatible with glm and lm
objects.

It is interesting to compare the parameters and standard errors estimated using
NB GLM and truncated NB GLM. The following code looks intimidating, but only
collates the corresponding estimated regression parameters in a table:

> Z <- cbind(coef(M2A), coef(M3A)[-2])

> ZSE <- cbind(sqrt(diag(vcov(M2A))),

sqrt(diag(vcov(M3A))[-1]))
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> Comp <- cbind(Z[,1], Z[,2], ZSE[,1], ZSE[,2])

> Comb <- round(Comp, digits = 3)

> colnames(Comb) <-

c("NB", "Trunc.NB", "SE NB", "SE Trunc.NB")

> Comb

The coef command extracts the estimated parameters and the vcov the covari-
ance matrix of the estimated parameters. The diagonal elements of this matrix are
the estimated variances; hence, the square root of these gives the standard errors.
[-2] ensures that only regression parameters are extracted and not the parameter k.
The cbind command prints the columns next to each other, and the colnames
command adds labels. The output is as follows:

NB Trunc.NB SE NB SE Trunc.NB

(Intercept) 0.365 -2.035 0.112 0.267

PDayRain -0.001 0.114 0.193 0.449

Tot Rain 0.120 0.254 0.020 0.065

Road LocV 0.449 1.077 0.148 0.368

PDayRain:Tot Rain -0.109 -0.234 0.022 0.070

The first two columns are the estimated parameters obtained by NB GLM and
truncated NB GLM. As you can see, the estimated parameters obtained using these
two methods are rather different! The same holds for the standard errors in the third
and fourth columns. Also note that the standard errors of the truncated NB are all
larger.

Differences between NB GLM and truncated NB GLM will become smaller if
the observed values are further away from zero. But in this case, with 93% of the
observations smaller than 5, it makes a substantial difference!

11.3 Too Many Zeros

Zero inflation means that we have far more zeros than what would be expected for
a Poisson or NB distribution. Let us have another look at Fig. 11.1, but only at
the frequencies between 0 and 10 (see Fig. 11.3). If the data followed a Poisson
distribution, you would not expect 651 zeros! It depends a bit on the value of the
mean of the Poisson distribution, but 100 zeros would be more likely (see also the
shapes of the Poisson probability functions in Chapter 8).

Ignoring zero inflation can have two consequences; firstly, the estimated param-
eters and standard errors may be biased, and secondly, the excessive number of
zeros can cause overdispersion. Before discussing two techniques that can cope
with all these zeros, we need to ask the question: Why do we have all these
zeros?
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Fig. 11.3 Intensity of
parasites in cod. This is the
same graph as Fig. 11.1,
except that only frequencies
between 0 and 10 are shown

11.3.1 Sources of Zeros

If we assume a Poisson distribution for the data presented in Fig. 11.3, then we
would expect approximately 100–150 zeros. These are at the lower part of the ver-
tical line at intensity = 0. All the other zeros are excess zeros and more than we
expect. Some authors try to make a distinction between these two groups of zeros.
For example, Kuhnert et al. (2005) and Martin et al. (2005) discriminate between
various types of errors that may be causing the zeros in the context of bird abun-
dances in forest patches.

1. First of all, there are structural errors. This means that a bird is not present
because the habitat is not suitable.

2. The second is design error, where poor experimental design or sampling practises
are thought to be the reason. As an example, imagine counting the number of
puffins on the cliffs in the winter. It is highly likely that all samples will be 0 as
it is the wrong season and they are all at sea. Another design error is sampling
for too short a time period or sampling too small an area.

3. The third cause for zeros is observer error. Some bird species look similar, or
are difficult to detect. The less experienced the observer, the more likely he/she
will end up with zero counts for bird species that are difficult to identify. Alter-
natively, the observer may be highly experienced, but it is extremely difficult to
detect a tiny dark bird in a dark field on a dark day.

4. The ‘bird’ error. This means that the habitat is suitable, but the site is not used.

There is even a fifth type of zero, the so-called naughty naughts (Austin and
Meyers, 1996). For non-native English readers, this can be translated as the bad
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zeros. These are zeros due to sampling outside the habitat range that an animal
lives in; for example, sampling for elephants in the sea. Any such zeros should be
removed.

The zeros due to design, survey, and observer errors are also called false zeros
or false negatives. In a perfect world, we should not have them. The structural
zeros are called positive zeros, true zeros, or true negatives. It should be noted
that these definitions of true and false zeros are open to discussion. In some stud-
ies, a false zero may actually be a true zero; see also Martin et al. (2005) for a
discussion.

11.3.2 Sources of Zeros for the Cod Parasite Data

Hemmingsen et al. (2005) looked at the effect of introducing the red king crab
Paralithodes camtschaticus in the Barents Sea. This species is a host for the leech
Johanssonia arctica, which in turn is a vector for a trypanosome blood parasite of
marine fish, including cod. The data set contains a large number of zeros. Let us
discuss what type of zeros we have.

First of all, there are fish that have not been exposed to the parasite, either because
they were caught at a place where there are no red king crabs or they had migrated
long distances and arrived when Hemmingsen and colleagues turned up to catch
them. These zeros can probably be labelled as zeros due to ‘poor’ experimental
design; however, we put quotation marks around poor as there is not much the biol-
ogists can do about it. None the less they are still false zeros that we need to deal
with. We also have zeros because of observer errors. Apparently, it is not always
easy to detect trypanosomes in fish with light infections, even for experienced para-
sitologists (Ken MacKenzie, personal communication). So these are also false zeros.
The other type of zeros, the true zeros or the true negatives, come from fish that
may have been in contact with red king crabs; but for some reason, they have zero
parasites. There may be many reasons for this, including habitat, immunity, and
environmental conditions.

11.3.3 Two-Part Models Versus Mixture Models, and Hippos

In the next section, four models are used to analyse the zero-inflated data: ZIP,
ZINB, ZAP, and ZANB (see also Table 11.1). We have already discussed the dif-
ference between the P and the NB. That is Poisson versus negative binomial, where
the negative binomial allows for extra overdispersion in the positive (non-zero) part
of the data. The difference between the mixture and two-part models is how they
deal with the different types of zeros. The two-part models (ZAP and ZNAB) are
probably easier to explain; they consist of two parts:
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Table 11.1 Overview of ZIP, ZAP, ZINB and ZANB models. All models can cope with overdis-
persion due to excessive numbers of zeros. The negative binomial models can also cope with
overdispersion due to extra variation in the count data. The ZIP and ZINB are mixture models in
the sense that they consist of two distributions. The ZAP and ZANB are also called hurdle models,
conditional models, or compatible models

Model Full name Type of model Overdispersion

ZIP Zero-inflated Poisson Mixture Zeros
ZINB Zero-inflated negative binomial Mixture Zeros and counts
ZAP Zero-altered Poisson Two-part Zeros
ZANB Zero-altered negative binomial Two-part Zeros and counts

1. In first instance, the data are considered as zeros versus non-zeros and a binomial
model is used to model the probability that a zero value is observed. It is possible
to use covariates in this model, but an intercept-only model is also an option.

2. In the second step, the non-zero observations are modelled with a truncated Pois-
son (ZAP) or truncated negative binomial (ZANB) model, and a (potentially dif-
ferent) set of covariates can be used. Because the distributions are zero truncated,
they cannot produce zeros.

You can use specific software for ZAPs and ZANBs, but it is also possible to
carry out these two steps manually with a binomial GLM and a Poisson/NB GLM;
both give the same results in terms of estimated parameters and standard errors. The
advantage of using specialised ZAP or ZANB software is that it gives one AIC for
both models (this can also be calculated manually from the two separate models),
and it is more flexible for hypothesis testing for the combined model. Figure 11.4
shows a graphical presentation of the two-part, or hurdle, models for the hippo
example. The name hurdle comes from the idea that whatever mechanism is causing
the presence of hippos, it has to cross a hurdle before values become non-zero. The
important point is that the model does not discriminate between the four different
types of zeros.

The ZIP and ZINB models work rather differently. They are also called mixture
models because the zeros are modelled as coming from two different processes: the
binomial process and the count process. As with the hurdle models, a binomial GLM
is used to model the probability of measuring a zero and covariates can be used in
this model. The count process is modelled by a Poisson (ZIP) or negative binomial
(ZINB) GLM. The fundamental difference with the hurdle models is that the count
process can produce zeros (the distribution is not zero truncated).

The underlying process of the mixture model is sketched in Fig. 11.5. In the
count process, the data are modelled with, for example, a Poisson GLM, and under
certain covariate conditions, we count zero hippos. These are true zeros. But there
is also a process that generates only false zeros, and these are modelled with a bino-
mial model. Hence, the binomial GLM models the probability of measuring a false
positive versus all other types of data (counts and true zeros).
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I am not here, because
the habitat is not good!

Here we are!

0 hippos

>0 hippos

You didn't see me! I
was just under the
water.

I am not here, but
the habitat is good!

You thought I was a
crocodile.

Fig. 11.4 Sketch of a two-part, or hurdle model. There are two processes; one is causing zeros
versus non-zeros, the other process is explaining the non-zero counts. This is expressed with the
hurdle in the circle; you have to cross it to get non-zero counts. The model does not make a
distinction between the different types of zeros
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water.
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Fig. 11.5 Sketch of the underlying principle of mixture models (ZIP and ZINB). In counting
hippos at sites, one can measure a zero because the habitat is not good (the hippos don’t like
the covariates), or due to poor experimental design and inexperienced observers (or experienced
observers but difficult to observe species)
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Summarising, the fundamental difference between mixture and two-part models
is how the zeros are modelled. Or formulated differently, how do you want to label
the zeros in the data? There are many papers where selection criteria (for exam-
ple, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
estimated parameters) are obtained from Poisson, quasi-Poisson, NB, ZIP, ZINB,
ZAP, and ZANB GLMs, and the model with the lowest value is deemed as ‘the best’
model. We do this later in this chapter, but it is perhaps better to choose between the
latter four models based on biological knowledge.

It should be noted that labelling the different types of zeros and classifying them
into two groups, false and true zeros, is useful for the ecological interpretation, but
the bottom line is that in a mixture model, some of the zeros are modelled with the
covariates that are also used for the positive count data, and all extra zeros are part
of the zeros in the binomial model. For this process to work, it is unnecessary to
split the data into true zeros and false zeros.

11.4 ZIP and ZINB Models

We follow the same approach as in Section 11.2; first we discuss the maximum like-
lihood for the ZIP and ZINB models in Section 11.4.1 and provide an example and
R code in Section 11.4.2. If you are not interested in the underlying mathematics,
just read the summary at the end of Section 11.4.1, and continue with the example.

11.4.1 Mathematics of the ZIP and ZINB

Let us return to the hippo example in Fig. 11.5 and focus on the question: What is
the probability that you have zero counts? Let Pr(Yi) be the probability that at site i,
we measure a hippo. The answer to the question is

Pr(Yi = 0) = Pr(False zeros) + (1 − Pr(False zeros))

× Pr(Count process gives a zero)
(11.9)

The component Pr(False zeros) is the upper part of the graph in Fig. 11.5. The
second component comes from the probability that it is not a false zero multiplied
by the probability that it is a true zero. Basically, we divide the data in two imaginary
groups; the first group contains only zeros (the false zeros). This group is also called
the observations with zero mass. The second group is the count data, which may
produce zeros (true zeros) and as well as values larger than zero. Note that we are
not actively splitting the data in two groups; it is just an assumption that we have
these two groups. We do not know which of the observations with zeros belong to a
specific group. All that we know is that the non-zeros (the counts) are in group 2.

Things like ‘probability of false zero’, and 1 minus this probability indicates
a binomial distribution, and indeed, this is what we will do. We assume that the
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probability that Yi is a false zero is binomially distributed with probability πi, and
therefore, we automatically have the probability that Yi is not a false zero is equal to
1 − πi. Using this assumption, we can rewrite Equation (11.9):

Pr(Yi = 0) = πi + (1 − πi ) × Pr(Count process at site i gives a zero) (11.10)

So, what do we do with the term Pr(Count process gives a zero)? We assume that
the counts follow a Poisson, negative binomial, or geometric distribution. And this
is the difference between zero-inflated Poisson and zero-inflated negative binomial
models. Because the geometric distribution is a special case of the NB, it does not
have a special name like ZIP or ZINB.

Let us assume for simplicity that the count Yi follows a Poisson distribution with
expectation μi. We have already seen its probability function a couple of times, but
just to remind you

f (yi ; μi |yi ≥ 0) = μyi × e−μi

yi !
(11.11)

In Section 11.2, we showed that for a Poisson distribution, the term Pr(Count
process gives a zero) is given by

f (yi = 0; μi |yi ≥ 0) = μ0 × e−μi

0!
= e−μi (11.12)

Hence, Equation (11.10) can now be written as

Pr(yi = 0) = πi + (1 − πi ) × e−μi (11.13)

The probability that we measure a 0 is equal to the probability of a false zero,
plus the probability that it is not a false zero multiplied with the probability that we
measure a true zero.

This was the probability that Yi = 0. Let us now discuss the probability that Yi is
a non-zero count. This is given by

Pr(Yi = yi ) = (1 − Pr(False zero)) × Pr(Count process) (11.14)

Because we assumed a binomial distribution for the binary part of the data (false
zeros versus all other types of data) and a Poisson distribution for the count data, we
can write Equation (11.14) as follows:

Pr(Yi = yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.15)

Hence, we have the following probability distribution for a ZIP model.
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Pr(yi = 0) = πi + (1 − πi ) × e−μi

Pr(Yi = yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.16)

The notation Pr() stands for probability; it is probably better to use the notation
in terms of probability functions f:

f (yi = 0) = πi + (1 − πi ) × e−μi

f (yi |yi > 0) = (1 − πi ) × μyi × e−μi

yi !
(11.17)

The last step we need is to introduce covariates. Just as in Poisson GLM, we
model the mean μi of the positive count data as

μi = eα+β1×Xi1+···+βq×Xiq (11.18)

Hence, covariates are used to model the positive counts. What about the proba-
bility of having a false zero, πi? The easiest approach is to use a logistic regression
with an intercept:

πi = eν

1 + eν
(11.19)

where ν is an intercept. But, what if the process generating false zeros depends on
covariates? Nothing stops us from including covariates that model the probability of
false zeros:

πi = eν+γ1×Zi1+···γq×Ziq

1 + eν+γ1×Zi1+···γq×Ziq
(11.20)

We used the symbol Z for the covariates as these may be different to the covari-
ates that influence the positive counts. γ s are regression coefficients.

We are now back on familiar territory; we have a probability function in Equation
(11.17), and we have unknown regression parameters α, β1, . . ., βq, ν, γ 1, . . ., γ q.
It is now a matter of formulating the likelihood equation based on the probability
functions in Equation (11.17); take the logarithm, get derivatives, set them to zero,
and use a very good optimisation routine to get parameter estimates and standard
errors. We do not present all the mathematics here, instead see p. 126 in Cameron
and Trivedi (1998) or p. 174 in Hilbe (2007).

The only difference between a ZIP and ZINB is that the Poisson distribution
for the count data is replaced by the negative binomial distribution. This allows for
overdispersion from the non-zero counts. The probability functions of a ZINB are
simple modifications of the ones from the ZIP:

f (yi = 0) = πi + (1 − πi ) ×
(

k

μi + k

)k

f (yi |yi > 0) = (1 − πi ) × fNB(y)
(11.21)

The function fNB(y) is given in Equation (11.6).
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11.4.1.1 The Mean and the Variance in ZIP and ZINB Models

Before giving an example, we need to discuss what the expected mean and vari-
ance of a ZIP and ZINB model are. In a Poisson GLM, we have E(Yi) = μi and
var(Yi) = μi, whereas in an NB GLM we have E(Yi) = μi and var(Yi) = μi + μi

2/k.
In ZIP and ZINB, this is slightly different due to the definition of the probability
functions in Equations (11.17) and (11.21). To derive these means and variances,
we need a couple of basic rules:

1. E(Y) = Σ y × f(y). The summation is over y = 0, 1, 2, 3, etc. The function f
is either the Poisson probability function in Equation (11.11) or the NB from
Equation (11.6).

2. var(Y) = E(Y2) – E(Y)2.
3. Γ(y + 1) = y Γ(y).

Using these rules and a bit of basic mathematics (and a lot of paper), we obtain
the following expressions for the mean and variance of a ZIP.

E(Yi ) = μi × (1 − πi )

var(Yi ) = (1 − πi ) × (μi + πi × μ2
i )

(11.22)

You can find these also on p. 126 in Cameron and Trivedi (1998). If the probabil-
ity of false zeros is zero, that is πi = 0, we obtain the mean and variance equations
from the Poisson GLM. If πi > 0, then the variance is larger than the mean; hence,
excessive number of (false) zeros causes overdispersion!

The equations for the ZINB follow the same steps (and are a bit more tedious to
obtain) and are as follows.

E(Yi ) = μi × (1 − πi )

var(Yi ) = (1 − πi ) × (μi + μ2
i

k
) + μ2

i × (π2
i + πi )

(11.23)

If the probability of false zeros is 0, we obtain the mean and variance of the NB
GLM. Now that we have expressions for the mean and variances of ZIP and ZINB
models, we can calculate Pearson residuals:

Pearson residuali = Yi − (1 − πi ) × μi√
var(Yi )

Depending whether a ZIP or ZINB is used, substitute the appropriate variance.
μi and πi are given by Equations (11.18) and (11.20), respectively.

11.4.1.2 Summary

If you skipped the mathematics above, here is a short summary. We started asking
ourselves how you can measure zero hippos. This is because we can measure either
false zeros or true zeros. We then defined πi as the probability that we measure a
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false zero at site i, and for the count data we assumed a Poisson distribution with
mean μi. This leads to a statement of the form: The probability that we measure
0 hippos is given by the probability that we measure a false zero plus the probability
that we do not measure a false zero multiplied with the probability that we measure
a true zero. In the same way we can specify the probability that we measure a non-
zero count: The probability that we do not measure a false zero multiplied with the
probability of the count. Now fill in the distributions, and we get Equation (11.17).
The mean values μi and πi can be modelled in terms of covariates. For example, the
average number of hippos at site i may depend on the availability of food, and the
probability of counting a false zero (false zero) may be because the observer needs
better glasses (use observer experience as covariate to model πi). The rest is a matter
of formulating and optimising a maximum likelihood equation, which follows the
type of equations we saw in earlier sections and chapters.

It is important to realise that our count process, as modelled by a Poisson process
can produce zeros.

11.4.2 Example of ZIP and ZINB Models

We now show an application of ZIP and ZINB models using the cod parasite data.
Recall that the choice between a ZIP and ZINB depends whether there is overdis-
persion in the count data. So, if you apply a ZIP, and there is still overdispersion,
just apply the ZINB. We use the pscl package (Zeileis et al., 2008) for inflated
models.

In Chapter 10, we applied a binomial model for the cod parasite data. However,
the numbers of parasites were also measured, and this is a count. The following
code loads the data, defines the nominal variables, and removes the missing values
(which are present in the response variable). Removing missing values is not really
necessary, but it makes the R code for model validation easier, especially when
plotting residuals versus the original explanatory variables.

> library(AED); data(ParasiteCod)

> ParasiteCod$fArea <- factor(ParasiteCod$Area)

> ParasiteCod$fYear <- factor(ParasiteCod$Year)

> I1 <- is.na(ParasiteCod$Intensity) |

is.na(ParasiteCod$fArea) |

is.na(ParasiteCod$fYear) |

is.na(ParasiteCod$Length)

> ParasiteCod2 <- ParasiteCod[!I1, ]

> plot(table(ParasiteCod2$Intensity),

ylab = "Frequencies",

xlab = "Observed intensity values") #Fig. 11.1

The pscl package is reasonably new, and we are using version 0.92. The func-
tion zeroinfl applies a zero-inflated model, and the required R code is as follows.
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> library(pscl)

> f1 <- formula(Intensity ∼ fArea*fYear +

Length | fArea * fYear + Length)

> Zip1 <- zeroinfl(f1, dist = "poisson",

link = "logit", data = ParasiteCod2)

We could also have typed zeroinfl(f1) as we used default settings for the
dist and link options. The dist option specifies the distribution for the count
data, and the available choices are Poisson, negative binomial, and geometric. The
link = logit option specifies the logistic link for the false zeros versus the
non-false zeros (the true zeros plus the positive counts). But the distribution will
always be a binomial. Now let us focus on the more difficult bit, the formula f1.
The function zeroinfl allows the following formulae specifications.

1. Y ∼ X1 + X2. This is equivalent to: Y ∼ X1 + X2 | 1.
2. Y ∼ X1 + X2 | X1 + X2

3. Y ∼ X1 + X2 | Z1 + Z2

The first option specifies the following link functions for the count data and the
binomial data:

μi = eα+β1×Xi1+β2×Xi2 and πi = eν

1 + eν

The mean μi for the Poisson count data is modelled in terms of the covariates X1

and X2 and the probability πi for the binomial distribution with a constant. If you
think, purely based on biology, that the probability of false zeros is also a function
of X1 and X2, then use the second option:

μi = eα+β1×Xi1+β2×Xi2 and πi = eν+γ1×Xi1+γ2×X2

1 + eν+γ1×Xi1+γ2×Xi2

If you want to model the probability of false zeros with a different set of covari-
ates, say Z1 and Z2, then go for option 3, and use

μi = eα+β1×Xi1+β2×Xi2 and πi = eν+γ1×Zi1+γq×Zi2

1 + eν+γ1×Zi1+γq×Zi2

In this model, the count process is modelled with a different set of covari-
ates compared to the process generating the false zeros. In the theory section, we
explained this in terms of measuring no hippos because you forgot your glasses
(Z describes the quality of the observer) and X for the count process can be habitat
variables.

We went for option 2, but we show in a moment that the model in option 1 is
nested in the model in option 2, which means that we can compare them with a
likelihood ratio test. Let us return to our R code for the formula.
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f1 <- formula(Intensity ∼ fArea * fYear +

Length | fArea*fYear + Length)

This means that the following link functions (in words) are applied.

μi = eArea+Year+Area×Year+Length and πi = eArea+Year+Area×Year+Length

1 + eArea+Year+Area×Year+Length

You could also copy the code inside the formula command directly
into the zeroinfl command, but the code becomes rather intimidating. The
summary(Zip1) command gives the estimated parameters, standard errors,
z-values, and p-values, but these values are not presented here. The interaction term
for the log-link function is significant, and the same can be said for the logistic link
function. Hence, the Area × Year term seems to be important for the counts, but
also for the probability of measuring false zeros. Length has no effect on the false
zeros.

However, the ZIP model uses a Poisson distribution for the counts, and the ordi-
nary Poisson GLM applied on these data already showed overdispersion. Before
continuing with the model selection and validation, we need to look whether we
have dealt properly with the overdispersion. Remember that the ZIP model only
deals with zero inflation, not directly with overdispersion in the non-zero count data.
If the overdispersion in a Poisson GLM is caused by the excessive number of zeros,
then the ZIP will take care of the overdispersion, and we are finished. But if the
overdispersion is not caused by the zeros, then the ZIP is not the appropriate model
either! The best way to judge whether the ZIP is acceptable is to compare it with a
ZINB as these models are nested.

The following code applies a ZINB, and applies a likelihood ratio test, and the
output is given as well. The package lmtest is not part of the base installation,
and you will need to download and install it.

> Nb1 <- zeroinfl(f1, dist = "negbin", link = "logit",

data = ParasiteCod2

> library(lmtest)

> lrtest(Zip1,Nb1)

Likelihood ratio test

Model 1: Intensity ∼ fArea * fYear + Length | fArea *
fYear + Length

Model 2: Intensity ∼ fArea * fYear + Length | fArea *
fYear + Length

#Df LogLik Df Chisq Pr(>Chisq)

1 26 -6817.6

2 27 -2450.4 1 8734.2 < 2.2e-16

Recall from Chapter 9 that with the likelihood ratio test, we are testing
whether the variance structure of the Poisson, var(Yi) = μi, is the same as the
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variance structure of the NB, var(Yi) = μi + μi
2 / k. For the purpose of this test,

it is probably easier to use the notation var(Yi) = μi + α × μi
2 for the NB, where

α = 1/k, because the null hypothesis (the Poisson variance equals the NB variance)
can then be written as H0: α = 0 (note that we are testing on the boundary, but the
lrtest function corrects for this). The results of this test provide overwhelming
evidence to go for a ZINB, instead of a ZIP. The numerical output of the ZINB is
obtained with the command summary(Nb1) and is as follows.

> summary(Nb1)

Call:

zeroinfl(formula = f1, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.724165 0.344488 10.811 < 2e-16

fArea2 0.197832 0.329187 0.601 0.54786

fArea3 -0.646241 0.277843 -2.326 0.02002

fArea4 0.709638 0.252319 2.812 0.00492

fYear2000 0.063212 0.295670 0.214 0.83071

fYear2001 -0.940197 0.605908 -1.552 0.12073

Length -0.036246 0.005109 -7.094 1.3e-12

fArea2:fYear2000 -0.653255 0.535476 -1.220 0.22248

fArea3:fYear2000 1.024753 0.429612 2.385 0.01707

fArea4:fYear2000 0.534372 0.415038 1.288 0.19791

fArea2:fYear2001 0.967809 0.718086 1.348 0.17773

fArea3:fYear2001 1.003671 0.677373 1.482 0.13842

fArea4:fYear2001 0.855233 0.654296 1.307 0.19118

Log(theta) -0.967198 0.096375 -10.036 < 2e-16

Zero-inflation model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.19106 0.78312 0.244 0.807249

fArea2 2.01576 0.57396 3.512 0.000445

fArea3 1.90753 0.55093 3.462 0.000535

fArea4 -0.73641 0.86427 -0.852 0.394182

fYear2000 -1.07479 2.01183 -0.534 0.593180

fYear2001 3.29534 0.71139 4.632 3.62e-06

Length -0.03889 0.01206 -3.226 0.001254

fArea2:fYear2000 0.46817 2.09007 0.224 0.822759

fArea3:fYear2000 -0.79393 2.16925 -0.366 0.714369

fArea4:fYear2000 -12.93002 988.60803 -0.013 0.989565

fArea2:fYear2001 -3.20920 0.83696 -3.834 0.000126

fArea3:fYear2001 -3.50640 0.83097 -4.220 2.45e-05

fArea4:fYear2001 -2.91175 1.10650 -2.631 0.008501
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Theta = 0.3801

Number of iterations in BFGS optimization: 52

Log-likelihood: -2450 on 27 Df

The z- and p-values of the parameters for the count model (upper part of the
output) are rather different, compared to the ZIP! You would expect this as there is
overdispersion. The sentence with the BFGS phrase refers to the number of itera-
tions in the optimisation routines.

The question that we should now focus on is which of the explanatory variables
can be dropped from the model. The candidates are the Area × Year interaction term
for the count model (most levels have high p-values) and the Area × Year interaction
term for the logistic model (some levels are not significant). In fact, why don’t we
just drop each term in turn and select the optimal model using the likelihood ratio
statistic or AIC. The options are

1. Drop length from the count model. Call this Nb1A.
2. Drop the Area × Year term from the count model. Call this Nb1B.
3. Drop length from the logistic model. Call this Nb1C.
4. Drop the Area × Year term from the logistic model. Call this Nb1D.

The models Nb1 (without dropping anything), Nb1A, Nb1B, Nb1C, and Nb1D
are given below.

nb1: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1A: μi = eArea+Year+Area×Year πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1B: μi = eArea+Year+Length πi = eArea+Year+Area×Year+Length

1+eArea+Year+Area×Year+Length

nb1C: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Area×Year

1+eArea+Year+Area×Year

nb1D: μi = eArea+Year+Area×Year+Length πi = eArea+Year+Length

1+eArea+Year+Length

You can implement these models with the code

> #Drop Length from count model

> f1A <-formula(Intensity ∼ fArea * fYear |

fArea * fYear + Length)

> #Drop interaction from count model

> f1B <-formula(Intensity ∼ fArea + fYear+

Length | fArea * fYear + Length)

> #Drop Length from binomial model

> f1C<-formula(Intensity ∼ fArea * fYear+

Length | fArea * fYear)

> #Drop interaction from binomial model

> f1D<-formula(Intensity ∼ fArea * fYear+

Length | fArea + fYear + Length)
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> Nb1A <- zeroinfl(f1A, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1B <- zeroinfl(f1B, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1C <- zeroinfl(f1C, dist = "negbin",

link = "logit", data = ParasiteCod2)

> Nb1D <- zeroinfl(f1D, dist = "negbin",

link = "logit", data = ParasiteCod2)

Just as we did in Chapters 4, 5, and 6, we use the likelihood ratio test to compare
each nested model Nb1A, Nb1B, Nb1C, and Nb1D with the full model Nb1, and if
a term is not significant, drop the least significant one. The required code is

> lrtest(Nb1,Nb1A); lrtest(Nb1,Nb1B)

> lrtest(Nb1,Nb1C); lrtest(Nb1,Nb1D)

Table 11.2 shows the results. The AIC values were obtained with the command
AIC(Nb1A,Nb1B,Nb1C,Nb1D). The model, in which the Area × Year interac-
tion was dropped from the count data model gave the lowest AIC and an associated
p-value of 0.026; so we might as well drop it. These tests are approximate, and
therefore, p = 0.026 is not convincing. The AICs of the model with and without the
Area × Year interaction are also similar.

This means that we continue with the model selection procedure and test
whether Length, Area, or Year can be dropped from the count model and length
and the Area × Year interaction from the logistic model. Results are not shown
here, but no further terms could be dropped. This means that we can now say:
‘Thank you for producing the numerical output from the first ZINB model, but
it is not the information we need’. The parameters of the optimal model are
given by

> summary(Nb1B)

Call:

zeroinfl(formula = f1B, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (negbin with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.497280 0.326888 10.699 < 2e-16

fArea2 0.254160 0.229988 1.105 0.26912

fArea3 -0.200901 0.205542 -0.977 0.32836

fArea4 0.912450 0.195039 4.678 2.89e-06

fYear2000 0.462204 0.173067 2.671 0.00757

fYear2001 -0.128524 0.166784 -0.771 0.44094

Length -0.034828 0.004963 -7.017 2.27e-12

Log(theta) -0.985648 0.095385 -10.333 < 2e-16
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Table 11.2 Results of the model selection in ZINB

Dropped term df AIC Likelihood ratio test

None 27 4954.897
Length from μi 26 4994.993 X2 = 42.096 (df = 1, p < 0.001)
Area × Year from μi 21 4957.146 X2 = 14.249 (df = 6, p = 0.026)
Length from πi 26 4965.019 X2 = 12.122 (df = 1, p < 0.001)
Area × Year from πi 21 4961.751 X2 = 18.853 (df = 6, p = 0.004)

Zero-inflation model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.16057 0.85842 -0.187 0.851617

fArea2 2.18198 0.65106 3.351 0.000804

fArea3 2.23765 0.61803 3.621 0.000294

fArea4 -0.50954 0.90067 -0.566 0.571570

fYear2000 -0.60158 1.55344 -0.387 0.698564

fYear2001 3.71075 0.72278 5.134 2.84e-07

Length -0.03588 0.01150 -3.121 0.001801

fArea2:fYear2000 0.40925 1.61583 0.253 0.800055

fArea3:fYear2000 -1.81000 1.83708 -0.985 0.324495

fArea4:fYear2000 -10.94642 285.39099 -0.038 0.969404

fArea2:fYear2001 -3.71145 0.84033 -4.417 1.00e-05

fArea3:fYear2001 -3.99409 0.81410 -4.906 9.29e-07

fArea4:fYear2001 -3.37317 1.09981 -3.067 0.002162

Theta = 0.3732

Number of iterations in BFGS optimization: 45

Log-likelihood: -2458 on 21 Df

For publication, you should also give one p-value for the Area and Year terms
in the count model, and one p-value for the interaction term in the logistic model.
Just drop these terms in turn, use the likelihood ratio test, and quote the Chi-square
statistic, degrees of freedom and a p-value. If you are not 100% sure, here are our
results for the count model: Length (X2 = 41.604, df = 1, p < 0.001), Year (X2 =
12.553, df = 2, p = 0.002), Area (X2 = 47.599, df = 3, p < 0.001), and for the logis-
tic model: length (X2 = 10.155, df = 1, p = 0.001) and the Area × Year interaction
(X2 = 47.286, df = 6, p < 0.001).

This was the model selection. There are two more things we need to do; model
validation and model interpretation of the optimal ZINB model.

11.4.2.1 Model Validation

The keyword is again residuals. You need to plot Pearson residuals against the fit-
ted values and Pearson residuals against each explanatory variable and you should
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not see any pattern. It is also useful to plot the original data versus the fitted data;
hopefully, they form a straight line.

If you fit a ZIP model with the function zeroinfl, Pearson residuals for the
count data can be obtained by the R command:

> EP <- residuals(Zip1, type = "pearson").

There are multiple packages for zero-inflated data, and it is not always clear how
exactly residuals are calculated. Because we believe in ‘know what you are doing’,
we show you how to get the Pearson residuals using the equations we derived in the
previous subsection.

Let us extract the probabilities πi, the probability of a false zero. They are
obtained by

> EstPar <- coef(Nb1B,model = "zero")

> Z <- model.matrix(Nb1B,model = "zero")

> g <- Z %*% EstPar

> p <- exp(g) / (1 + exp(g))

The p in the code is πi. The coeff command with the option model= "zero"
gives the estimated parameters presented above (Nb1B is our optimal ZINB model).
The μi from Equation (11.18) is obtained by

> EstPar2 <- coef(Nb1B, model = "count")

> X <- model.matrix(Nb1B, model = "count")

> g <- X %*% EstPar2

> mu1 <- exp(g)

Using Equation (11.23), the expected values of a ZINB model are given by

> mu <- (1 - p) * mu1

If you compare this result with the results of fitted(Nb1B) or predict
(Nb1B), you should get the same values. Finally, we show how to get the variance
and Pearson residuals:

> k <- Nb1B$theta

> VarY <- ((muˆ2) / k + mu)*(1 - p) +

(muˆ2)*(pˆ2 + p)

> EP <- (ParasiteCod2$Intensity - mu) / sqrt(VarY)

These should give the same results as the residuals command; but it is good
to know that we can do it ourselves! The rest is a matter of plotting these residuals
against everything we have and hope that there are no clear patterns. We do not show
these graphs here.
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Fig. 11.6 Fitted curves for the logistic regression model. The vertical axis shows the probability
of measuring a false zero, and the horizontal axis length of cod. Each line corresponds to an area
and year combination

11.4.2.2 Model Interpretation

The question we now focus on is: What does it all mean? To answer this question,
we sketch the results of the model. There are two components to plot; the logistic
model for the false zeros versus all other data, and the count model versus all other
data. We first focus on the logistic regression part. Fitted values can be obtained by
the predict function, or you can do it manually (which is what we did). We took
the estimated intercepts and slopes from the zero-inflated part of the optimal ZINB
model (Nb1B), created length values from 17 to 100 cm, and calculated the fitted
values for each area and year combination. This is a straightforward exercise and
was explained in Chapter 10. The results are given in Fig. 11.6. It seems that the
highest probabilities of false zeros are obtained for small fish in area 1 in 2001, in
area 2 in all years, and in area 3 in 1999 and 2001. Explained differently, in these
areas and these years, you are likely to catch small cod with zero parasites, but these
zeros are false zeros.

A similar graph was drawn for the count data. In this case, fitted values are
obtained from Equation (11.23). Regression coefficients were taken from the upper
part of the summary(Nb1B) output. Area 4 in 1999 and 2000 has the highest val-
ues. This information can also be derived from the estimated regression parameters;
so the need for a graph is limited.

11.5 ZAP and ZANB Models, Alias Hurdle Models

In the previous section, we assumed the zeros for the cod data consist of false zeros
and true zeros. In this section, we do not discriminate between the four types of
zeros; they are just zeros.
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We follow the same approach as in Section 11.2; first we present the probability
functions for the two-part models and give the maximum likelihood equations in
Section 11.5.1, and an example plus the R code is presented in Section 11.5.2. If
you are not interested in the underlying mathematics, just read the summary at the
end of Section 11.5.1.

11.5.1 Mathematics of the ZAP and ZANB

In the hurdle model (ZAP and ZANB), we consider the data on a presence and
absence level and analyse the presence data with a count model. Actually, if you
apply two analyses, one binomial GLM and one Poisson (or NB) GLM, you will get
the same estimated regression parameters.

A small difference is that with ZIP and ZINB, the binomial GLM models the
probability of a false zero versus other types of data, whereas in ZAP and ZANB,
the binomial GLM models the probability of presence versus absence. Hence, the
estimated regression parameters obtained by ZAP and ZANB should have opposite
signs compared to those obtained by ZIP and ZINB due to the definition of π .

The underlying idea for the hurdle model is that there are two ecological pro-
cesses playing a role. In the context of the hippo example, one process is causing the
absence of hippos, and at those sites where hippos are present, there is a second pro-
cess influencing the number of hippos. The probability function for a hurdle model
is build up accordingly. The binomial distribution is used to model the absence and
presence of hippos, and a Poisson (or negative binomial or geometric) distribution
for the counts. This leads to the following probability function for the Poisson ZAP:

fZAP(y; β, γ ) =
⎧
⎨

⎩

fbinomial(y = 0; γ ) y = 0

(1 − fbinomial(y = 0; γ )) × fPoisson(y; β)

1 − fPoisson(y = 0; β)
y > 0

(11.24)

So, the probability of measuring zero hippos is modelled with a binomial distri-
bution, where πi is the probability that yi = 0. Hence, 1 − πi is the probability that
we do not measure zero hippos. Just as for the ZIP model, πi is modelled in terms
of covariates Z and regression parameters γ ; see also Equation (11.20). To measure
a non-zero count, the ecosystem needs to cross a hurdle to produce a non-zero value
and the Poisson count process has to exclude the probability of zero values, which
we called a zero-truncated Poisson distribution in Section 11.2. So, the second part
in the above equation says that the probability of measuring a non-zero value equals
the probability that it is not a zero multiplied with the probability determined by
a zero-truncated Poisson. The mean of the Poisson distribution, μi, is modelled in
terms of covariates X and regression parameters β; see also Equation (11.18).

The next task is to find the optimal regression parameters γ and β. As with
the ZIP, a likelihood criterion is formulated using the probability function in Equa-
tion (11.24). Finding the regression parameters that optimise the log-likelihood is
a matter of numerical optimisation, and the required formulae can be found in



288 11 Zero-Truncated and Zero-Inflated Models for Count Data

Section 4.7.1 in Cameron and Trivedi (1998). The function hurdle from the pscl
package in R will do the hard work for you.

The difference between a ZAP and a ZANB is due to the assumption for the
distribution of the count data. If we assume a Poisson distribution, we end up with
a ZAP and if a negative binomial distribution is used, we get a ZANB. Justification
for the ZANB is extra overdispersion in the count data.

In Equations (11.22) and (11.23), we formulated the mean and variance for the
ZIP and ZINB. For the ZAP, these are as follows.

EZAP(Yi ; πi , μi ) = 1 − πi

1 − e−μi
× μi

VarZAP(Yi ; πi , μi ) = 1 − πi

1 − e−μi
× (μi + μ2

i ) −
(

1 − πi

1 − e−μi
× μi

)2

And for the ZANB, we have

EZANB(Yi ; πi , μi , k) = 1 − πi

1 − P0
× μi whereP0 =

(
k

μi + k

)k

VarZANB(Yi ; πi , μi , k) = 1 − πi

1 − P0
×

(
μ2

i + μi + μ2
i

k

)
−

(
1 − πi

1 − P0
× μi

)2

The mean and variance can be used to calculate the Pearson residuals.

11.5.2 Example of ZAP and ZANB

The whole modelling process in two-part models is identical compared to mixture
models. First you need to decide whether you need a ZAP or ZANB. The best option
is to run them both and compare them with a likelihood ratio test. This can be done
with the following R code.

> H1A <- hurdle(f1, dist = "poisson", link = "logit",

data = ParasiteCod2)

> H1B <- hurdle(f1, dist = "negbin", link = "logit",

data = ParasiteCod2)

The command lrtest(H1A,H1B) produces a Chi-square statistic of 8752.50
(which is overwhelming evidence in favour of the negative binomial model) and the
command AIC(H1A, H1B), gives an AIC of 13687.59 for the ZAP and 4939.08
for the ZANB, confirming the choice for the ZANB. The summary(H1B) gives
the estimated parameters, but because the model has various nominal variables with
multiple levels, it is better to compare the full model H1B, with models in which
a particular term is dropped, and use the lrtest command to get one p-value
for the interaction term in the count model and in the binomial model. R code for
these analyses were provided in Section 11.4 and are not repeated here (the code
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can also be found on the book’s website). In the first round of model simplification,
length was dropped from the binomial model, and in the second (and last) round,
the Area × Year interaction term was dropped from the Poisson model. The code
and estimated regression parameters for the optimal ZANB model are as follows.

> fFinal <- formula(Intensity ∼ fArea + fYear +

Length | fArea*fYear )

> HFinal <- hurdle(f1, dist = "negbin", link = "logit",

data = ParasiteCod2)

> summary(HFinal)

Call:

hurdle(formula = f1, data = ParasiteCod2,

dist = "negbin", link = "logit")

Count model coefficients (truncated negbin with log

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.366059 0.399420 8.427 < 2e-16

fArea2 0.379211 0.380945 0.995 0.31952

fArea3 -0.504376 0.312256 -1.615 0.10625

fArea4 0.893614 0.291517 3.065 0.00217

fYear2000 -0.040511 0.328434 -0.123 0.90183

fYear2001 -0.757718 0.688097 -1.101 0.27082

Length -0.037309 0.005867 -6.359 2.03e-10

fArea2:fYear2000 -0.639059 0.616450 -1.037 0.29989

fArea3:fYear2000 1.193440 0.494530 2.413 0.01581

fArea4:fYear2000 0.510433 0.476990 1.070 0.28457

fArea2:fYear2001 0.707730 0.819333 0.864 0.38770

fArea3:fYear2001 0.912374 0.775776 1.176 0.23956

fArea4:fYear2001 0.601263 0.746292 0.806 0.42043

Log(theta) -1.498146 0.239114 -6.265 3.72e-10

Zero hurdle model coefficients (binomial with logit

link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.085255 0.295071 0.289 0.7726

fArea2 -1.321373 0.285258 -4.632 3.62e-06

fArea3 -1.449183 0.243885 -5.942 2.81e-09

fArea4 0.300728 0.271105 1.109 0.2673

fYear2000 0.395069 0.343817 1.149 0.2505

fYear2001 -2.652010 0.433404 -6.119 9.42e-10

Length 0.006933 0.004655 1.489 0.1364

fArea2:fYear2000 -0.080344 0.507970 -0.158 0.8743

fArea3:fYear2000 0.870585 0.450277 1.933 0.0532

fArea4:fYear2000 0.864622 0.592387 1.460 0.1444
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fArea2:fYear2001 2.737488 0.532903 5.137 2.79e-07

fArea3:fYear2001 2.718986 0.499487 5.444 5.22e-08

fArea4:fYear2001 2.541437 0.518245 4.904 9.39e-07

Theta: count = 0.2235

Number of iterations in BFGS optimization: 29

Log-likelihood: -2442 on 28 Df

The difference between the optimal ZINB and ZANB is that length is not signif-
icant in the binomial part of the ZANB. For the rest, both models are the same in
terms of selected explanatory variables.

It is also interesting to compare the estimated parameters of the optimal ZINB
and ZANB models. For the count part of the model, the sign and magnitude of the
significant parameters are very similar. Plotting the fitted values as in Fig. 11.7 gives
a similar graph. Hence, the biological conclusions for the count part are similar. For
the binomial part of the model, things look different, at least in the first instance.
However, the p-values of corresponding terms in both tables give the same message.
The magnitudes of the significant parameters are similar as well. It is only the sign of
the regression parameters that are different. But this is due to the opposite definition
of the πs in both methods!

In summary, for the cod parasite data, the ZINB and ZANB give similar parame-
ter estimates. The difference is how they treat the zeros. The ZINB labels the exces-
sive number of zeros (which occur at small fish and in certain areas in particular
years) as false zeros, whereas the ZANB models the zeros versus the non-zeros (and
identifies the area × year interaction as a driving factor for this), and the non-zeros
with a truncated NB GLM jointly.
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Fig. 11.7 Fitted curves for the count model. The vertical axis shows the expected counts (assuming
a ZINB distribution) and the horizontal axis length of cod. Each line corresponds to an area and
year combination
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11.6 Comparing Poisson, Quasi-Poisson, NB, ZIP, ZINB,
ZAP and ZANB GLMs

In the previous sections and chapters, we applied Poisson, quasi-Poisson, NB GLM,
ZIP, ZINB, ZAP, and ZANB models on the cod parasite data. The question is now:
What is the best model? There are many ways to answer this question.

Option 1: Common Sense

The first option is common sense. First, you should decide whether there is overdis-
persion. If there is no overdispersion, you are lucky and you can stick to the Poisson
GLM. If there is overdispersion, ask yourself why you have overdispersion; outliers,
missing covariates, or interactions are the first things you should consider. Small
amounts of overdispersion can be modelled with quasi-Poisson. Let us assume that
this is not the case. Do you have overdispersion due to excessive number of zeros
or due more to variation in the count data? Make a frequency plot of the data and
you will know whether it is zero inflation. If there is zero inflation, go the route of
ZIP, ZAP, ZINB, and ZANB. If the overdispersion is not caused by excessive num-
ber of zeros, but due to more variation than expected by the Poisson distribution in
the positive part of the count data, use the negative binomial distribution. In case
of zero inflation and extra variation in the positive count data, use ZINB or ZANB.
The choice between ZINB and ZANB (or ZIP and ZAP) should be based on a priori
knowledge of the cause of your excessive number of zeros.

Option 2: Model Validation

A second option to help decide on the best model (if there is such a thing) is to plot
the residuals of each model and see whether there are any residual patterns. Drop
each model that shows patterns in the residuals.

Option 3: Information Criteria

Another option is to apply all methods and print all estimated parameters, standard
errors and AICs, BICs, etc. in one big table. Compare them, and based on the AICs,
judge which one is the best. You can find examples of this approach in most books
discussing these statistical methods.

Option 4: Hypothesis Tests – Poisson Versus NB

Formal hypotheses tests can be used to choose between Poisson and negative bino-
mial models as these are nested. This also holds for ZIP versus ZINB and ZAP
versus ZANB.
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Option 5: Compare Observed and Fitted Values

Potts and Elith (2006) compared the fitted and observed values of all the models. To
assess how good each technique predicts the fitted values, they used various tools.
For example, high values of the Pearson correlation coefficient and Spearman’s rank
correlation between fitted and observed values mean that these are similar.

It is also possible to apply a linear regression model of the form Observedi = α +
β × Fittedi + εi, where Observedi are the observed data and Fittedi the fitted values
of a particular method. An estimated intercept of 0 and slope of 1 indicates a perfect
fit. Potts and Elith (2006) discuss the interpretation of non-significant slopes.

Other ways to quantify how similar the observed and fitted values are the root
mean square errors and mean absolute error (where error is defined as the difference
between the observed and fitted values).

All these statistics are discussed in Potts and Elith (2006) and require bootstrap-
ping. We implemented their algorithm, and the results are presented in Table 11.3.
Note that the Pearson correlation coefficients and the Spearman rank correlations
of all five methods are nearly identical. The ZANB is the only model that gives an
intercept of 0. The AIC of this model is also the lowest, and therefore based on these
numerical tools, the ZANB can be selected as the best possible model.

Another approach to compare (and select) models is discussed in Ver Hoef and
Boveng (2007), who plotted the variance versus the mean and the weights that are
used inside the algorithm versus the mean.

Instead of sticking to one of these five methods, you may need multiple
approaches to arrive at the best model. The hypothesis testing approach showed
that an NB model is preferred above the Poisson GLM. A frequency plot indicated
zero inflation; hence, we should apply a ZINB or ZANB. A discussion with one of
the involved researchers revealed that we have both false and true zeros. We can
either try to determine the contribution from each of these (with a ZINB) or just
consider them as zeros and use the ZANB. So, the choice between the ZINB and
ZANB depends on the underlying questions with regards to the zeros. If you close
your eyes and compare the ZINB and ZANB, then the latter should be selected as
judged by the AIC.

Table 11.3 Model comparison tools for the Poisson GLM, quasi-Poisson GLM, NB GLM, ZINB,
and ZANB models. The Pearson correlation coefficient (r), Spearman rank correlation (p), intercept
and slope (of a linear regression of observed versus fitted), RMSE, MAE (mean absolute error),
AIC, log likelihood and degrees of freedom (df).

Model r p Intercept Slope RMSE MAE AIC Log lik Df

Poisson 0.33 0.36 0.32 0.96 18.60 7.50 20377.86 –10175.93 13
Quasi-Poisson 0.33 0.36 0.32 0.96 18.63 7.50 NA NA 13
NB GLM 0.34 0.37 –0.20 1.07 18.49 7.42 5030.67 –2501.33 14
ZINB 0.33 0.37 0.30 0.96 18.57 7.49 4954.89 –2450.44 27
ZANB 0.34 0.37 –0.06 1.04 18.47 7.47 4937.08 –2441.54 27
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11.7 Flowchart and Where to Go from Here

In this chapter, we have discussed tools to analyse zero-inflated models, resulting in
four extra models (ZIP, ZAP, ZINB and ZANB) in our toolbox for the analysis of
count data. Mixture models and two-part models should be part of every ecologist’s
toolbox as zero inflation and overdispersion are commonly encountered in ecologi-
cal data. If you are now confused with the large number of models to analyse count
data, Fig. 11.8 will help you to visualise the difference between some of the models
discussed in Chapters 9, 10, and 11.

So, where do we go from here? In Chapters 12 and 13, we concentrated on mod-
els that allow for correlation and random effects in Poisson and binomial GLMs and
GAMs. These models are called generalised estimation equations (GEE), gener-
alised linear mixed modelling (GLMM), and generalised additive mixed modelling
(GAMM). At the time of writing this book, software for GEE, GLMM, and GAMM
for zero-inflated data consists mainly of research or publication specific code. By
this, we mean that papers using random effects or spatial and temporal correla-
tions structures in combination with zero inflation are now being published (e.g. Ver
Hoef and Jansen, 2007), but general software code is not yet available. So, a bit
of challenging R programming awaits you, should you want to model zero-inflated
GLMMs.

Zero inflation
Extra
overdispersion

#successes out
of N trials

Zero inflation
No extra
overdispersion

No zero truncation
No zero inflation
Overdispersion

Zero truncation

No zero truncation
No zero inflation
No overdispersion

Count
data

Poisson GLM

Quasi-Poisson GLM
NB GLM

binomial GLM

Truncated Poisson GLM
Truncated NB GLM

ZIP
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Fig. 11.8 GLMs for count data. Instead of GLM, you can also use GAM. Try sketching in the
R functions for each box. If there is no zero truncation, no zero inflation and no overdispersion
(upper right box), you can apply a Poisson GLM. If there is overdispersion (upper middle box),
then consider quasi-Poisson or negative binomial GLM. The ‘#successes out of N trials’ box refers
to a logistic regression. The trials need to be independent and identical. For zero-truncated data
(lower right box), you need to apply a zero-truncated Poisson GLM or a zero-truncated negative
binomial GLM. If there is zero inflation, you are in the world of ZIP, ZAP, ZINB, and ZINB
models. The difference between the P and NB is whether there is overdispersion in the non-zero
data. It is a nice exercise to add the names of the corresponding R functions! You can also use the
offset in the ZIP, ZAP, ZINB, and ZANB models



Chapter 12
Generalised Estimation Equations

In this chapter, we analyse three data sets; California birds, owls, and deer. In the
first data set, the response variable is the number of birds measured repeatedly over
time at two-weekly intervals at the same locations. In the owl data set (Chapter 5),
the response variable is the number of calls made by all offspring in the absence of
the parent. We have multiple observations from the same nest, and 27 nests were
sampled. In the deer data, the response variable is the presence or absence of para-
sites in a deer; the data are from multiple farms.

In the first instance, we apply a generalised linear model (GLM) with a Poisson
distribution for the California birds and owl data and a binomial GLM for the
deer data. However, such analyses violate the independence assumption; for the
California bird data, there is a longitudinal aspect, we have multiple observations
per nest for the owls, and multiple deer from the same farm. We therefore introduce
generalised estimation equations (GEE) as a tool to include a dependence structure,
discuss its underlying mathematics, and apply it on the same data sets.

GEE was introduced by Liang and Zeger (1986), and since their publication, sev-
eral approaches have been developed to improve the technique. We use the original
method as it is the simplest. Useful GEE references are Ziegler et al. (1996), Greene
(1997), Fitzmaurice et al. (2004), and a textbook completely dedicated to GEE by
Hardin and Hilbe (2002). This chapter heavily depends on the Fitzmaurice et al.
(2004) book. Chapter 22 contains a binary GEE case study.

12.1 GLM: Ignoring the Dependence Structure

12.1.1 The California Bird Data

Elphick and Oring (1998, 2003) and Elphick et al. (2007) analysed time series
of several water bird species recorded in California rice fields. Their main goals
were to determine whether flooding fields after harvesting results in greater use by
aquatic birds, whether different methods of manipulating the straw in conjunction
with flooding influences how many fields are used, and whether the depth that the

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 12,
C© Springer Science+Business Media, LLC 2009
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fields are flooded to is important. Biological details can be found in the references
mentioned above.

Counts were made during winter surveys at several fields. Here, we only use
data measured from one winter (1993–1994), and we use species richness to sum-
marise the 49 bird species recorded. The sampling took place at multiple sites, and
from each site, multiple fields were repeatedly sampled. Here, we only use one site
(called 4mile) for illustrative purposes. There are 11 fields in this site, and each
field was repeatedly sampled; see Fig. 12.1. Note that there is a general decline in
bird numbers over time. One of the available covariates is water depth per field, but
water depth and time are collinear (as can be inferred from making an xyplot of
depth versus time for each field), so we avoid using them together as covariates in
the models.
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Fig. 12.1 xyplot of species richness plotted against time (expressed in two-weekly periods).
Each panel represents a different field. A LOESS smoother was added to aid visual interpretation
of the graph
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The following R code reads the data, calculates the richness index, and makes
the xyplot in Fig. 12.1.

> library(AED); data(RiceFieldBirds)

> RFBirds <- RiceFieldBirds #Saves some space

> RFBirds$Richness <- rowSums(RFBirds[, 8:56] > 0)

> RBirds$fField <-factor(RFBirds$FIELD)

> library(lattice)

> xyplot(Richness ∼ Time | fField, data= RFBirds,

panel=function(x, y){
panel.grid(h = -1, v = 2)

panel.points(x, y, col = 1)

panel.loess(x, y, col = 1, lwd = 2)})

The first few lines access the data and the object with the data is renamed
into a shorter name. The rowSums command is used to calculate species rich-
ness (add na.rm = TRUE if you have missing values in your data), and the rest
is a matter of some simple xyplot commands and options to get points and
smoothers in the panels (see also Chapter 2). As always in R, things can be done
in at least five different ways. Instead of the code in the panel function, you can
also use:

> xyplot(Richness ∼ Time | fField, data= RFBirds,

type = c ("p" , "smooth" , "grid"))

It gives the same graph, but the code looks a bit more cryptic. Additional
parameters like the span width and line thickness for the smoother can also be spec-
ified (just add span = 0.5, lwd = 2, col = 1 to the command above).

Counts took place approximately every two weeks. As well as species rich-
ness, we also have water depth and information on rice debris management. The
aim of the analysis presented here is to explain the richness values as a function
of depth and management effects. The response variable is a count, and there-
fore we are in the world of GLMs with a likely candidate model the GLM with
a Poisson distribution and log-link function. Actually, it is a bit more complicated
as the original data were densities; numbers per field and the sizes of the fields
are different. This means that (the log of the) size of the field can be used as an
offset variable (Chapter 9). Based on biological knowledge, and an initial analy-
sis using generalised additive modelling (Elphick et al., 2007), the effect of the
covariate depth is modelled as a quadratic term. The following three steps define the
GLM.

1. Define Yis as the richness measured in field i at time s. We assume that
Yis is Poisson distributed with mean μis. In mathematical notation, we have:
Yis ∼ P(μis). Recall that for a Poisson distribution, the mean is the variance.
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2. The systematic part of the GLM is given by

η(Depthis,SPTREATis, AREAis) = α + offset(log(AREAis)) +
β1 × Depthis + β2 × Depth2

is + β3 × SPTREATis

The term SPTREAT is the categorical variable defining management type. It is
also possible to include an interaction between depth and the management type
and also between the quadratic function of depth and management type. But to
keep the models simple, we do not do this.

3. The link between the expected values and systematic component is the log-link:

log(μis) = η(Depthis, SPTREATis, AREAis)

Full details of Poisson GLMs are given in Chapter 9. It is important to realise
that the GLM assumes independence of all richness values, including those from the
same field (which are separated by only two weeks). For the moment, we will ignore
this problem and just carry on with the GLM. Later in this chapter, we will apply
GEE to incorporate auto-correlation on the data from the same field and compare
results. An initial GLM indicated overdispersion, and we therefore applied a quasi-
Poisson GLM with the following R code. Results from the summary command are
given as well and we will compare them later with the GEE results.

> RFBirds$LA <- log(RFBirds$AREA)

> RFBirds$fSptreat <- factor(RFBirds$SPTREAT)

> RFBirds$DEPTH2 <- RFBirds$DEPTHˆ2

> M0 <- glm(Richness ∼ offset(LA) + fSptreat + DEPTH +

DEPTH2, family = quasipoisson, data = RFBirds)

> summary(M0)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7911754 0.2136575 -3.703 0.00034

fSptreatrlfld -0.4931558 0.1666480 -2.959 0.00380

DEPTH 0.0690528 0.0249844 2.764 0.00674

DEPTH2 -0.0016531 0.0006732 -2.455 0.01569

Dispersion parameter for quasipoisson family taken to

be 2.392596

Null deviance: 297.47 on 109 degrees of freedom

Residual deviance: 245.10 on 106 degrees of freedom

AIC: NA

Note that the overdispersion is 2.39. All terms in the model are significant at
the 5% level, although the quadratic depth term is only weakly significant with a
p-value of 0.015.
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12.1.2 The Owl Data

In Chapters 5 and 6, we analysed data from a study on vocal begging behaviour
when the owl parents bring prey to their nest. In both chapters, we used sibling
negotiation as response variable. It was defined as the number of calls made by
all offspring in the absence of the parents counted during 30-second time intervals
before arrival of a parent divided by the number of nestlings. Just as in the previ-
ous section, we can use the (natural) logarithm of the number of nestlings as an
offset variable and analyse the number of calls NCallsis at time s in nest i using a
Poisson GLM. Hence, we assume that NCallsis ∼ P(μis), and therefore the mean
and variance of NCallsis are equal to μis. The systematic part is given by

ηis = α + log(Broodsizei ) + β1 × SexParentis + β2 × FoodTreatmentij

+ β3 × ArrivalTimeij + β4 × SexParentis × FoodTreatmentij

+ β5 × SexParentis × ArrivalTimeij

Recall from Chapter 5 that the sex of the parent is male or female, food treatment
at a nest is deprived or satiated, and arrival time of the parent at the nest was coded
with values from 21 (9.00 PM) to 30 (6.00 AM). Note that there is no regression
parameter in front of the log(Broodsizei) term; it is modelled as an offset variable.
The link between the expected value of Yis, μis, and the systematic component ηis is
the log-link:

log(μis) = ηis ⇔ μis = eηis

The model is fitted with the following R code.

> library(AED) ; data(Owls)

> Owls$NCalls <- Owls$SiblingNegotiation

> Owls$LBroodSize <- log(Owls$BroodSize)

> Form <- formula(NCalls ∼ offset(LBroodSize) +

SexParent * FoodTreatment +

SexParent * ArrivalTime)

> O1 <- glm(Form, family = poisson, data = Owls)

Instead of the name SiblingNegotiation, we used the shorter name
NCalls as it saves some space in the code. The results of the summary(O1) com-
mand are not shown here, but there is overdispersion. Therefore, we refitted the
model with a quasi-Poisson GLM:

> O2 <- glm(Form, family = quasipoisson, data = Owls)

> drop1(O2, test = "F")

Results of the drop1 command are not presented here, but indicate that the two
two-way interactions are not significant. Using a backwards selection, we ended up
with the model containing food treatment and arrival time:
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> Form <- formula(NCalls ∼ offset(LBroodSize) +
FoodTreatment + ArrivalTime)

> O3 <- glm(Form, family = quasipoisson, data = Owls)
> summary(O3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.81333 0.53946 7.069 4.39e-12
FoodTreatmentSatiated -0.53230 0.08260 -6.444 2.40e-10
ArrivalTime -0.12924 0.02205 -5.861 7.60e-09

Dispersion parameter for quasipoisson family taken to be 6.246006
Null deviance: 4128.3 on 598 degrees of freedom

Residual deviance: 3652.6 on 596 degrees of freedom
AIC: NA

All regression parameters are highly significant. We will return to these results
once the GEE has been discussed.

12.1.3 The Deer Data

Vicente et al. (2006) looked at the distribution and faecal shedding patterns of the
first-stage larvae (L1) of Elaphostrongylus cervi (Nematoda: Protostrongylidae) in
red deer across Spain. Effects of environmental variables on E. cervi L1 counts
were determined using generalised linear mixed modelling (GLMM) techniques.
Full details on these data can be found in their paper. In this book, we use only part
of their data to illustrate GEE and GLMM (Chapter 13).

In this section, we keep the analysis simple and focus on the relationship between
the presence and absence of E. cervi L1 in deer and the explanatory variables length
and sex of the host. Because the response variable is of the form 0–1, we are imme-
diately in the world of a binomial GLM. The explanatory variables are length and
sex of the deer, the first is continuous and sex is nominal. The following three steps
define the GLM.

1. Define Yis as 1 if the parasite E. cervi L1 is found in animal j at farm i, and
0 otherwise. We assume that Yis is binomially distributed with probability pis.
In mathematical notation, we have: Yis ∼ B(1, pis). Recall that for a binomial
distribution, we have E(Yis) = pis and var(Yis) = pis × (1 – pis).

2. The systematic part of the GLM is given by:

η(Lengthis, Sexis) = α + β1 × Lengthis + β2 × Sexis + β3 × Lengthis × Sexis

3. The link between the expected values and systematic component is the logistic
link:
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logit(pis) = η(Lengthis, Sexis) ⇔

pis = eα+β1×Lengthis+β2×Sexis+β3×Lengthis×Sexis

1 + eα+β1×Lengthis+β2×Sexis+β3×Lengthis×Sexis

The notation logit stands for the logistic link (Chapter 10), and pij is the proba-
bility that animal j on farm i has the parasite, Lengthij is the length of the deer, and
Sexij tells us whether it is male or female. Instead of the subscripts i and j, we could
have used one index k identifying the animal. However, with respect to the methods
that are to come, it is more useful to use indices i and j.

The following code accesses the data from our AED package, defines Sex as a
nominal variable, and converts the E. cervi count data into presence and absence.1

> library(AED); data(DeerEcervi)

> DeerEcervi$Ecervi.01 <- DeerEcervi$Ecervi

> DeerEcervi$Ecervi.01[DeerEcervi$Ecervi >0 ] <- 1

> DeerEcervi$fSex <- factor(DeerEcervi$Sex)

> DeerEcervi$CLength <- DeerEcervi$Length -

mean(DeerEcervi$Length)

Note that we centred length. If you do not centre the length, the intercept rep-
resents the probability that a deer of length 0 has the parasite. This of course is
nonsense as there cannot be any deer of length 0. By centring length, the intercept
has the more meaningful interpretation of the probability that an animal of average
length has the parasite. The code below applies a GLM on the selected data, drops
each allowable term in turn, from the model, and applies a likelihood ratio test that
is Chi-square distributed. Note that because the interaction between length and sex
is included, we cannot drop the main terms Length and Sex.

< DE.glm<-glm(Ecervi.01 ∼ Length * fSex,

data = DeerEcervi, family = binomial)

> drop1 (DE.glm, test = "Chi")

Single term deletions. Model: Ecervi.01 ∼ CLength*fSex

Df Deviance AIC LRT Pr(Chi)

<none> 1003.7 1011.7

CLength:fSex 1 1008.1 1014.1 4.4 0.036

> summary(DE.glm)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.652409 0.109602 5.953 2.64e-09

CLength 0.025112 0.005576 4.504 6.68e-06

1The motivation for this is purely pedagogical; we want to present three GEE examples, one of
which is a binomial GEE.
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fSex2 0.163873 0.174235 0.941 0.3469

CLength:fSex2 0.020109 0.009722 2.068 0.0386

Dispersion parameter for binomial family taken to be 1

Null deviance: 1073.1 on 825 degrees of freedom

Residual deviance: 1003.7 on 822 degrees of freedom

AIC: 1011.7

The output from a drop1 function was discussed in Chapter 10. Recall that
it compares the deviance of the specified model with that of nested models. The
difference between these two deviances is Chi-square distributed. The Length–Sex
interaction term is significant at the 5% level. We will return to the numerical output
once the GEE has been discussed.

The problem with this analysis is that the data were obtained from 24 farms. This
means that we are sampling deer that may have been in contact with each other, and
we can therefore not assume that the presence or absence of parasites on deer from
the same farm are independent.

12.2 Specifying the GEE

12.2.1 Introduction

The GLMs presented in the previous section are potentially flawed because the data
are longitudinal (California birds) or we have repeated measurements from the same
nest (owls) or farm (deer). Hence, the assumption of independence is invalid. We
could just ignore the potential existence of dependence and present the analyses of
the data obtained by GLM, but this will tend to increase the risk of a Type I error,
particularly where within-subject (auto-) correlation is strong.

In Chapters 8, 9, and 10, we have seen how GLM gives us a framework for
analysing response data whose inherent stochasticity can be modelled with any one
of a number of probability distributions belonging to the exponential family, i.e. can
be expressed in the form

exp

{
Y × θ − b(θ )

a(φ)
− c(Y, φ)

}

where Y is the response variable. Additionally, in Chapters 5, 6, and 7, we looked
at ways to model within-subject correlation, and incorporate it into the analysis
through, for example, mixed modelling. Liang and Zeger (1986) set out to establish
an algorithm that combined these two methodologies.

The modelling of correlation structures is relatively easily managed with nor-
mally distributed response data. Although the mathematics appear involved to
the non-technical reader, the mechanics of optimisation are computationally triv-
ial, particularly with powerful modern computers. However, the complications
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multiply when we are modelling auto-correlation where the data are clearly non-
normal and cannot be transformed.

Although this normally means binary (presence/absence), proportional, and
count data, the same general arguments can be applied to any response that can
be modelled using GLMs, e.g. overdispersed count data using a negative binomial
type variance structure. We specifically write ‘negative binomial type’ as we are not
going to make any distributional assumptions in the GEE.

Although not yet discussed, we can use generalised linear mixed modelling
(Chapter 13) to account for within-subject ‘compound-symmetry’ type correla-
tion. This is the simplest mixed model structure where all we saying is that
all observations from a given source (subject) are correlated. No allowance
can be made within this procedure for correlation patterns between the obser-
vations from the same source, e.g. temporal auto-correlation. One important
philosophical and methodological difference from (generalised linear) mixed mod-
elling is that GEEs do not estimate the distributional properties of the subjects
themselves. In a mixed model setting, if there are a sufficient number of sub-
jects (or fields, nest, trawls, etc.), we can estimate the variance of the distri-
bution that their effects are drawn from. This is usually taken to be a Normal
distribution.

We now specify a GEE, and broadly follow Chapter 11 in Fitzmaurice et al.
(2004). GEE models are also called ‘marginal’ models, but this is slightly con-
fusing. In previous chapters, we used the word ‘marginal’ in the context of con-
ditional models (i.e. conditional on a random effect). Here, it means that the
model for the mean response only depends on covariates and not on random
effects.

12.2.2 Step 1 of the GEE: Systematic Component
and Link Function

Suppose we have a response variable Yis and one explanatory variable Xis. Yis can be
the number of birds in field i at time s, the number of sibling calls in nest i at time
s, or the presence or absence of the parasite E. cervi in deer j sampled at farm i. The
systematic part in all these models is given by

η = α + β1 × Xis

It is also possible to have more explanatory variables. The relationship between
the conditional mean and the systematic component has the same structure as in
GLM models. Hence, for count data we use

E(Yis) = eη = eα+β1×Xis

and for the 0−1 data
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E(Yis) = eα+β1×Xis

1 + eα+β1×Xis

The word conditional is with respect to the explanatory variables (we pretend we
know what they are). We should, therefore, write the first part of the equation as
E(Yis|Xis). This reads as follows: The expected value of Yis for given Xis. A more
general notation for the relationship between the conditional mean and the explana-
tory variables for the count data is

E(Yis|Xis) = μis and g(μis) = α + β1 × Xis

12.2.3 Step 2 of the GEE: The Variance

For count data, the easiest conditional variance structure of Yis is given by

var(Yis|Xis) = μis

Obviously, we can also opt for a negative binomial type variance structure
(Chapter 11), but for the moment we will keep it simple. The notation for a more
general model is: var(Yis | Xis) = φ × v(μis), where v() is the variance function, and
φ is the scale parameter (overdispersion), which we need to estimate or simply set
to 1. Choosing φ = 1 and v(μis) = μis gives a identical variance structure to the
one used in Poisson GLM. For the absence–presence deer data, we can choose a
binomial variance structure (Chapter 10).

You may wonder why we do not just assume that count data Yis is Poisson dis-
tributed with mean μis, or for 0–1 data a binomial distribution? After all, these give
the same mean and variance relationships as specified above. The reason is because
we can do the GEE without having to specify a distribution. Furthermore, in the next
step, we have to specify a correlation structure between the observations. Assuming
that Yis is Poisson or binomial distributed makes this step awkward, we will explain
below why.

Basically, all we have done so far is follow the quasi-GLM route by specifying
the relationship between the mean and the explanatory variables and the variance
structure. The next step specifies the association between the observations. Note we
carefully wrote ‘association’ and not correlation.

12.2.4 Step 3 of the GEE: The Association Structure

Now we have to specify an association structure between Yis and Yit, where s and t
are two different sampling days on the same field i, two observations from the same
nest, or two deer from the same farm. There are many ways of doing this, and the
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type of data (e.g. continuous, binary or counts) also affects how the association is
defined.

Option 1: The Unstructured Correlation

For continuous data, the obvious tool to define association between the two obser-
vations Yis and Yik is the Pearson correlation coefficient. Just as in Chapter 6, we
have various options to parameterise the correlation. The most flexible choice is the
so-called unstructured correlation, which is given by

cor(Yis, Yit) = αst

This correlation structure can be easily understood if we imagine temporally
sequential observations coming from the same source, for example, a blood pres-
sure reading taken from the same patient/animal at regular (e.g. hourly) intervals.
The correlation matrix can be expressed thus:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α12 α13 α14 0 0 0 0 · · · · · · · · · · · · 0
α12 1 α23 α24 0 0 0 0 · · · · · · · · · · · · 0
α13 α23 1 α34 0 0 0 0 · · · · · · · · · · · · 0
α14 α24 α34 1 0 0 0 0 · · · · · · · · · · · · 0
0 0 0 0 1 α12 α13 α14 0
0 0 0 0 α12 1 α23 α24 0
0 0 0 0 α13 α23 1 α34 0
0 0 0 0 α14 α24 α34 1 0
...

...
...

...
. . .

...
...

...
...

... 1 α12 α13 α14
...

...
...

... α12 1 α23 α24
...

...
...

... α13 α23 1 α34

0 0 0 0 0 0 0 0 · · · α14 α24 α34 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The upper left 4 × 4 block is the correlation matrix for the first patient, the second
block for the second patient, etc. In each block, αst is the correlation between obser-
vations s and t. We use the different blocks to estimate these parameters. No corre-
lation between the parameters α12, α13, α14, α23, α24, and α342 is assumed, and they
are estimated completely independently. Note that this is based on 4 observations per
subject. The number of independent parameters to be estimated rapidly increases as
the number of within-subject observations increases with all the attendant problems
related to matrix inversion.

This is the most general correlation model and perhaps the least intuitively
appealing. Essentially, all correlations between within-subject observations are
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estimated independently; thus a lot more parameters need to be estimated. Because
of this complexity, the GEE algorithm can break down because the correlation
matrix cannot be inverted. However, it can be a useful approach if no obvious cor-
relation structure suggests itself and can be a useful exploratory step to help arrive
at a final choice of correlation structure.

Let us discuss the applicability of the unstructured correlation for the response
variables in the California bird data set, owl data set, and deer data set. For
the moment, we ignore that these response variables are not continuous. For the
California bird data, each block of correlation in the matrix above is for a field; for
the owl data each block is a nest; and for the deer data, each block is a farm. For
the deer data, it does not make sense to use the unstructured correlation because
there is no relationship between animals 1 and 2 at farm 1, and animals 1 and 2 at
farm 2. For the California bird data, it may be an option to use this correlation
structure as observations 1 and 2 in field 1, and observations 1 and 2 in field 2
both tells us something about the temporal relationship at the start of the experi-
ment. On the down side, 10 temporal observations per field mean that we have to
estimate 10 × 9/2 = 45 correlation parameters, which is a lot! The unstructured
correlation may be an option for these data if you have hundreds of fields, but
not with only 12 fields. For the owl data, it is a bit more complicated. If we just
analyse the number of calls sampled at the nests without a time order, then the set
up of the data is similar to that of the deer data. Hence, in this case, we cannot
use the unstructured correlation. But we also know the arrival time of the parents
at the nest, which unfortunately, is irregularly spaced. However, in Chapter 6, we
argued that based on biology, we could assume that owl parents chose the arrival
time, and therefore, from their point of view, the data are regularly spaced. Hence,
if we use the unstructured correlation, then α12 represents the correlation between
arrivals 1 and 2, α13 the correlation between arrivals 1 and 3, etc. This would make
sense, but unfortunately, this approach requires an enormous amount of correla-
tion parameters as some nests contain more than 50 observations. Hence, it is not
practical.

Option 2: AR-1 Correlation

Another option for continuous data is to say that the correlation between two obser-
vations from the same patient, field, nest, or farm i is

cor(Yis, Yit) = α|s−t |

This type of auto-regressive correlation structure was also used in Chapter 6
(using the corAR1 function). Autoregressive correlation is observed when corre-
lation between within-subject observations can be modelled directly as a function
of the ‘distance’ between the observations in question. Using the same example as
above, the following correlation matrix is used.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 α3 0 0 0 0 · · · · · · · · · · · · 0
α 1 α α2 0 0 0 0 · · · · · · · · · · · · 0
α2 α 1 α 0 0 0 0 · · · · · · · · · · · · 0
α3 α2 α 1 0 0 0 0 · · · · · · · · · · · · 0
0 0 0 0 1 α α2 α3 0
0 0 0 0 α 1 α α2 0
0 0 0 0 α2 α 1 α 0
0 0 0 0 α3 α2 α 1 · · · · · · · · · · · · 0
...

...
...

...
. . .

...
...

...
...

... 1 α α2 α3

...
...

...
... α 1 α α2

...
...

...
... α2 α 1 α

0 0 0 0 0 0 0 0 · · · α3 α2 α 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Again, each block refers to the same patient, field, nest or farm. The above cor-
relation matrix assumes regular distances (or time interval) between observations.
The parameterisation is rather more involved where the distances are uneven. The
advantage of this correlation structure is that only one correlation parameter needs
estimated, i.e. α.

For the California birds, it is a good option; the correlation between observations
separated by one time unit (2 weeks) is likely to be more similar than those separated
by larger time units. For the deer that, it would not make any sense as there is no
time order in the sampled animals per farm. For the owl data, it only makes sense if
we consider the time order in the data.

The AR-1 correlation can be used for any data set in which there is a time order,
although instead of time, depth or age gradients can also be used. This means that it
can be used for the California bird data and for the owl data (using the arrival time).
There are several books and papers that discuss how to use GEE for spatial data; see
for example Diggle and Ribeiro (2007) and especially Pebesma et al. (2000).

Option 3: Exchangeable Correlation

This is the most easily understood and most easily estimated form of within-subject
correlation. The correlation between two observations from the same field i is
assumed to be

cor(Yis, Yit) = α

If, for example, we take body weights of a batch of roe deer (say 4) from 5 differ-
ent sites across the country, it is probably sufficient to just say that bodyweights from
a given site are correlated. We do not need to consider temporal or sequential corre-
lation (we ignore here the potential issue of within-site spatial correlation which is



308 12 Generalised Estimation Equations

deliberately vague in this example). But it is reasonable to expect that bodyweights
from a given site will be more similar, on average, than those from other sites (avail-
ability of resources, genetic similarity, etc). It can be imagined that the correlation
between bodyweights Yij, where i denotes the area and j the animal within the area,
may take the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α α 0 0 0 0 · · · · · · · · · · · · 0
α 1 α α 0 0 0 0 · · · · · · · · · · · · 0
α α 1 α 0 0 0 0 · · · · · · · · · · · · 0
α α α 1 0 0 0 0 · · · · · · · · · · · · 0
0 0 0 0 1 α α α 0
0 0 0 0 α 1 α α 0
0 0 0 0 α α 1 α 0
0 0 0 0 α α α 1 0
...

...
...

...
. . .

...
...

...
...

... 1 α α α
...

...
...

... α 1 α α
...

...
...

... α α 1 α

0 0 0 0 0 0 0 0 · · · α α α 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So we now have a new term α which expresses the correlation between body-
weights from animals in the same area. In the context of GEE, this is referred to as
exchangeable correlation, but in other settings, it is often referred to as ‘compound-
symmetry’. We have also seen this correlation structure in Chapters 5 and 6 with
the linear mixed effects model. There, we had the compound symmetry correlation
due to a random intercept, but saw a similar correlation structure in the time series
chapter. In the first case, the correlation is always positive; see also Pinheiro and
Bates (2000, pp. 227–228).

Option 4: Another Correlation Structure – Stationary Correlation

One interesting case is where within-subject correlation exists up to a given dis-
tance and then stops completely. Although this is not an obvious choice of correla-
tion structure, we may happen to know this is a good model in advance or it may
be indicated from an exploratory analysis of the correlation structure. If we imag-
ine again the situation of four consecutive blood readings taken, once per hour, as
in the hypothesised scenario for autoregressive correlation.Under a model where
correlation is autoregressive up to a time lag of 2 hours, but ceases thereafter, the
correlation matrix will take this general form
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 0 0 0 0 0 · · · · · · · · · · · · 0
α 1 α α2 0 0 0 0 · · · · · · · · · · · · 0
α2 α 1 α 0 0 0 0 · · · · · · · · · · · · 0
0 α2 α 1 0 0 0 0 · · · · · · · · · · · · 0
0 0 0 0 1 α α2 0 0
0 0 0 0 α 1 α α2 0
0 0 0 0 α2 α 1 α 0
0 0 0 0 0 α2 α 1 0
...

...
...

...
. . .

...
...

...
...

... 1 α α2 0
...

...
...

... α 1 α α2

...
...

...
... α2 α 1 α

0 0 0 0 0 0 0 0 · · · 0 α2 α 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that unlike the other correlation structures described, we see cases of zero
correlation within-subject.

This gives a flavour of the various correlation structures available. There are sev-
eral others (e.g. non-stationary auto-correlation and ante-dependence), and you can
impose correlation estimates a priori if this information is known in advance.

The number of unknown parameters in the auto-regressive and compound sym-
metric correlation structures was only 1, but with the unstructured correlation we
have t × (t – 1)/2 parameters. This is potentially difficult to estimate, especially if
we have a relatively large number of observations over time; 10 longitudinal obser-
vations means we already need to estimate 45 association parameters!

12.3 Why All the Fuss?

We saw in Chapters 5, 6, and 7 how data from the same source (e.g. all readings
taken from the same beach) can be correlated and the implications this has for the
variance-covariance structure, which in turn informs the error associated with the
parameter estimates. In the simplest scenario, we can imagine a situation where
there is no within-subject correlation and the correlation matrix for the data Yij is
simply diagonal.

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 0
0 0 1 0
...

. . . 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎠
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Indeed, we no longer need to consider the problem in terms of Yij and i sub-
jects, rather just Yj with no subject index. This is the correlation structure adopted
implicitly in GLM.

In Chapters 9 and 10, we discussed the mathematical background of GLMs.
Recall that we started with a distribution, specified a likelihood function L, and then
found the parameters that maximised the likelihood function. The matrix of stan-
dard errors is essential as the basis of statistical inference, and typically, this is esti-
mated as the inverse of the matrix of second derivatives of the GLM log-likelihood
L such that:

VH (β̂) = {(− ∂2L

∂βu∂βν

)} −1
p×p

A different approach, which is asymptotically equivalent, (i.e. tends towards an
equivalent solution with increasing sample size) is based on the expectation of the
second derivative which comes from the result

E

(
∂2L

∂βu∂βν

)
= − ∂L

∂βu
× ∂L

∂βν

This second approach based on the expectation of the second derivatives is usu-
ally referred to as Fisher scoring. Although these two approaches will tend towards
the same solution, discrepancies can occur, particularly where the sample size is
small. Statistical tests are then based on the recognised t-test formulation, i.e.

β̂

s.e.(β̂)

The standard errors are taken from the diagonal elements of the VH or the Fisher
information matrix. The problem with this approach is that the underlying statistical
theory assumes that the observations are independent. And this is where GEE pro-
vides a solution to cases where we might be violating the independence assumption.

Basically, GEE uses the same equations as generalised least squares (GLS) and
GLM, but instead of using a diagonal matrix for the covariance matrix (implying
independence), we replace it by an association matrix, as defined in the previous
section. If you are not familiar with the regression, GLS and GLM maths, you can
skip a couple of paragraphs, as it is not essential for using GEE. We stress that
we only present the principle; the reader interested in full mathematical details is
advised to read Liang and Zeger (1986).

12.3.1 A Bit of Maths

In linear regression, the following criteria (which is the residual sum of squares) is
minimised to find the optimal regression parameters.
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∑N

i=1
(Yi − Xi × β)′ × (Yi − Xi × β)

In the context of the California bird data, i is the index for fields, N = 11, Yi con-
tains all the longitudinal data from field i, and Xi denotes the associated explanatory
variables. The regression parameters in β are obtained by minimising this expres-
sion by taking derivates with respect to β, setting them to 0, and solving the resulting
equations. In GLS, we use a similar optimisation criterion, namely,

∑N

i=1
(Yi − Xi × β)′ × Σ−1

i × (Yi − Xi × β)

The matrix Σi is a covariance matrix which can either have different diagonal
elements (to model heterogeneity) or non-zero off-diagonal elements to allow for
temporal or spatial correlation. In Chapters 5, 6, and 7, we used Σi to describe the
within-field correlation structure. Taking derivatives of this optimisation criterion
with respect to β and setting them to 0 give

∑N

i=1
Xi × Σ−1

i × (Yi − Xi × β) = 0

It is also common notation to replace Xiβ by μi. For a GEE, we follow the same
procedure, and the starting point is again

∑N

i=1
(Yi − μi ) ×′ Σ−1

i × (Yi − μi )

Again, the optimal regression parameter are obtained by taking derivatives and
solving the generalised estimation equations

∑N

i=1
Di × Σ−1

i × (Yi − μi ) = 0 (12.1)

The matrix Di contains first-order derivatives of the μi with respect to the regres-
sion parameters. Σi is the covariance matrix, and it can be written as

Σi = A
1
2
i × cor(Yi ) × A

1
2
i

This looks complicated, but the matrices Ai are diagonal matrices containing
the variances. So, basically this is just matrix notation for the definition of the
covariance: Correlation multiplied with the square root of the variances. Again, in
ordinary GLMs, both Σi and cor(Yi) are diagonal matrices, because we assume
independence.

The problem is that in reality we have to estimate the covariance matrix Σi, and
this can be quite expensive in terms of numbers of parameters. GEE applies a clever
trick by replacing the inner part, cor(Yi), by an estimate correlation matrix R(α) so
that we get
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Vi = φ × A
1
2
i × Ri (α) × A

1
2
i

The φ allows for extra variation such as in a quasi-Poison model. The Vi is an
estimate of Σi. The better you choose the correlation structure, the closer the esti-
mated covariance matrix Vi (also called the working covariance matrix) is to the real
covariance matrix. This means that we have to determine what form R(α) takes,
or more precisely, to choose a correlation structure that closely describes what is
observed in the response data. This can be any of the correlation structures discussed
in the previous section.

But we have still not answered the question in the title of this section. Well, here
it comes. We want to estimate the values of the βs and their confidence intervals and
then apply statistical tests. To estimate the βs, an iterative algorithm is applied that
consists of the following steps:

1. For given φ and α (and therefore Vi), obtain an estimate for the regression param-
eters.

2. Given the regression parameters, update φ and α (and therefore Vi). Pearson
residuals are used for this.

3. Iterate between steps 1 and 2 until convergence.

At convergence, the estimated regression parameters are consistent2 and asymp-
totically normally distributed with mean β and covariance matrix: B–1×M×B–1,
where

B =
∑N

i=1
Di × Σ−1

i × Di

M =
∑N

i=1
Di × Σ−1

i × cov(Yi ) × Σ−1
i × Di

This statement also holds true, even if your specification of the correlation struc-
ture is not correct. We used the same notation as Fitzmaurice et al. (2004). And
once we have calculated the covariance matrix, we can use its diagonal elements to
obtain standard errors and confidence intervals. Hence, the last thing we have to do
is explain how to get the B and M. This is a matter of replacing Σi by its estimate Vi

and cov(Yi) by the covariance matrix (Yi − μi) × (Yi − μi)′. Your chosen correla-
tion R(α) structure is then used in the covariance term in the inner part of the matrix
M, resulting in the so-called sandwich estimator. GEE is robust against misspecifi-
cation of the correlation structure (it still provides valid standard errors). This does
not mean you do not have to bother about choosing a good correlation structure; the
better your choice, the better the standard errors. And, it is only a characteristic of
large sample sizes.

2Consistent means that estimated parameters are nearly equal to the population parameters.
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All the complications involved in choosing the within-subject correlation struc-
ture are essentially a means to an end. Usually we are interested in the significance
of covariates or so-called fixed effects. In a sense, the correlation structure can be
seen as an inconvenience that needs to be accounted for before making meaningful
inferences about the parameters we are primarily interested in.

In summary, to answer the title of this section, GEE incorporates a correlation
structure on the data from the same field, and as a result, we obtain consistent
estimators.

In the second step of the two-step algorithm described above, for given regression
parameters update φ, α, and Vi, things are more complicated. Depending on the
type of correlation structure you use, e.g. AR1, unstructured or exchangeable, the
software will use different expressions for these two parameters.

12.4 Association for Binary Data

We can easily extend the idea above to deal with similar count data problems such
as, for example, the number of ticks found on the same deer measured for body-
weight. Alternatively, in Chapter 22, we use a case study where the response variable
is the presence or absence of badger activity at farms: A binary variable. The same
holds for the deer data. Various statistical textbooks contain phrases like: ‘the corre-
lation is modelled at the level of the linear predictor rather than at the scale of the raw
data’. The underlying idea is that for binary data, the correlation coefficient is not
the most natural tool to define association. Using some basic definitions like P(A and
B) = P(B) × P(A | B), the definition of the expectation of discrete random variable,
the mean and variance of a binary variable, and the definition of the correlation and
covariance, we can easily show that the correlation between two binary variables
with means μ1 and μ2 (μ1 ≥ μ2) is smaller than

√
(μ2 − μ1μ2) / (μ1 − μ1μ2).

If, for example, E(Y1) = μ1 = 0.7 and E(Y2) = μ2 = 0.3, then the correlation
between Y1 and Y2 is smaller than 0.49. To overcome this, Fitzmaurice et al. (2004)
used odds ratios to define the (unstructured) association as log(OR(Yis,Yik)) = αsk,
where

OR (Yis, Yik) = Pr(Yis = 1 and Yik = 1) × Pr(Yis = 0 and Yik = 0)

P(Yis = 1 and Yik = 0) × P(Yis = 0 and Yik = 1)

However, this association parameterisation is not available in the main GEE
packages in R (it is in SAS), but you could program it yourself using the option
for the user specified correlation structure in the GEE functions. In the GEE func-
tions, we use in R in the next section, and in Chapter 22, we specify a correlation
structure at the level of the raw data.
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12.5 Examples of GEE

12.5.1 A GEE for the California Birds

In this section we revisit the California bird data, and apply GEE. The first two steps
of GEE were presented in Section 12.1, but are repeated here. In the first step, we
specify the relationship between the mean μis and the covariates:

E(Yis) = μis = eα+β1×Depthis+β2×Depth2
is+β3×Sptreatis

In the second step, we specify the variance of the observed data:

Var(Yis) = φ × μis

Hence, we use v(μis) = φμis, which is in line with the characteristics of a (quasi-)
Poisson GLM, but keep in mind we do not specify any distribution here. In the third
step, we need to specify a correlation structure. One option is to use biological
knowledge and argue that the number of birds in a field i at time s depends on
those measured at time s – 1, and also, although less strong, on s – 2, etc., in the
same field. Accepting this approach suggests using an auto-regressive correlation
structure. We could also make an auto-correlation function for the data of each field,
and investigate whether there is a significant auto-correlation. And if this shows no
correlation, then we can apply a GLM.

The alternative option of a compound correlation is unlikely to be appropriate
here. Why would bird numbers separated by 2 weeks (1 sampling unit) have the
same correlation as those separated by 20 weeks (10 sampling units)?

There are various packages for GEE in R, but we only use the geeglm function
from the geepack package in this book. The gee function from the gee pack-
age is also useful and so is the package yags. These packages are not part of the
base installation of R; so you will need to download and install them. We use the
geepack package as it is slightly more advanced than the others, e.g. it allows for
a Wald test via the anova command.

The following code loads the geepack package (assuming it has been down-
loaded and installed) and applies the GEE (you also need to run the code from
Section 12.1 for the data preparation).

> library(geepack)

> M.gee1 <- geeglm(Richness ∼ offset(LA) + DEPTH +

DEPTH2 + fSptreat, data = RFBirds,

family = poisson, id = fField, corstr = "ar1")

> summary(M.gee1)

Note that this function wants us to specify a distribution with the family option,
even though we are not assuming any distribution directly.



12.5 Examples of GEE 315

The grouping structure is given by the id option; this specifies which bird obser-
vations form a block of data. The corstr option specifies the type of correlation.
This correlation is applied on each block of data. We argued above that the AR-1
auto-correlation structure should be used; hence corstr = "ar1". Alternatives
are unstructured (multiple αs), exchangeable (one α), independence
(this gives the same results as the ordinary GLM), and userdefined (for the
braves; you can program your own correlation structure). Our data does not contain
missing values and were sorted along time within a field. If this is not the case, you
need to use the waves option; see also the geeglm help file. This option ensures
that R does not mess up the order of the observations. The summary command
gives the following output.

Coefficients:

Estimate Std.err Wald p(>W)

(Intercept) -0.678203399 0.3337043786 4.130438 0.04211845

fSptreatrlfld -0.522313667 0.2450125672 4.544499 0.03302468

DEPTH 0.049823774 0.0287951864 2.993874 0.08358002

DEPTH2 -0.001141096 0.0008060641 2.004033 0.15688129

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 2.333533 0.3069735

Correlation: Structure = ar1 Link = identity

Estimated Correlation Parameters:

Estimate Std.err

alpha 0.4215071 0.1133636

Number of clusters: 11 Maximum cluster size: 10

The correlation between two sequential observations in the same field is 0.42;
if the time lag is two units (4 weeks), the correlation is 0.4212 = 0.177, between
observations separated by three units (6 weeks), it is 0.4213 = 0.075, etc. The scale
parameter is 2.333, which is similar to the over-dispersion parameter of the quasi-
Poisson model applied on the same data in Section 12.1. There is a weak but sig-
nificant treatment effect of the straw. Hence, the following model was fitted on the
bird data.

E[Yis] = μis = e−0.678+0.049×Depthis−0.001×Depth2
is−0.522×Sptreatis

var(Yis) = 2.333 × μis

cor(Yis, Yit) = 0.421|s−t |

This relationship is not conditional on random effects, only on the explanatory
variables. For this reason, it is called a marginal model. Hardin and Hilbe (2002)
called it the population average GEE, abbreviated as PA-GEE.
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Note that in the GLM in Section 12.1 both the straw management variable and
the depth variables are significant. In the GEE, which takes into account temporal
correlation, only the straw management variable is significant!

The nice thing of the geepack package is that it allows for a Wald test, which
can be used to test the significance of nominal variables with more than two levels.
This is not the case here, but for illustrative purposes, we show how it can be used to
decide whether we need any of the depth terms. The code below fits a GEE without
any of the depth terms and applies a Wald test using the anova command. The
output suggests that we only need fSptreat.

> M.gee2 <- geeglm(Richness ∼ offset(LA) + fSptreat,

data = RFBirds, family = poisson, id = FIELD,

corstr = "ar1")

> anova(M.gee1, M.gee2)

Analysis of 'Wald statistic' Table

Model 1 Richness ∼ offset(LA) + DEPTH + DEPTH2 + fSptreat

Model 2 Richness ∼ offset(LA) + fSptreat

Df X2 P(>|Chi|)

1 2 3.9350 0.1398

12.5.2 A GEE for the Owls

So, what is an appropriate correlation structure for the owl data? We could use the
compound correlation structure, which is called ‘exchangeable’ within the context
of the GEE. This assumes that all observations from the nest are correlation with the
value of α. Code to do this is given by

> library(geepack)

> Form <- formula(NCalls ∼ offset(LBroodSize) +

SexParent * FoodTreatment +

SexParent * ArrivalTime)

> O4 <- geeglm(Form, data = Owls, family = poisson,

id = Nest, corstr = "exchangeable")

The results of the summary (O4) command are not given here, but show that the
estimated value of α is 0.058, which is rather small.

In Chapters 5 and 6, we analysed the average sibling negotiation. Recall that
we have multiple observations from the same nest, but that these were obtained
during two nights. The food treatment was swapped during the second night. In
Chapter 5, the compound correlation was imposed by using nest as a random inter-
cept. In Chapter 6, we continued the analysis by arguing that there may be auto-
regressive correlation between the observations made in the same night from the
same nest. The only thing is arrival times of the birds are not regularly spaced in
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time, but we argued that from the owls’ point of view, time may be regularly spaced
(this was a biological assumption). We can do the same here, except that we use the
number of calls.

The problem is that the data file does not contain a column that identifies the
group of observations from the same night and nest; hence we have to make it.

> N <- length(Owls$Nest)
> NLev <- c(paste(unique(Owls$Nest), ".Dep", sep = ""),

paste(unique(Owls$Nest), ".Sat", sep = ""))
> Owls$NestNight <- factor(levels = NLev)
> for (i in 1:N){

if (Owls$FoodTreatment[i] == "Deprived") {
Owls$NestNight[i] <-

paste(Owls$Nest[i], ".Dep", sep = "")}
if (Owls$FoodTreatment[i] == "Satiated") {

Owls$NestNight[i] <-
paste(Owls$Nest[i], ".Sat", sep = "")}}

This is a bit of tedious programming, and instead of explaining it in detail, let us
show the results of the code:

> Owls[1 : 10, c(1, 2, 4, 10)]

Nest FoodTreatment ArrivalTime NestNight

1 AutavauxTV Deprived 22.25 AutavauxTV.Dep

2 AutavauxTV Satiated 22.38 AutavauxTV.Sat

3 AutavauxTV Deprived 22.53 AutavauxTV.Dep

4 AutavauxTV Deprived 22.56 AutavauxTV.Dep

5 AutavauxTV Deprived 22.61 AutavauxTV.Dep

6 AutavauxTV Deprived 22.65 AutavauxTV.Dep

7 AutavauxTV Deprived 22.76 AutavauxTV.Dep

8 AutavauxTV Satiated 22.90 AutavauxTV.Sat

9 AutavauxTV Deprived 22.98 AutavauxTV.Dep

10 AutavauxTV Satiated 23.07 AutavauxTV.Sat

The variable NestNight tells us which observations are from the same night
and same nest. The column ArrivalTime shows at what time an observation was
made, but as we already discussed, we will consider the arrivals as regularly spaced
in time. So, the for loop with the if statement was only used to make the variable
NestNight. You could also have done this in Excel. As always in R, things can
be done in multiple ways. Here is an alternative piece of R code to obtain exactly
the same NestNight.

> Owls$NestNight <- factor(

ifelse(Owls$FoodTreatment == "Deprived",

paste(Owls$Nest, ".Dep", sep=""),
paste(Owls$Nest, ".Sat", sep="")))
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The ifelse executes the first paste command if an observation is food deprived,
and as the name already suggests, the second paste command otherwise. No need
for a loop. Elegant, but it takes a bit more time to see what it does.

Applying the GEE is now simple:

> O3 <- geeglm(Form, data = Owls, family = poisson,

id = NestNight, corstr = "ar1")

To figure out whether we need the two two-way interactions, we can drop each
of them in turn, apply the Wald test, and remove the least significant variable:

> O3.A <- geeglm(NCalls ∼ off-set(LBroodSize) +
SexParent + FoodTreatment +
SexParent * ArrivalTime, data = Owls,
family = poisson, id = NestNight, corstr = "ar1")

> O3.B <- geeglm(NCalls ∼ off-set(LBroodSize) +
SexParent * FoodTreatment +
SexParent + ArrivalTime, data = Owls,
family = poisson, id = NestNight, corstr = "ar1")

> anova(O3, O3.A)

Analysis of 'Wald statistic' Table
Model 1 NCalls ∼ offset(LBroodSize) + SexParent * Food-Treatment +

SexParent * ArrivalTime
Model 2 NCalls ∼ offset(LBroodSize) + SexParent + FoodTreatment +

SexParent * ArrivalTime
Df X2 P(>|Chi|)

1 1 0.23867 0.62517

> anova(O3, O3.B)

Analysis of 'Wald statistic' Table
Model 1 NCalls ∼ offset(LBroodSize) + SexParent * Food-Treatment +

SexParent * ArrivalTime
Model 2 NCalls ∼ offset(LBroodSize) + SexParent * Food-Treatment +

SexParent + ArrivalTime
Df X2 P(>|Chi|)

1 1 0.40269 0.52570

The sex of the parent and food treatment interaction is the least significant
term and was dropped. This process can then be repeated a couple of times
until all terms in the model are significant. The final model and its output are
given by:

> O6 <- geeglm(NCalls ∼ off-set(LBroodSize) +
FoodTreatment + ArrivalTime, data = Owls,
family = poisson, id = NestNight, corstr = "ar1")

> summary(O6)

Call:
geeglm(formula = NCalls ∼ offset(LBroodSize) + FoodTreatment +

ArrivalTime, family = poisson, data = Owls, id = NestNight,
corstr = "ar1")
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Coefficients:
Estimate Std.err Wald p(>W)

(Intercept) 3.5927875 0.67421928 28.39623 9.885749e-08
FoodTreatmentSatiated -0.5780999 0.11507976 25.23527 5.074576e-07
ArrivalTime -0.1217358 0.02725415 19.95133 7.943886e-06

Estimated Scale Parameters:
Estimate Std.err

(Intercept) 6.639577 0.5234689
Correlation: Structure = ar1 Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.5167197 0.06830255
Number of clusters: 277 Maximum cluster size: 18

The correlation of the calls between two sequential arrivals is 0.51, which is
relatively high. The overdispersion is 6.6, which is similar to that of the quasi-
Poisson GLM. The estimated regression parameters are similar to those of the
quasi-Poisson GLM, but the p-values are considerably larger (at least for the slopes).
However, the biological conclusions are the same; there is a food treatment effect
(lower number of calls from food satiated observations) and later the night, the less
calls. The final GEE is given by

E(NCallsis) = μis and var(NCallsis) = 6.6 × μis

cor(NCallsis, NCallsit) = 0.51|t−s|

12.5.3 A GEE for the Deer Data

The required correlation structure for the deer data is obvious; it has to be the com-
pound correlation, alias the exchangeable correlation because there is no specific
(e.g. time) order between the observations from the same farm. The code and numer-
ical output to fit this model is as follows. The exchangeable correlation is selected
using the corstr = "exchangeable" bit, and id = Farm tells the geeglm
function which observations are from the same farm.

> library(geepack)
> DE.gee <- geeglm(Ecervi.01 ∼ CLength * fSex,

data = DeerEcervi,family = binomial,
id = Farm, corstr = "exchangeable")

> summary(DE.gee)

Call:
geeglm(formula = Ecervi.01 ∼ CLength * fSex, family = binomial,

data = DeerEcervi, id = Farm, corstr = "exchangeable")

Coefficients:
Estimate Std.err Wald p(> W)

(Intercept) 0.73338099 0.280987616 6.812162 9.053910e-03
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CLength 0.03016867 0.006983758 18.660962 1.561469e-05
fSex2 0.47624445 0.217822972 4.780271 2.878759e-02
CLength:fSex2 0.02728028 0.014510259 3.534658 6.009874e-02

Estimated Scale Parameters:
Estimate Std.err

(Intercept) 1.145337 0.4108975

Correlation: Structure = exchangeable Link = identity
Estimated Correlation Parameters:

Estimate Std.err
alpha 0.3304893 0.04672826
Number of clusters: 24 Maximum cluster size: 209

Note that a scale parameter is used. For a fair comparison with the binomial
GLM (which does not contain a dispersion parameter), you can use the option
scale.fix = TRUE in the geeglm command. Because the estimated disper-
sion parameter is only 1.14, we did not do this here. The correlation parameter
is 0.33, which is moderate. The two-way interaction term is not significant (p =
0.06) at the 5% level, where in the binomial GLM it was! Hence, by including the
compound correlation, the biological conclusions have changed! Perhaps we should
re-phrase the last sentence a little bit as it suggests that both models are valid. The
GLM without the correlation structure is potentially flawed as it ignores the corre-
lation structure in the data. Therefore, only the GEE should be used for biological
interpretation!

12.6 Concluding Remarks

GLS is a special case of GEE if we specify a Normal distribution and the iden-
tity link function. But we do not recommend running the GLS with GEE software
as most existing GEE functions in R are less flexible in the sense of allowing for
multiple variances φ for modelling heterogeneity.

For longitudinal data, GEE is useful if you have many fields or nest and rela-
tively few longitudinal observations per field or nest i. If it is the other way around,
standard errors produced by the sandwich estimator are less good.

Hardin and Hilbe (2002) used an AIC-type criterion to compare models with
different correlation structures. It is called quasilikelihood under the independence
model information criterion (QIC) after a paper from Pan (2001). A similar criterion
is also used for selection explanatory variables. The geeglm function does not
produce the QIC; hence, you have to program this yourself. The appendix in Hardin
and Hilbe (2002) gives Stata code for this. The R package yags does produce the
QIC. It is open code, which means that you can easily see how the programmer of
yags implemented it. The problem that you may encounter with the QIC is that not
every referee may have heard of it or agree with it.

We have not mentioned the word model validation yet. Hardin and Hilbe (2002)
dedicate a full chapter to this; they present a couple of tests to detect patterns in
residuals, and also graphical model validation tools. The graphical validation uses
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Pearson residuals and follows the model validation steps of GLM; see also Chapters
9 and 10. We strongly suggest that after reading this chapter, you consult Hardin
and Hilbe (2002). However, you have to either use Stata to follow their examples or
read over the Stata code and use any of the R packages to do the same.



Chapter 13
GLMM and GAMM

In Chapters 2 and 3, we reviewed linear regression and additive modelling
techniques. In Chapters 4–7, we showed how to extend these methods to allow for
heterogeneity, nested data, and temporal or spatial correlation structures. The result-
ing methods were called linear mixed modelling and additive mixed modelling (see
the left hand pathway of Fig. 13.1). In Chapter 9, we introduced generalised linear
modelling (GLM) and generalised additive modelling (GAM), and applied them to
absence–presence data, proportional data, and count data. We used the Bernoulli
and binomial distributions for 0–1 data (the 0 stands for absence and the 1 for pres-
ence), and proportional data (Y successes out of n independent trials), and we used
the Poisson distribution for count data. However, one of the underlying assumptions
of theses approaches (GLM and GAM) is that the data are independent, which is
not always the case. In this chapter, we take this into account and extend the GLM
and GAM models to allow for correlation between the observations, and nested
data structures. It should come as no surprise that these methods are called gener-
alised linear mixed modelling (GLMM) and generalised additive mixed modelling
(GAMM); see the right hand pathway of Fig. 13.1.

The good news is that these extensions follow similar steps we used in mixed
modelling. For example, the inclusion of a random intercept in a GLM is impos-
ing the compound symmetrical correlation structure, just as it did in the lin-
ear mixed model. In fact, just as the linear regression model is a GLM with a
Gaussian distribution, so is the linear mixed model a GLMM with a Gaussian
distribution.

When there is good news, there is often some bad news. And the bad news is
that GLMM and GAMM are on the frontier of statistical research. This means that
available documentation is rather technical, and there are only a few, if any, text-
books aimed at ecologists. There are multiple approaches for obtaining estimated
parameters, and there are at least four packages in R that can be used for GLMM.
Sometimes these give the same results, but sometimes they give different results.
Some of these methods produce a deviance and AIC; others do not. This makes the
model selection in GLMM more of an art than a science. The main message is that
when applying GLMM or GAMM, try to keep the models simple or you may get
numerical estimation problems.

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 13,
C© Springer Science+Business Media, LLC 2009
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Allow for:
 Nested data
 Temporal correlation
 Spatial correlation
 Heterogeneity
 Repeated measurements

Generalised  linear
modelling  & generalised

additive modelling

Linear regression &
additive modelling

Generalised linear mixed
modelling & generalised
additive mixed modelling

Mixed modelling &
additive mixed modelling

Fig. 13.1 Relationship
between linear regression,
additive modelling, mixed
modelling, additive
modelling, GLM, GAM,
GLMM, and GAMM. The
Generalised Estimation
Equations is an alternative
technique for the lower
right box

The literature that we consulted for writing this chapter were almost exclusively
written for medical, economical, and social science. We strongly recommend
Snijders and Bosker (1999), Raudenbush and Bryk (2002), Goldstein (2003),
Fitzmaurice et al. (2004), Brown and Prescott (2006), and for the GAMM
Rupert et al. (2003) and Wood (2006). With some effort, you should be able to
work your way through these books after reading this chapter. Luke (2004) is
reasonably non-technical and can be read as an introduction. If you have good
mathematical skills, we recommend McCulloch and Searle (2001) or Jiang (2007).
The good news is that publications using GLMM or GAMM are now appearing
more frequently in the ecological literature, e.g. Vicente et al. (2006) and Pierce
et al. (2007) among others.

13.1 Setting the Scene for Binomial GLMM

In Chapter 12, we used data from Vicente et al. (2005), who looked at the distribu-
tion and faecal shedding patterns of the first-stage larvae (L1) of Elaphostrongylus
cervi in red deer across Spain. In this chapter, we focus on the relationship between
the presence and absence of E. cervi L1 in deer and the explanatory variables length
and sex of the animal and farm identity. Because the response variable is of the form
0–1, we are immediately in the world of a binomial GLM. The following model is
applied on these data:

logit(pij) = α + β1 × Lengthij + β2 × Sexij + β3 × Lengthij × Sexij + β4 × Farmi
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The notation logit stands for the logistic link (Chapter 10), pij is the probability
that animal j on farm i has the parasite, Lengthij is the length of the deer, Sexij tells
us whether it is male or female, and Farmi identifies the farm. Because of the large
number of farms, we did not include an interaction term involving the variable farm.

The following code accesses the data, defines the nominal variables as nominal,
and centres length. In Chapter 12, we gave a justification for centring length.

> library(AED); data(DeerEcervi)

> DeerEcervi$Ecervi.01 <- DeerEcervi$Ecervi

> DeerEcervi$Ecervi.01[DeerEcervi$Ecervi>0] <-1

> DeerEcervi$fSex <- factor(DeerEcervi$Sex)

> DeerEcervi$CLength <- DeerEcervi$Length -

mean(DeerEcervi$Length)

> DeerEcervi$fFarm <- factor(DeerEcervi$Farm)

The code below applies a GLM on the data, drops each allowable term in turn
from the model, and applies a likelihood ratio test that is Chi-square distributed.
Note that because the interaction between length and sex is included, we cannot drop
the main terms CLength and fSex. The drop1 function compares the deviance
of the specified model with that of nested models. The difference between these
two deviances is Chi-square distributed. The GLM model includes a farm effect, a
length effect, a sex effect, and an interaction between length and sex.

> DE.glm<-glm(Ecervi.01 ∼ CLength * fSex+fFarm,

data = DeerEcervi, family = binomial)

> drop1(DE.glm, test = "Chi")

Single term deletions.

Model: Ecervi.01 ∼ CLength * fSex + fFarm

Df Deviance AIC LRT Pr(Chi)

<none> 745.50 799.50

fFarm 23 1003.72 1011.72 258.22 < 2.2e-16

CLength:fSex 1 755.48 807.48 9.98 0.001579

The first line shows the deviance for the model in which no term is dropped. Its
AIC is 799.50. By dropping the nominal variable farm from this model, the deviance
increases to 1011.72, a change of 258.22. The change in deviance for a binomial
GLM is Chi-square distributed with 23 degrees of freedom and has a p-value that
is smaller than 0.001, which means that the term is highly significant. By dropping
only the interaction term, the change in deviance is 9.98, which is also significant.

To obtain insight in what the model is doing, we want to visualise the predicted
values. Because the model contains a length effect, sex effect, farm effect, and an
interaction between length and sex, visualisation is not trivial. The easiest option is
to choose a particular farm and sex and then plot the predicted probabilities versus
length. We arbitrary decided to choose sex = 1 (female). The R code below first
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creates a graph in which the observed presence and absence values of the parasite
E. cervi L1 in deer are present. This is the plot command. The remaining code
predicts the probability of the presence of the parasite for a range of length values
at particular farms. This is done with a loop; each iteration represents a farm. The
order command is used to avoid spaghetti plots.

> plot(DeerEcervi$CLength, DeerEcervi$Ecervi.01,

xlab = "Length", ylab = "Probability of \
presence of E. cervi L1", main = "Male data")

> I1 <- order(DeerEcervi$CLength)

> AllFarms <- unique(DeerEcervi$Farm)

> for (j in AllFarms){
mydata <- data.frame(

CLength = DeerEcervi$CLength,

fSex = "1",

fFarm = AllFarms[j])

n <- dim(mydata)[1]

if (n > 10){
P.DE2 <- predict(DE.glm, mydata,

type = "response")

lines(mydata$CLength[I1], P.DE2[I1])}}

The predicted values for the female data are presented in Fig. 13.2. To create this
graph, we chose a particular farm and sex (see code above) and then calculated the
probabilities as a (logistic) function of different length values and the chosen farm
and sex. Doing this for different farms produces the multiple lines in the figure.
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Fig. 13.2 Predicted probabilities of parasitic infection along (centred) deer length for females at
all farms. Each line represents a farm
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It is easy to do the same for the male data, and the graph looks similar (and is not
presented here). Instead of using the for loop, it is also possible to do the prediction
for all data at once (not farm by farm) and use the function matlines to do the
plotting of individual curves; see its help file for examples.

The problem with this model is that the explanatory variable farm consumes
23 degrees of freedom and we are not even interested in knowing that there is a
farm effect. We cannot drop it neither as it is highly significant. It is also possible
that there is a length – farm interaction, costing another 23 parameters. The other
problem is how we predict from this model. We can choose a value for length in
Fig. 13.2, and then read of the probability for the presence of the parasite at a certain
farm. But we can only do this exercise for our 24 farms. The model does not allow
us to make a statement for farms in general.

This discussion should sound familiar to you, as it is identical to the discus-
sion we had with the beach effect for the RIKZ data in Chapter 5. There, we had
nine beaches, and on each beach, we had five observations. We replaced the nine
parameters from beach by one random intercept and called the model a random
intercept model. Now, we have 24 farms and multiple observations per farm. We
can do exactly the same in a GLM, and this is discussed in the next section.

13.2 GLMM and GAMM for Binomial and Poisson Data

In this section, we apply GLMM and GAMM on two data sets; these were also
used in Chapter 12. We start with the deer data we used above, followed by owl
data (counts).

13.2.1 Deer Data

In Section 13.1, we applied a GLM on the deer data. We encountered two problems:
The explanatory variable farm is using up a large number of degrees of freedom,
and we can only make predictions for the current set of farms. We now use the
same extension as we did for linear regression and random intercepts (Chapter 5)
and work towards the GLM equivalent of a mixed model. Instead of using farm as a
fixed effect with 24 levels, we use it as a random effect and the model becomes

Yij ∼ Bin(1, pij)

logit(pij) = α + β1 × Lengthij + β2 × Sexij + β3 × Lengthij × Sexij + ai

ai ∼ N (0, σ 2
a )

Yij is 1 if animal j on farm i has E. cervi L1 and 0 otherwise. The random inter-
cept ai is assumed to be normally distributed with mean 0 and variance σ a

2. If this
variance is small, then the contribution from ai is also rather small and all farms
will have a similar logistic curve. On the other hand, if σ a

2 is relatively large, then
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each farm will have very different intercepts. This approach reduces the number of
parameters considerably compared to using Farm as a fixed effect.

Using farm as a random intercept has another major advantage. Just as in linear
mixed modelling, a random intercept model is implicitly introducing the compound
symmetrical correlation structure. This implies that the probability of a deer carrying
the parasite is correlated to other deer on the same farm.

There are various functions in R that can be used for GLMM; the main ones are
glmmPQL from the MASS package, lmer from the lme4 package, and glmmML
from the glmmML package. Later in this section, we compare the output from all
these models, but first we concentrate on the glmmPQL method. The following R
code applies the GLMM model described above.

> library(MASS)

> DE.PQL <- glmmPQL(Ecervi.01 ∼ CLength * fSex,

random = ∼ 1 | fFarm, family = binomial,

data = DeerEcervi)

> summary(DE.PQL)

We used the object name DE.PQL because it reminds us of DEer and which
tool was used (PQL, which will be discussed later in this chapter). The function
glmmPQL is in the MASS package from Venables and Ripley (2002), and we first
need to load this package. The random effect is specified in a similar way as we did
for linear mixed models in Chapter 5. In fact, the only new code is the family =
binomial option. The probability of presence of the parasite is modelled as a
function of length, sex, and their interaction. The random effect farm is adding a ran-
dom term to the intercept. The results of the summary command are given below.

Linear mixed-effects model fit by maximum likelihood

Data: DeerEcervi

AIC BIC logLik

NA NA NA

Random effects:

Formula: ∼1 | fFarm

(Intercept) Residual

StdDev: 1.462108 0.9620576

Variance function:

Structure: fixed weights

Formula: ∼invwt

Fixed effects: Ecervi.01 ∼ CLength * fSex

Value Std.Error DF t-value p-value

(Intercept) 0.8883697 0.3373283 799 2.633547 0.0086

CLength 0.0378608 0.0065269 799 5.800768 0.0000

fSex2 0.6104570 0.2137293 799 2.856216 0.0044

CLength:fSex2 0.0350666 0.0108558 799 3.230228 0.0013
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Number of Observations: 826

Number of Groups: 24

The random intercept ai has a standard error of 1.462, and the residual standard
error is 0.962. The residual standard error is for the working residuals, which are
used internally and are less useful than, for example, Pearson residuals. The AIC
and BIC are not defined, and we explain later why not. The interaction term is
significant at the 5% level, and this means that we have to include the main terms as
well. We now discuss how to interpret this output. For a female deer (fSex = ‘1’),
the probability that a deer has the parasite E. cervi L1 is given by

logit(pij) = 0.888 + 0.037 × Lengthij + ai ai ∼ N (0, 1.4622)

The first level of the variable Sex is used as baseline; hence, the contribution from
the Sex and the interaction are 0. For a male deer (Sex = 2), the formula is given by

logit(pij) = 1.498 + 0.072 × Lengthij + ai ai ∼ N (0, 1.4622)

The value of 1.498 is obtained by adding the contribution from the main term
fSex to the intercept and 0.072 is the correction for the intercept for the male species
(= 0.037 + 0.035). Just as before, we will only visualise the results for the female
deer.

The random intercept ai is assumed to be normally distributed with mean 0 and
variance 1.4622. This means that the majority of the values (95% to be more exact)
of ai are between –1.96 × 1.462 and 1.96 × 1.462. Figure 13.3 shows three lines.
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Fig. 13.3 GLMM predicted probabilities of parasitic infection along (centred) deer length for
females at all farms. The thick line in the middle represents the predicted values for the ‘population
of farms’, and the other two lines are obtained by adding and subtracting 1.95 × 1.462 for the
random intercept to the predictor function. The space between these two curves shows the variation
between the predicted values per farm
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The thick line in the middle shows the estimated probabilities for a range of length
values for the female data. These are predicted probabilities for a typical farm.
Typical means that in this case ai = 0. The other two lines are obtained by adding
1.96 × 1.462 to the predictor function and subtracting 1.96 × 1.462 from the pre-
dictor function. Hence, 95% of the farms have logistic curves between these two
extremes. The interpretation of the graph is as follows. Go to a typical farm and
sample a deer of average length (Length = 0). It has a probability of approximately
0.7 of having the parasite (this value is taken from the curve for the population).
However, depending on which particular farm we visit, for the majority of farms this
probability can be anything between 0.1 and 0.9! So, there is considerable between-
farm variation. At this stage, it should be emphasised that the model can still be
improved.

The code to produce the graph is as follows.

> g <- 0.8883697 + 0.0378608 * DeerEcervi$CLength

> p.averageFarm1 <- exp(g) / (1 + exp(g))

> I1 <- order(DeerEcervi$CLength) #Avoid spaghetti plot

> plot(DeerEcervi$CLength, DeerEcervi$Ecervi.01,

ylab = "Probability of presence of E. cervi L1",

xlab = "Length")

> lines(DeerEcervi$CLength[I1],p.averageFarm1[I],lwd=3)
> p.Upp<-exp(g+1.96*1.462108)/(1+exp(g+1.96*1.462108))

> p.Low<-exp(g-1.96*1.462108)/(1+exp(g-1.96*1.462108))

> lines(DeerEcervi$CLength[I1], p.Upp[I1])

> lines(DeerEcervi$CLength[I1], p.Low[I1])

The first two lines calculate the predicted probabilities for the curve in the middle.
Instead of using some complex programming, we calculated these manually. The
order command is used to avoid a spaghetti plot. The rest of the code calculates
the probabilities for the other two curves and superimposes the lines.

We mentioned earlier in this section that the GLMM can be run in at least
two other libraries, and we now briefly discuss the code and the output. The
mathematical details and the reason why we have different functions are discussed
in Section 13.4.

The second function you can use for GLMM is the lmer function from the
package lme4. The following code runs exactly the same model as before.

> library(lme4)

> DE.lme4 <- lmer(Ecervi.01 ∼ CLength * fSex +

(1 | fFarm), family = binomial,

data = DeerEcervi)

> summary(DE.lme4)

The random effect is now specified by (1 | fFarm). We only present the results
and compare it with the glmmPQL results towards the end of this section.
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Generalized linear mixed model fit using Laplace

Formula: Ecervi.01 ∼ CLength * fSex + (1 | fFarm)

Data: DeerEcervi. Family: binomial(logit link)

AIC BIC logLik deviance

832.6 856.1 -411.3 822.6

Random effects:

Groups Name Variance Std.Dev.

fFarm (Intercept) 2.3859 1.5446

number of obs: 826, groups: fFarm, 24

Estimated scale (compare to 1 ) 0.9684129

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.941504 0.354827 2.653 0.00797

CLength 0.038975 0.006815 5.719 1.07e-08

fSex2 0.624665 0.222848 2.803 0.00506

CLength:fSex2 0.035866 0.011348 3.161 0.00157

The standard error of the random intercepts ai is now 1.54. The main difference
between lmer and glmmPQL is that the lmer gives an AIC, BIC, log likelihood
value, and a deviance. This makes model comparison with lmer easier. Standard
errors, z-values, and p-values obtained by both methods are similar.

The last option we discuss is the glmmML function in the package with the
same name. This package is extensively used in Chapter 21, where the presence
and absence of koalas are analysed using a binomial GLMM. The following R code
can be used.

> library(glmmML)

> DE.glmmML <- glmmML(Ecervi.01 ∼ CLength * fSex,

cluster = fFarm, family = binomial,

data = DeerEcervi)

> summary(DE.glmmML)

In this function, the random intercept is specified with the option cluster =
fFarm. Its output is given below. Again, we get an AIC and estimated values are
similar to the other two functions, except for the residual standard error.

Call: glmmML(formula = Ecervi.01 ∼ CLength * fSex,

family = binomial, data = DeerEcervi, cluster = fFarm)

coef se(coef) z Pr(>|z|)

(Intercept) 0.93968 0.357915 2.625 8.65e-03

CLength 0.03898 0.006956 5.604 2.10e-08

fSex2 0.62451 0.224251 2.785 5.35e-03

CLength:fSex2 0.03586 0.011437 3.135 1.72e-03
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Standard deviation in mixing distribution: 1.547

Std. Error: 0.2975

Residual deviance: 822.6 on 821 degrees of freedom

AIC: 832.6

13.2.1.1 Comparison of Results

Let us now compare the results from the functions glmmPQL, lmer, and glmmML.
For convenience, we have reproduced all estimated regression parameters and stan-
dard errors in Table 13.1. We have also added the binomial GLM and GEE results.

Note that the lmer and glmmML results are nearly the same. The glmmPQL
method also gives very similar results. As can be expected, the GLM obtained with-
out any correlation structure gives slightly different results; note the different sex
estimate. Except for the intercept, the GEE results are also similar to the GLMM
results. Further comments comparing GEEs with GLMMs can be found on p. 300
of Venables and Ripley (2002). They also mentioned the package glme, which
apparently can do a GLMM and fix the overdispersion to a pre-set value (glmmPQL
automatically estimates overdispersion, also if you do not want this).

Finally, we comment on the different interpretation of the parameters in a GLMM
and GEE. In the GLMM in Fig. 13.3, the thick line is the length effect of a typical
farm. Hence, the regression parameters in the GLMM are with respect to an indi-
vidual farm due to the random intercept ai. For the GEE, the regression parameters
represent the effect of the population.

Table 13.1 Estimated regression parameters and standard errors obtained by glm, glmPQL,
lmer, glmmML, and GEE. Note that further differences can be obtained by changing the estima-
tion methods within a function

Estimates SE Estimates SE

Glm lmer
Intercept 0.652 0.109 Intercept 0.941 0.354
Length 0.025 0.005 Length 0.038 0.006
Sex 0.163 0.174 Sex 0.624 0.222
Length × Sex 0.020 0.009 Length × Sex 0.035 0.011

glmmPQL glmmML
Intercept 0.888 0.337 Intercept 0.939 0.357
Length 0.037 0.006 Length 0.038 0.006
Sex 0.610 0.213 Sex 0.624 0.224
Length × Sex 0.035 0.010 Length × Sex 0.035 0.011

GEE
Intercept 0.773 0.280
Length 0.030 0.006
Sex 0.476 0.217
Length × Sex 0.027 0.014
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13.2.2 The Owl Data Revisited

In Chapters 5, 6, and 12, we used a data set from Roulin and Bersier (2007), who
analysed the begging behaviour of nestling barn owls. In Chapters 5 and 6, we
analysed the response variable sibling negotiation, which is defined as the number
of calls just before arrival of a parent at a nest divided by the number of siblings
per nest. The data were log-transformed and a Gaussian linear mixed effects model
was applied, and also an additive mixed effects model with arrival time as smoother.
In Chapter 5, we used nest as random effect, and in Chapter 6 an auto-regressive
correlation structure was implemented. In Chapter 12, we analysed the number of
calls using a GLM with a Poisson distribution (number of calls is a count) and the
log-transformed number of siblings per nest was used as an offset variable in the
linear predictor function. Two GEE models were applied: a GEE with the com-
pound correlation structure between all observations from the same nest and one
GEE with an auto-regressive correlation between sequential observations from the
same nest per night. Here, we will analyse these data in yet another way, namely,
with a GLMM using the Poisson distribution (number of calls is a count) and also
with a GAMM.

The Poisson GLMM for these data is given by the following:

NCallsis ∼ Poisson(μis) ⇒ E(NCallsis) ∼ μis

ηis = offset(LBroodSizeis) + β1 × SexParentis + β2 × FoodTreatmentis

+ β3 × ArrivalTimeis + β4 × SexParentis × FoodTreatmentis

+ β5 × SexParentis × ArrivalTimeis + ai

ai ∼ N (0, σ 2
a )

log(μis) = ηis

The first line states that the number of calls for observation s at nest i, NCallsis,
is Poisson distributed with mean μis. The linear predictor function looks similar to
that of an ordinary Poisson GLM, except that we use the log transformed broodsize
as an offset (Chapter 9), and there is the ai bit at the end. Its purpose is exactly
the same as the random intercept for farm in Section 13.2.1; it allows for a dif-
ferent intercept for each nest. We assume that it is normally distributed with mean
0 and variance σ a

2. We use lmer to fit the model. The same model in terms of
explanatory variables is used as in Chapters 5, 6, and 12. The following code was
used.

> library(AED) ; data(Owls)
> library(nlme)
> Owls$NCalls <- Owls$SiblingNegotiation
> Owls$LBroodSize <- log(Owls$BroodSize)
> Owls$fNest <- factor(Owls$Nest)
> O1.lmer <- lmer(NCalls ∼ offset(LBroodSize) +

SexParent * FoodTreatment+
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SexParent * ArrivalTime + (1 | fNest),
data = Owls, family = poisson)

> summary(O1.lmer)

Generalized linear mixed model fit using Laplace
Formula: NCalls ∼ offset(LBroodSize) + SexParent *

FoodTreatment + SexParent * ArrivalTime + (1 | fNest)
Data: Owls

Family: poisson(log link)
AIC BIC logLik deviance

3329 3359 -1657 3315

Random effects:
Groups Name Variance Std.Dev.
fNest (Intercept) 0.20980 0.45803
number of obs: 599, groups: fNest, 27

Estimated scale (compare to 1) 2.332117

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.58145 0.36262 9.877 <2e-16
SexParentMale 0.38785 0.44861 0.865 0.3873
FoodTreatmentSatiated -0.66680 0.05610 -11.886 <2e-16
ArrivalTime -0.11948 0.01440 -8.298 <2e-16
SexParentMale:FoodTreatment.Sat 0.13239 0.07044 1.880 0.0602
SexParentMale:ArrivalTime -0.01647 0.01836 -0.897 0.3697

Correlation of Fixed Effects:
(Intr) SxPrnM FdTrtS ArrvlT SPM:FT

SexParentMl -0.739
FdTrtmntStt -0.077 0.062
ArrivalTime -0.964 0.759 0.017
SxPrntM:FTS 0.055 -0.073 -0.767 -0.010
SxPrntMl:AT 0.737 -0.995 -0.012 -0.765 0.012

The correlation between the intercept and the slope for arrival time is rather large
(−0.964). This is because arrival time was not centred. In case of numerical prob-
lems, centring continuous variables may help. The model can be further simplified
because the interaction between sex of the parent and arrival time is not significant.
You can reach the same conclusion by dropping this interaction, refitting the model,
and comparing the change in likelihood.

> O2.lmer <- lmer(NCalls ∼ offset(LBroodSize) +
SexParent * FoodTreatment +
ArrivalTime + (1 | fNest), data = Owls,
family = poisson)

> anova(O1.lmer, O2.lmer)

Models:
O2.lmer: NCalls ∼ offset(LBroodSize) + SexParent * FoodTreatment +

SexParent + ArrivalTime + (1 | fNest)
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O2.lmer: NCalls ∼ offset(LBroodSize) + SexParent * FoodTreatment +
SexParent * ArrivalTime + (1 | fNest)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
O2.lmer 6 3327.4 3353.7 -1657.7
O1.lmer 7 3328.6 3359.3 -1657.3 0.8029 1 0.3702

You can repeat this process and drop the second two-way interaction as it is not
significant neither and the same holds for the main term sex of the parent. This
means that we end up with a GLMM that only contains the two main terms arrival
time and food treatment, and nest as random effect. The code and relevant numerical
output is given below.

> O3.lmer <- lmer(NCalls ∼ offset(LBroodSize) +
FoodTreatment + ArrivalTime + (1 | fNest),
data = Owls, family = poisson)

> summary(O3.lmer)

Generalized linear mixed model fit using Laplace
Formula: NCalls ∼ offset(LBroodSize) + FoodTreatment + ArrivalTime +

(1 | fNest)
Data: Owls
Family: poisson(log link)
AIC BIC logLik deviance

3328 3346 -1660 3320

Random effects:
Groups Name Variance Std.Dev.
fNest (Intercept) 0.20854 0.45666

number of obs: 599, groups: fNest, 27
Estimated scale (compare to 1) 2.331403

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.802867 0.243846 15.60 <2e-16
FoodTreatmentSatiated -0.589608 0.035941 -16.41 <2e-16
ArrivalTime -0.128840 0.009258 -13.92 <2e-16

You can continue the analysis by trying to add a random slope for arrival time or
even a generalised additive mixed model in which arrival time is fitted as a smoother.
The latter model is specified by

NCallsis ∼ Poisson(μis) ⇒ E(NCallsis) ∼ μis

ηis = offset(LBroodSizeis) + β1 × FoodTreatmentis + s(ArrivalTimeis) + ai

log(μis) = ηis

ai ∼ N (0, σ 2
a )

Arrival time is now fitted with a smoother. To implement this model in R, we
need the gamm function from the mgcv package.
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> library(mgcv)

> O4.gamm <- gamm(NCalls ∼ offset(LBroodSize) +

FoodTreatment + s(ArrivalTime),

random = list(fNest =∼ 1), data = Owls,

family = poisson)

The object O4.gamm has two items, a $gam and a $lme bit. Using the words
from the gamm help files, some of the output in the $lme looks rather bizarre. Let
us start easy with the $gam part. We can use the following commands:

> summary(O4.gamm$gam, cor = FALSE)

> anova(O4.gamm$gam)

> plot(O4.gamm$gam)

We only present the output of the first command as the second one shows merely
a condensed version of it (it is useful if you have nominal variables with more than
two levels).

Family: poisson. Link function: log
Formula: NCalls ∼ offset(LBroodSize) + FoodTreatment + s(ArrivalTime)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.60731 0.07716 7.870 1.70e-14
FoodTreatmentSatiated -0.57624 0.07949 -7.249 1.32e-12

Approximate significance of smooth terms:
edf Est.rank F p-value

s(ArrivalTime) 6.781 9 9.724 6.23e-14

R-sq.(adj) = 0.211 Scale est. = 5.1031 n = 599

The scale estimator is the variance of the working residuals inside the algorithm.
The information on the parametric coefficients tells us that the food treatment is
significantly different from 0 at the 5% level. To be more specific, observations that
received the satiated treatment had an intercept that is 0.57 lower than for food-
deprived nests. The arrival time smoother had 6.7 degrees of freedom, and is signifi-
cant. The plot command presents this smoother, see Fig. 13.4. Note that the shape
of the smoother is very similar to the one in Fig. 5.8! In order to get the fitted values
for a typical observation, we need to add the intercept (0.607), the food treatment
effect (–0.576 for satiated observations), and the offset.

Finally, let us focus on the $lme part of the output; it is a little intimidating
though! This reason for this is that gamm is repeatedly calling glmmPQL if a non-
Gaussian distribution, or non-identity link function, is used. For Gaussian distribu-
tions with the identity link, it calls lme. Now here is the confusing bit: It’s possi-
ble to show that the smooth terms of the GAMM can be presented in the mixed-
effects form (Wood, 2006, p. 317), namely, XF × βF + Z × b, where XF is a matrix
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Fig. 13.4 Estimated smoother for the GAMM. Note that the smoother is centred around zero. To
get fitted values, you need to add the intercept, food treatment effect, the offset, and the contribution
from the random effect for a nest. The smoother shows two bumps: one at 22.30 and one at about
01.30 (in real time). An explanation can be sought in the biology, but before you do this, you need
to exclude the possibility that there is still somehow a nest effect in here. Perhaps the bumps are
due to activity at only a group of nests during parts of the night. The random intercept will take care
of changes in mean values of the number of calls per nest, but not of changes in the relationship
between arrival time and calls at different nests. Make boxplots of nest activity during the night
(are owls active during the entire night or only part of the night), and inspect the residuals from a
random intercept and slope GLMM for any patterns

containing the smoother basis; see Chapter 3. Z is a matrix containing the random
effects (Chapter 5) derived from the smoother basis and penalty matrix (presenting
the penalty as a quadratic form) and b are the random effects, which are assumed to
be normally distributed with mean 0 and variance I/λ. Hence, the GAMM is written
in parametric terms and the penalty λ, also called the wiggly component in Wood
(2006), is used in the random component. This makes the lme summary part rather
bizarre; see below.

> summary(O4.gamm$lme)

Linear mixed-effects model fit by maximum likelihood
Data: strip.offset(mf)

AIC BIC logLik
NA NA NA

Random effects:
Formula: ∼Xr.1 - 1 | g.1
Structure: pdIdnot

Xr.11 Xr.12 Xr.13 Xr.14 Xr.15 Xr.16
Xr.17 Xr.18
StdDev: 19.57691 19.57691 19.57691 19.57691 19.57691 19.57691
19.57691 19.57691
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Formula: ∼1 | fNest %in% g.1
(Intercept) Residual

StdDev: 0.2935566 2.259006

Variance function:
Structure: fixed weights
Formula: ∼invwt
Fixed effects: y ∼ X - 1 + offset(LBroodSize)

Value Std.Error DF t-value p-value
X(Intercept) 0.6073122 0.0771576 570 7.871062 0.0000
XFoodTreatmentSatiated -0.5762376 0.0795368 570 -7.244919 0.0000
Xs(ArrivalTime)Fx1 0.6378219 0.5925502 570 1.076401 0.2822

Correlation:
X(Int) XFdTrS

XFoodTreatmentSatiated -0.365
Xs(ArrivalTime)Fx1 -0.050 0.058

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.5701868 -0.7615271 -0.2231992 0.5589554 4.9173689

Number of Observations: 599
Number of Groups:

g.1 fNest %in% g.1
1 27

The interesting bit from this output is the variance of the random intercept for
nests; it is equal to 0.2932. The residual standard deviation (of the working residuals)
was also presented earlier using summary(O4.gamm$gam), except that it was
presented as a variance. Because the glmmPQL routine is used, no AIC is given.
The random effects part gives information on I/λ. It is probably easier to obtain
this via

> intervals(O4.gamm$lme, which = "var-cov")

Approximate 95% confidence intervals

Random Effects:

Level: g.1

lower est. upper

sd(Xr.1 - 1) 98.3855 383.2554 1465.705

Level: fNest

lower est. upper

sd((Intercept)) 0.1911345 0.2935566 0.4508631

Within-group standard error:

lower est. upper

2.130732 2.259006 2.395004
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The 383.255 is the square of 19.572, which we already met in the lme summary
output. To be precise, 383.255 is equal to σ 2/λ, where σ 2 is the variance of the
(working) residuals. This gives λ = 2.2592/383.255 = 0.013. However, we already
know the amount of smoothing from the anova (O4.gamm$gam) command;
hence, this is probably not worthwhile to mention in a report or paper, unless you
want to focus on the approximate confidence intervals.

The information in the summary lme output on the fixed effects bit is not inter-
esting neither; just use the anova(O4.gamm$gam) command for clearer informa-
tion on the significance on individual terms. Further details can be found in Sections
6.5–6.7 in Wood (2006). He also presented residual plots, where the residuals were
obtained from the $lme bit. For our model, these are obtained via

> E4 <- resid(O4.gamm$lme, type = "normalized")

These take into account the random effects. You can plot these residuals ver-
sus arrival time, and see whether there is any auto-correlation structure left in the
data. If there is, try adding an auto-regressive correlation within a specific nest and
day combination; see also Chapter 6. Other interesting validation tools are to plot
square-root-transformed fitted values versus square–root-transformed observed val-
ues (should be a straight line), Pearson residuals versus square-root-transformed
fitted values (should form a band with no patterns), and raw residuals (observed ver-
sus fitted values) versus square-root-transformed fitted values (should show a clear
cone); see also Fig. 6.11 in Wood (2006) and associated code.

13.2.3 A Word of Warning

Although the analyses presented in the previous two subsections look relatively
simple, you should not be to enthusiastic with all the p-values, AICs, and nested
model comparisons. All these values are rather approximate! Furthermore, at the
time of writing, the lme4 package was under development with no support for the
correlation argument in Poisson GLMMs, and the resid function did not
give residuals for a Poisson GLMM. Type: resid (O3.lmer); it gives: Error:
'resid' is not implemented yet. This does not mean that a package that
does give residuals for a Poisson GLMM is any better; it is just that it is not trivial
to calculate them.

Summarising, you should be very careful with p-values close to magic 5%
borderline in GLMMs and GAMMs, even more careful as in ordinary GLMs and
GAMs.

13.3 The Underlying Mathematics in GLMM

This section may be skipped by readers not interested in the underlying mathe-
matical details. In this section, we first explain the difference between conditional



340 13 GLMM and GAMM

and unconditional distributions, then present the likelihood function for the GLMM
models, and finally discuss how it is calculated.

The difference between conditional and unconditional distributions is best
explained within a Gaussian context. Recall from Chapter 5 that the linear mixed
model is given by

Yij = α + Xi × β + Zi × bi + ai + εij

Note that the random term bi is assumed to be normally distributed with a mean
of 0 and covariance matrix D (actually, in this case, D just contains one element,
but it is easier to use matrix notation as it is more general). The same holds for the
second random term εij. Its covariance matrix is given by Σi. The mean value of Yij,
where the mean is taken over all observations i, is given by

E(Yij) = Xi × β.

We now introduce a new concept: the conditional mean of Yij. It is the mean value
of Yij for given bi. So, we pretend we know the value of bi. The mathematical nota-
tion for this is E(Yij|bi). The vertical line followed by bi means that it is ‘conditional
on bi’. Its value is given by

E(Yij|bi ) = Xi × β + Zi × bi

We can do the same for the variance of Yij. The conditional variance of Yij is
given by cov(Yij|bi) = Σi, and the unconditional variance is

cov(Yij) = Zi × D × Z′
i +

∑

The principle of conditional mean and variances can be extended to distributions.
Hence, we can specify a Poisson or Binomial distribution conditional on bi. This
allows us to define a Poisson GLMM with the following three steps.

1. Conditional on the random effects bi, the counts Yij are assumed to be Poisson
distributed with mean μij|bi. As a consequence, we have the following relation-
ship between the mean and the variance of Yij: E(Yij|bi) = var(Yij|bi).

2. The relationship between the conditional mean and the explanatory variables is
determined by the log link log(μ|bi) = α + Xi × β + Zi × bi.

3. The random effects bi are assumed to be normally distributed with mean 0 and
covariance matrix D.

The only difference with an ordinary Poisson GLM model is the specification
of a conditional distribution, and the inclusion of the random term. The Binomial
GLMM can be defined in a similar way, namely,

1. Conditional on the random effects bi, the presence and absence data Yij are
assumed to be binomial distributed with probability pij|bi. As a consequence,
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we have the following relationship between the mean and the variance of Yij:
E(Yij|bi) = pij|bi and var(Yij|bi) = pij|bi × (1 – pij|bi)

2. The relationship between the conditional mean and the explanatory variables is
determined by the logistic link logit(pij|bi) = α + Xi × β + Zi × bi.

3. The random effects bi are assumed to be normally distributed with mean 0 and
covariance matrix D.

It is also possible to formulate the GLMM in an abstract formulation using the
same formula as presented in Chapter 9. See, for example, Fitzmaurice et al. (2004).
We do not do that here. So far, the mathematics is not that intimidating. However,
we have reached the point where the problems begin as we now look at the formula-
tion of the likelihood function. In ordinary GLM models, the maximum likelihood
function is specified and derivates with respect to parameters are calculated and set
to 0. The parameters that maximise the likelihood are then found by solving these
equations. As output, we get estimated parameters, standard errors, a deviance, and
an AIC among other information. In GLMM, this is a considerably more compli-
cated process, and the output may not contain a deviance and AIC. The reason for
this is that the likelihood function for the GLMM has the following form

L(β, D) =
∏

i

∫
f (Yij|bi ) × f (bi )dbi

The symbol that looks like two vertical roman pillars with one horizontal pillar
on top of it represents a multiplication operator. The second one is the integral. The
terms f(Yij) and f(bi) are distribution functions. As explained above, in ordinary GLM
models, we take the derivative of L() with respect to the parameters, and after some
basic algebra and an iterative algorithm, we end up with the parameters. This process
does not work well for the GLMM and there are no simple solutions for the parameter
estimates.

One option is to use numerical integration techniques and replace the integral
by a summation. This is called Gaussian quadrature. But various choices have to
be made in this process, and the higher the requested accuracy of the solutions, the
higher the computational burden. For complicated models, it may not converge at
all. Chapter 10 in McCulloch and Searle (2001) describes a series methods for get-
ting parameter estimates, for example, numerical quadrature (numerical integration
of the integral) with various flavours like Markov chain Monte Carlo algorithms,
stochastic approximation algorithms, simulated maximum likelihood, and penalised
quasi-likelihood (PQL) methods. Key concepts in the last approach are Laplace’s
approximation and Taylor series expansions. To fully understand what these differ-
ent methods are doing requires a high degree of mathematical knowledge.

The main message to take away from this is the difficulty in obtaining parameter
estimates in GLMM. It depends on the package and method used. Some packages
do not produce a deviance and AIC; hence, model selection is based on standard
errors and Wald statistics. A few packages do produce a deviance and AIC, but
interpretation should still be done with care.

A different approach to GLMM is given in Chapter 23, where we discuss
Bayesian approaches.



Chapter 14
Estimating Trends for Antarctic Birds
in Relation to Climate Change

A.F. Zuur, C. Barbraud, E.N. Ieno, H. Weimerskirch, G.M. Smith,
and N.J. Walker

14.1 Introduction

The earth’s climate is changing rapidly and these changes are expected to affect the
structure and functioning of ecosystems. It is now clearly established that recent cli-
mate changes have impacted on living organisms. Several studies have demonstrated
changes in population abundance, geographic distribution, and even microevolution-
ary changes in relation to climatic fluctuations (Parmesan, 2006).

Perhaps the best documented and most spectacular responses of living organ-
isms to climate change are changes in phenology, which is the timing of seasonal
activities of biological events such as the sprouting of plants. The vast majority of
studies from the Northern Hemisphere that have analysed the relationships between
long-term phenological and climate data sets have reported an advance in spring
activities. For example, the earlier arrival and reproduction of migratory birds or
earlier breaking of leaf buds since the mid-20th century in response to increasing
temperatures. Some studies have also reported early onset of autumn activities such
as grape-harvesting dates. However, due to the scarcity of long-term data sets, phe-
nological changes are poorly documented in the Southern Hemisphere, particularly
in Antarctica. Nevertheless, it is crucial to know whether, and to what extent, phe-
nological changes have also occurred in the Southern Hemisphere for at least two
reasons: (i) climatic changes between both hemispheres are different and (ii) we
need to understand and eventually predict the impact of future climatic changes on
species and ecosystems.

Permanent human occupation of the Antarctic continent is very recent compared
to the other continents, and the landmark for scientific studies in Antarctica is the
International Polar Year 1957–58 when most of the existing permanent research
stations were built. In Terre Adélie, East Antarctica, the Dumont d’Urville research
station was established during the mid 1950s, and since then, ornithologists have
over wintered almost every year recording arrival and laying dates of Antarctic
seabirds as part of long-term studies on Antarctic marine top predators (Barbraud
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Fig. 14.1 Emperor Penguin.
The photograph was taken
by C. Barbraud

and Weimerskirch, 2006). Fortunately, all but one of the Antarctic seabird species
breed close to the research station and records of phenological data have been col-
lected over a 50-year period with quasi-annual frequency.

Here, we use arrival and laying dates of three of these bird species to estimate
trends and determine the effects of possible explanatory variables.

The Emperor Penguin Aptenodytes forsteri is the largest of the existing penguins
(males weigh up to 45 kg) and breeds in winter on solid sea ice (Fig. 14.1). Males
and females arrive on the breeding area from mid to late March. During the next
two months, pairs form and the female lays the single egg to her male partner, who
will incubate during the next two months in the heart of winter. Then, as with most
seabirds, males and females alternate foraging trips at sea to feed, and to bring
back food for the growing chick at the colony. The chicks leave the colony in early
December at the onset of summer.

The Adelie Penguin Pygoscelis adeliae is a medium-sized penguin (c. 4.5 kg),
breeding during the austral summer con rocky islands or on coastal nunataks (ice-
free areas of the Antarctic continent). Adelies arrive and start building their nest
just after mid-October and lay their eggs in mid November. The chicks leave the
colonies in early February, just before the winter.

The Cape Petrel Daption capense is a small (c. 400 g) Procellariiform species and
breeds during the austral summer on rocky islands. The breeding period is relatively
short because birds arrive in mid October, lay their egg in late November, and the
chicks are fledged in early March.

During the breeding period, the three species feed directly on krill or on fish that
heavily depend on krill. Krill abundance and distribution are closely related to sea
ice. After winters with extensive sea ice, adult krill survival and krill recruitment is
high; therefore, krill abundance is higher after winters with extensive sea ice com-
pared to winters with poor sea ice.

14.1.1 Explanatory Variables

During the breeding period, satellite tracking and diet studies have shown that all
three species are more or less associated with sea ice. Both penguin species use sea
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ice floes as resting platforms and forage within the pack ice. And although Cape
Petrels do not forage directly in sea ice habitats, they feed in areas of open water
that are covered by sea ice during winter. Consequently, you might hypothesise that
sea ice extent can affect the breeding ecology of these species, either indirectly
through an impact on the abundance of their food resources or directly through food
resources availability. Therefore, we used sea ice extent as a candidate explanatory
variable for trends in arrival and laying dates. Because our phenological data starts in
the early 1950s, and sea ice extent data derived from satellite observations are only
available from the early 1970s, we used a proxy of sea ice extent recently developed
for East Antarctica. Methanesulphonic acid (MSA) is a product of biological activity
in surface ocean water whose production is heavily influenced by the presence of
sea ice in the Southern Ocean. An ice core from East Antarctica has reported a
significant correlation between MSA and satellite-derived sea ice extent, and this
calibration applied to longer term MSA data has permitted to reconstruct sea ice
extent since the mid-nineteenth century.

The other candidate variable considered here is the Southern Oscillation Index
(SOI), which represents the El Niño Southern Oscillation conditions. High, positive
values of SOI indicate La Niña conditions and low negative values indicate El Niño
conditions. Many studies have shown that the El Niño Southern Oscillation (and
therefore SOI) impacts on demographic rates and food resources of many animals,
including seabirds. In addition, contrary to the proxy of sea ice extent, SOI is a
large scale climate index that may affect seabirds, both during the breeding and
non-breeding season.

At present, very little is known about the at sea distribution during the non breed-
ing period of the three seabird species considered here. Anecdotal observations sug-
gest that both penguin species migrate north of their colonies, but remain within
Antarctic waters close to the pack ice, and that Cape Petrels migrate in sub-Antarctic
and sub-tropical waters. During the breeding period, both penguin species forage
within the pack ice up to 150 km from the colonies but nothing is known for the
Cape Petrel.

The aim of this case study is to (i) estimate trends in the arrival and laying dates in
the three bird species, (ii) analyse the differences between arrival and laying dates,
and (iii) determine the effects of possible explanatory variables (e.g. ice cover and
the Southern Oscillation Index).

14.2 Data Exploration

Figure 14.2 contains an xyplot from the lattice package, showing the patterns over
time in arriving and laying dates for the three bird species. To aid visual interpreta-
tion, we added a LOESS smoothing curve (Chapter 3) with a span width of 0.5 in
each panel. The question addressed in this chapter is whether there is a significant
trend in each series. The shape of the LOESS smoothers suggests that something
is going on, but there are two main problems for these data. In principle, we have
time series data; the timing of arrival in a certain year may depend on the timing in
the previous year. The same holds for laying dates. This means that we should take
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Fig. 14.2 Time series of arrival dates, laying dates, and the difference between laying and arrival
dates of three bird species. A LOESS smoother with a span width of 0.5 was added to aid visual
interpretation

into account the auto-correlation in the data. Preliminary graphs using the auto-
correlation function (Chapter 6) showed that some time series have a significant,
albeit weak, auto-correlation with a lag of 1 year. One example is given in Fig. 14.3,
which shows that laying dates of the Adelie Penguin in year s is weakly related to
those in year s – 1 (the auto-correlation with time lag 1 is significantly different
from 0 at the 5% level). The other issue with the LOESS smoother is the span width
(Chapter 3). If we increase it, we get a less smooth curve and decreasing the span
width means that we end up with a more rapidly changing trend.
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Fig. 14.3 Auto-correlation
function of the laying dates
of the Adelie Penguin. The
horizontal axis shows the
time lags and the vertical
axis the correlation. The
dotted line represents the
95% confidence bands
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The smoothers in Fig. 14.2 suggest that the laying dates of the Adelie Penguin
and Cape Petrel have increased since the mid-1970s. The question is now whether
this is indeed the case or whether the smoother is misleading. As explained in
Chapter 3, the smoother can be misleading in two ways: (i) by using the wrong
amount of smoothing and (ii) by ignoring potential auto-correlation structures. The
aim of this chapter is to eliminate these problems.

The following R code was used to generate Fig. 14.2.

> library(AED); data(Antarcticbirds)

> ABirds <- Antarcticbirds #saves some space

> library(lattice)

> Birds <- c(ABirds$ArrivalAP, ABirds$LayingAP,

ABirds$ArrivalCP, ABirds$LayingCP,

ABirds$ArrivalEP, ABirds$LayingEP)

> AllYears <- rep(ABirds$Year, 6)

> MyNames<-c("Arrival Adelie Penguin",

"Laying Adelie penguin", "Arrival Cape Petrel",

"Laying Cape Petrel", "Arrival Emperor Penguin",

"Laying Emperor Penguin")

> ID1 <- factor(rep(MyNames, each=length(ABirds$Year)),
levels = c(MyNames[1], MyNames[3], MyNames[5],

MyNames[2], MyNames[4], MyNames[6]))

> xyplot(Birds ∼ AllYears | ID1, xlab="Years",
ylab = "Day", layout = c(3, 2), data = ABirds,

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")),

panel = function(x, y){
panel.xyplot(x, y, col = 1)

panel.loess(x, y, col = 1, span = 0.5)

panel.grid(h = -1, v = 2)})

This is a rather intimidating piece of code, but the results in Fig. 14.2 make
it worthwhile. Let’s go over it step by step. The library and data commands
were discussed in Chapter 2. The ASCII file with the data contains seven columns
of data: the year and the arrival and laying times for the three species. Each series
contains 55 observations. To make the xyplot from the lattice package, we need
to store the arrival and laying dates in a single vector of length 6 × 55 = 330. We
could have done this data editing in a spreadsheet program like Excel, but it is much
easier to do this in R. We also need a vector of length 330 that contains the year
of each observation. Again, we could have copied and pasted the column year six
times under each other in the spreadsheet, but it is much easier in R with the rep
command.
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So, now we have the original six blocks of data in a single column. To let the
xyplot function know the identity of the blocks, we made a nominal variable ID1
that contains the names of the variables in the six blocks. The levels option in
the factor command was then used to ensure that each time series of the same
birds were under each other in the graph. Again, we made use of the rep function.
The rest of the code is the same as we used in Chapter 2: we called the xyplot
function and specified what should be plotted along the x and y axes in each panel,
labels, etc. The scales option ensured that each panel has a different range along
the y-axis. Although intimidating, it is all code that we have used before.

Making the auto-correlation function in Fig. 14.3 is actually much easier. The
only thing to take care of is the na.action option. Details of the acf function
were discussed in Chapter 6.

> L.AP <- acf(ABirds$LayingAP, lag.max = 10,

na.action = na.pass,

main = "Laying dates Adelie Penguin")

Another useful data exploration tool is the pairplot (Fig. 14.4). This addresses
whether changes in the arrival and laying dates of the same birds and of different
birds are similar. The following code was used to create it.

> pairs(ABirds[,2:7], upper.panel = panel.smooth,

lower.panel = panel.cor)

The arguments upper.panel and lower.panel in the pairs command
call functions. We took these from the pairs help file in R; see ?pairs. We
needed to make some small modifications to the R functions panel.smooth
and panel.cor, because we had missing values and preferred black lines for the
smoothing lines. Our modified panel functions are available in the AED package.
Each panel above the diagonal in Fig. 14.4 shows a scatterplot of two variables.
A LOESS smoothing curve with a span of 0.66 was added. The panels below the
diagonal contain the (Pearson) correlations coefficients between two variables.

The font size of a correlation is proportional to its value. The panels in the
pairplot show that there is no strong correlation between arrival and laying dates
of the same and different birds. Pairplots are also useful for identifying outliers
and extreme observations, which are not present in these data. So we can avoid
transformations.

With the ongoing debates on climate change in mind, it is useful to look at the
difference between arrival and laying dates for each bird and its relation to the
explanatory variables MSA and SOI. Figure 14.5 shows these differences in arrival
and laying for the three bird species plotted against time. We have added the two
explanatory variables MSA and SOI. The problem with MSA is that it has a clear
trend over time, and it has a relative large number of missing values towards the
end of the 1990s. To avoid collinearity problems, it is perhaps better not to use year
and MSA as explanatory variables in the same model (the correlation between them
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is –0.57). The same holds for MSA and SOI, but now the motivation for not using
them together is that the variations in MSA are driven by SOI. There is no clear
trend over time in the ‘difference time series’ for the species.

The R code used to create Fig. 14.5 is given below. It follows the same steps as
for Fig. 14.2.

> ABirds$DifAP <- ABirds$LayingAP - ABirds$ArrivalAP

> ABirds$DifCP <- ABirds$LayingCP - ABirds$ArrivalCP

> ABirds$DifEP <- ABirds$LayingEP - ABirds$ArrivalEP

> AllDif <- c(ABirds$DifAP, ABirds$DifCP,

ABirds$DifEP, ABirds$MSA, ABirds$SOI)

> AllYear <- rep(ABirds$Year, 5)

> IDDif <- rep(c("Difference AP", "Difference CP",

"Difference EP", "MSA", "SOI"), each = 55)

> xyplot(AllDif ∼ AllYear | IDDif, xlab = "Years",

ylab = "Day", layout = c(3, 2),

strip = function (bg = 'white', ...)

strip.default(bg = 'white', ...),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")),

panel = function(x, y){
panel.xyplot(x, y, col = 1)

panel.loess(x, y, col = 1, span = 0.5)

panel.grid(h = -1, v = 2)})

14.3 Trends and Auto-correlation

The smoothing curves in Fig. 14.2 indicate the presence of long-term trends in
some of the arrival and laying time series. However, we quite arbitrarily chose a
span width of 0.5 for the LOESS smoother, and choosing a different value may
give a different message. To estimate the optimal amount of smoothing we can use
cross-validation (Wood, 2006; Chapter 3) and we can also allow for auto-correlation
(Chapter 6). We now compare the models with and without auto-correlation and test
which one is better. The reason for investigating whether we need a residual auto-
correlation structure is that if we falsely omit it, p-values may be seriously inflated.
Zuur et al. (2007; Chapter 23) used a bird data set in which the model with and
without auto-correlation nearly resulted in different conclusions on the importance
of different management variables.

Cross-validation and/or adding a residual auto-correlation structure to a smooth-
ing model requires the use of the gamm function in the mgcv package in R. The
model we apply on each time series is
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Ys = α + f (Years) + εs

εs ∼ N (0, σ 2)

cor(εs, εt ) = h(ρ, d(Years, Yeart ))

(14.1)

The first part specifies that the time series is modelled as an intercept plus a
smoothing function plus residuals. These residuals are assumed to be normally
distributed, but not independent of each other. We allow for a certain dependence
structure using the function h(), which depends on an unknown parameter ρ and
a function d() which is a function of time (or better: the difference between time
points). The trick is now to find an appropriate structure for h() and we can compare
different forms using the AIC or likelihood ratio tests. As discussed in Chapters
6 and 7, we have a series of options to model the function h(). The one of inter-
est here is the auto-regressive moving average (ARMA) serial correlation struc-
ture. We could also apply correlation structures from spatial data analysis methods
(Chapter 7), which is especially useful if the time series are irregular spaced. How-
ever, the time series are regular spaced, albeit with missing values, and therefore we
do not need to use any spatial correlation structures.

If the trend is linear, then we can use a model of the form

Ys = α + β × Years + εs

εs ∼ N (0, σ 2)

cor(εs, εt ) = h(ρ, d(Years, Yeart ))

(14.2)

The first two parts of the equation are the familiar linear regression model. And,
if we assume independence of the residuals, it is a linear regression model. But we
have not made this assumption here, and the last part of Equation (14.2) allows
for residual dependence. On the other hand, the cross-validation will help decide
whether we need the model in Equation (14.1) or (14.2). Indeed Equation (14.2) is
a special case of Equation (14.1), so we might as well focus in first instance only
on the model in Equation (14.1). This is because a straight line (linear regression)
is a special case of a smoothing curve (Fox, 2000). The model in Equation (14.1)
can be fitted in R with the gamm function using a Gaussian distribution and identity
link (Chapter 3), and Equation (14.2) is fitted using the gls function in the nlme
package. The following R code fits the additive model with an ARMA error structure
(Chapter 6) on the arrival dates of the Adelie Penguins.

> library(mgcv)

> library(nlme)

> B1 <- gamm(ArrivalAP ∼ s(Year), data = ABirds,

correlation = corARMA(form =∼ Year, p = 1, q = 0))

> AIC(B1$lme)

The option corARMA (form =∼ Year, p = 1, q = 0) specifies the
auto-regressive residual ARMA structure of order (p, q). The notation for this is
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ARMA(p, q). The AIC of this model is 237.83. To choose the optimal ARMA
structure, we used all combinations for p and q from 0 to 2. For the combination
p = q = 0, you need to omit the correlation option. Hence, this is just an ordinary
GAM without a correlation structure. To assess which combination of p and q results
in the ‘best’ model, we used the AIC. The lower the AIC, the better the model.

The notation s(Year) means that a smoother is applied on Year and cross-
validation is used to estimate the optimal amount of smoothing.

This modelling approach was applied on all six arrivals and laying date time
series. All six time series gave results where the optimal residual error structure was
a ARMA(0,0), meaning that no correlation structure was needed. This means that
we are back to using ordinary smoothing (or regression). For all six time series, the
amount of smoothing was 1 degree of freedom, meaning that each trend is a straight
line. This allows us to apply the linear regression model in Equation (14.2) without
the auto-correlation structure. The slope of the trend was only significantly different
from 0 for the laying time series of the Adelie Penguin (p = 0.003) and for both
arrival (p = 0.009) and laying (p = 0.029) Cape Petrel time series. For the other
three series, the slope was not significantly different from zero.

14.4 Using Ice Extent as an Explanatory Variable

In this section, we consider models of the form

Ys = α + f (MSAs) + εs

εs ∼ N (0, σ 2)

cor(εs, εt ) = h(ρ, d(Years, Yeart ))

(14.3)

Ys is the arrival or laying date in year s and MSAs is the Methanesulfonic acid
concentration (μM) in year s, representing the sea ice extent. Again, we can use
cross-validation to estimate the amount of smoothing, and if it turns out that the
estimated degrees of freedom is equal to one, we will end up with the model

Ys = α + β × MSAs + εs

εs ∼ N (0, σ 2)

cor(εs, εt ) = h(ρ, d(Years, Yeart ))

(14.4)

As in the previous section, different residual correlation structures can be applied
using the correlations option in gamm and gls and the AIC is used to compare
them. For all six arrival and laying time series, the optimal residual correlation struc-
ture was ARMA(0,0), which means that no correlation structure is needed. Drop-
ping the correlation structure means we are back in the world of ordinary additive
modelling or linear regression, depending on the amount of smoothing. The cross-
validation method gave 1 degree of freedom for each series, indicating that we can
use the linear regression model in Equation (14.4).
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Fig. 14.6 Fitted values obtained by linear regression. Only the time series with a significant slope
for MSA are shown. The R2 for the four series are 12% (Laying Adelie penguin), 19% (Laying
Cape Petrel), 15% (Laying Emperor Penguin), and 24% (Arrival Cape Petrel)

The linear regression model showed that MSA has a negative effect on laying
dates of all three birds (Adelie Penguin, p = 0.053; Cape Petrel, p = 0.039; and
Emperor Penguin, p = 0.039), and also on the arrival date of Cape Petrel (p =
0.004). The observed data and fitted lines for these four time series are presented in
Fig. 14.6.

The following R code was used for the linear regression models.

> M1 <- lm(LayingAP ∼ MSA, data = ABirds)

> M2 <- lm(LayingCP ∼ MSA, data = ABirds)

> M3 <- lm(LayingEP ∼ MSA, data = ABirds)

> M4 <- lm(ArrivalCP ∼ MSA, data = ABirds)

> summary(M1); summary(M2)

> summary(M3); summary(M4)

This code is just the familiar linear regression and summary commands from
Chapter 2 that gives the estimated values, R2, F-statistic, t-values, and p-values. We
have not reproduced all the numerical output from the summary commands here.
The model fits are presented in the lattice graph (Fig. 14.6) using the following
R code.

> Bird4 <- c(ABirds$LayingAP, ABirds$LayingCP,

ABirds$LayingEP, ABirds$ArrivalCP)

> MSA4 <- rep(ABirds$MSA, 4)
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> ID4 <- rep(c("Laying Adelie penguin",

"Laying Cape Petrel",

"Laying Emperor Penguin",

"Arrival Cape Petrel"), each = 55)

> xyplot(Bird4 ∼ MSA4 | ID4, xlab = "MSA",

ylab = "Day", layout = c(2, 2),

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")),

panel = function(x, y, subscripts, ...){
panel.xyplot(x, y, col = 1)

panel.grid(h = -1, v = 2)

I1 <- !is.na(y) & !is.na(x)

tmp <- lm(y[I1] ∼ x[I1])

x1 <- x[I1]

y1 <- fitted(tmp)

I2 <- order(x1)

panel.lines(x1[I2], y1[I2], col = 1, span = 1)})

The first three commands create three variables containing the stacked observed
data, names, and MSA values for the four series. The code for the xyplot should
now look familiar, except perhaps applying the linear regression within the xyplot
function. The only thing to watch for is ensuring that we deal correctly with the
missing values in the data. The command I1 <- !is.na (y) & !is.na (x) iden-
tifies the observations for which we have an observation for both the response and
explanatory variables. The linear regression is applied on these data, and the order
command is used to avoid a spaghetti plot (Chapter 2).

The main problem using MSA as an explanatory variable is that we lose 16% of
the data due to missing values. Recall from Chapter 2 that the entire row of data is
omitted, even if only one variable has a missing value for that observation.

14.5 SOI and Differences Between Arrival and Laying Dates

For the last analysis in this chapter, we use SOI as an explanatory variable. A slightly
different statistical approach is followed and the arrival and laying dates for a bird
are analysed simultaneously. Using an interaction term, we can use this approach
to make a statement on the difference of the SOI effect on arrival and laying dates.
This approach is potentially invalid, but we discuss at the end of this section how to
correct for this.

A simple boxplot (not presented here) shows that the variation in arrival dates is
considerably larger than for laying dates for all three bird species. This means that
an ordinary linear regression model (or additive model) applied on the combined
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arrival and laying dates is likely to violate the homogeneity assumption. On top of
this, there may be auto-correlation. An additive model applied on the individual time
series using SOI as an explanatory variable showed that all trends were linear, and
therefore, we will work with a linear regression model of the form:

Ysj = α + β1 × SOIs + β2 × ID j + β3 × SOIsID j + εs

εs ∼ N (0, σ 2
j )

cor(εs, εt ) = h(ρ, d(Years, Yeart ))

(14.5)

Ysj is the arrival (j = 1) or laying (j = 2) date of a particular species in year s. In
R, we stack the arrival and laying dates into one vector of length 110. This vector is
then modelled as an intercept plus a function of SOI, a nominal variable ID (arrival
or laying), and an interaction between SOI and ID. In matrix notation we have

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Arrival1
...

Arrival55

Laying1
...

Laying55

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1
...
...
1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

α +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

SOI1
...

SOI55

SOI1
...

SOI55

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

β1 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

β2 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

SOI1
...

SOI55

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

β3 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1,1
...

ε1,55

ε2,1
...

ε2,55

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

If we assume independence and homogeneity of the residuals, then this is the
ordinary linear regression model with one continuous variable, one nominal variable
and the interaction between them (also known as analysis of covariance, abbreviated
as ANCOVA). However, we do not assume independence or homogeneity. And, as
discussed in Chapter 4, we can use GLS estimation to estimate multiple variance
terms, in this case σ 1

2 for the arrival dates and σ 2
2 for the laying dates. The question

is then whether σ 1 = σ 2, or whether we indeed need two different variances.
As to the auto-correlation structure, for simplicity, we only consider the

ARMA(1,0) structure. This means that the residual correlation structure takes the
form (Pinheiro and Bates, 2000; Chapter 6):

cor(εs, εt ) = ρ|s−t | (14.6)

The parameter ρ is between –1 and 1. This auto-correlation structure dictates that
the larger the time period between two years, the smaller the dependence between
them. The following R code applies the model in Equation (14.5) with the auto-
correlation in Equation (14.6).

> AP <- c(ABirds$ArrivalAP, ABirds$LayingAP)

> SOI2 <- c(ABirds$SOI, ABirds$SOI)

> Y2 <- c(ABirds$Year, ABirds$Year)

> ID <- factor(rep(c("Arrival", "Laying"), each = 55))
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> library(nlme)

> vf2 <- varIdent(form =∼ 1 | ID)

> M5 <- gls(AP ∼ SOI2 + ID + SOI2:ID, weights = vf2,

na.action = na.omit)

> M6 <- gls(AP ∼ SOI2 + ID + SOI2:ID, weights = vf2,

na.action = na.omit,

correlation = corAR1(form =∼ Y2 | ID))

> anova(M5, M6)

The first command concatenates the arrival and laying dates time series of the
Adelie Penguin. The second command creates a vector with corresponding SOI val-
ues, and Y2 contains the years in which an observation was taken. Finally, ID is a
nominal variable identifying the two time series. The library command ensures
we can access the gls function, which is needed to fit the model in Equation (14.5)
in R. The varIdent function was discussed in Chapter 4 and allows for a differ-
ent variance for each of the bird time series. We first call the gls function and fit a
model without auto-correlation. Then we fit a model with the auto-correlation struc-
ture as specified in Equation (14.6) and store its results in M6. The anova(M5,
M6) command applies a likelihood ratio test and gives

Model df AIC BIC logLik L.Ratio p-value

M5 6 427.82 442.26 -207.91

M6 7 426.07 442.92 -206.03 3.744 0.05

These results show that there is a weak residual auto-correlation structure (p =
0.05), and we should keep it in the model. We can also compare a model with one
variance and a model with two variances. The likelihood ratio test (not presented
here) indicates that we should use two variances (p = 0.002). The results of the
following code show that we do not need the interaction term between ID and SOI.

> M7 <- gls(AP ∼ SOI2 + ID + SOI2:ID, weights = vf2,

na.action = na.omit, method = "ML",

correlation = corAR1(form =∼ Y2 | ID))

> M8 <- gls(AP ∼ SOI2 + ID, weights = vf2,

na.action = na.omit, method = "ML",

correlation = corAR1(form =∼ Y2 | ID))

> anova(M7, M8)

As discussed in Chapter 4, if we compare two models with the same random
structure, but with different fixed effect, we need to use the maximum likelihood
estimation method instead of REML. The resulting test statistic is obtained by the
anova (M7, M8) command, and it gave a test statistic L = 0.16 (df = 1, p = 0.68).
This indicates that we can drop the interaction term as it is not significant.

In the model with SOI2 and ID as explanatory variables (M8), the summary (M8)
command shows that only ID is significant, meaning that there is no SOI effect on
Adelie Penguins. Hence, the optimal model is given by
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> M9 <- gls(AP ∼ ID, weights = vf2, method = "ML",

na.action = na.omit,

correlation = corAR1(form =∼ Y2 | ID))

> summary(M9)

Its numerical output is given by

Correlation Structure: ARMA(1,0)

Formula: ∼Y2 | ID

Parameter estimate(s):

Phi1

0.26

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | ID

Parameter estimates:

Arrival Laying

1.00 0.61

Coefficients:

Value Std.Error t-value p-value

(Intercept) 211.11 0.64 329.26 <0.001

IDLaying 34.56 0.75 45.63 <0.001

Residual standard error: 3.361275

Degrees of freedom: 86 total; 84 residual

This output shows that the predicted arrival time for Adelie Penguin is day 211
(rounded), and the laying date is 211 + 34 = 245. There is no effect of SOI on either
arrival or laying dates. The residual standard error for the arrival dates is 3.36, but
for the laying dates it is 0.6 smaller. There is also a small amount of auto-correlation
as ρ = 0.26. This means that the residual auto-correlation between two sequential
years is equal to 0.261 = 0.26, and for time points that are separated by 2 years, this
correlation is 0.262 = 0.07.

The same analysis was carried out on the Cape Petrel time series. Using the same
code, but with the first line replaced by CP <- c(ArrivalCP, LayingCP)
and consequently AP by CP. For the Cape Petrel, we found that different vari-
ances per arrival and laying series are needed, but there was no need for an auto-
correlation structure. The interaction term had a p-value of 0.09, but we decided to
keep it in as it was close to the ‘magic’ significance level of 0.05. The SOI effect
and the nominal variable ID were highly significant. The following R code was
used.

> CP <- c(ABirds$ArrivalCP, ABirds$LayingCP)

> SOI2 <- c(ABirds$SOI, ABirds$SOI)

> Y2 <- c(ABirds$Year, ABirds$Year)

> ID <- factor(rep(c("Arrival", "Laying"),each = 55))
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> vf2 <- varIdent(form= ∼ 1|ID)

> M10<-gls(CP ∼ SOI2 + ID + SOI2:ID, weights = vf2,

na.action = na.omit, method = "ML")

The results below obtained by the summary(M10) command. Note that the
spread for the laying dates is considerably lower!

Structure: Different standard deviations per stratum

Formula: ∼1 | ID

Parameter estimates:

Arrival Laying

1.00 0.37

Coefficients:

Value Std.Error t-value p-value

(Intercept) 210.41 0.92 226.62 0.00

SOI2 -0.39 0.13 -2.99 0.00

IDLaying 52.37 1.01 51.76 0.00

SOI2:IDLaying 0.24 0.14 1.71 0.09

The lines of R code below produce a scatterplot of the data, and the fitted lines
obtained by the optimal model; see Fig. 14.7.

> plot(ABirds$SOI, ABirds$ArrivalCP,

ylim = c(195, 270), type = "n",

ylab = "Arrival & laying dates")

> points(ABirds$SOI, ABirds$ArrivalCP, pch = 1)

> points(ABirds$SOI, ABirds$LayingCP, pch = 2)

> MyX <- data.frame(SOI2 = seq(from = min(ABirds$SOI),

to = max(ABirds$SOI), length = 20),

ID = "Arrival")

> Pred1 <- predict(M10, newdata = MyX)

> lines(MyX$SOI2, Pred1)

> MyX <- data.frame(SOI2 = seq(from = min(ABirds$SOI),

to = max(ABirds$SOI),

length = 20),

ID = "Laying")

> Pred2 <- predict(M10, newdata = MyX)

> lines(MyX$SOI2, Pred2)

For the emperor penguin, we found strong evidence to use two variance terms
(p < 0.001) and weak evidence for an auto-correlation structure (p = 0.07). How-
ever, neither the interaction nor the SOI was significant. The output of the final
model is given on the next page and shows there is some auto-correlation, the resid-
ual variation in laying dates is nearly half of the arrival time residual variation, and
the difference between arrival and laying dates is 52 days.
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Fig. 14.7 Arrival and laying
dates for the Cape Petrel.
The triangles are the laying
dates, and the dots the arrival
dates. Due to the weak
interaction, the lines are
nearly parallel indicating that
there are no strong
differences between the
SOI-date relationship for
arrival and laying

Correlation Structure: ARMA(1,0)

Formula: ∼Y2 | ID

Parameter estimate(s):

Phi1

0.20

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | ID

Parameter estimates:

Arrival Laying

1.00 0.53

Coefficients:

Value Std.Error t-value p-value

(Intercept) -7.91 0.91 -8.62 <0.001

IDLaying 51.94 1.04 49.58 <0.001

At the start of this section, we mentioned that the analysis presented in this sec-
tion is potentially invalid. This would happen if the residuals of the laying time
series are correlated to the residuals of the arrival time series. We allowed for cor-
relation within a series, but not between a series. In Chapter 6, we applied a similar
analysis on a bird time series from Hawaii. However, in that example, because sam-
pling was done during the breeding season on different islands, the between-series
independence assumption is more plausible than it is for the time series used in this
chapter. The easiest way to verify the independence assumption is to calculate the
correlation between the two residual time series per species. If the correlation is not
significant, we are lucky and the approach in this section is valid. In this case, the
correlation is 0.29 and the associated p-value is 0.06. At the 5% level, it is not sig-
nificant, but we are still not that happy with a p-value so close to the magic 5% level.
Obtaining this correlation coefficient requires some rather tedious R programming
(due to missing values), and the code is on the book’s website.
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14.6 Discussion

Wrongly ignoring dependence structures in data means a greater chance of type I
errors. So, with time series data, we should always check for residual auto-
correlation, and only where there is no significant auto-correlation, use methods that
ignore auto-correlation. For the arrival and laying time series, there was no strong
residual auto-correlation; hence, one can proceed with methods that do not include
an auto-correlation structure (e.g. linear regression, additive modelling).

For all bird time series, linear regression was favoured above smoothing tech-
niques. As well as smoothing methods, we also tried other models that allow for
non-linear trends (e.g. quadratic models using Year and Year2 as explanatory vari-
ables), but they confirmed the cross-validation results.

A detailed model validation consisting of plots of (normalised) residuals ver-
sus fitted values, auto-correlation plots, histograms, and plotting residuals versus
explanatory variables was applied in each section. For nearly all models, there were
no problems. We also tried models that contained both year and SOI, but these did
not improve the models.

The ecological interpretation of these results shows there is a positive trend in
the laying time series of the Adelie Penguin and the arrival and laying of the Cape
Petrel series. This may be related to the MSA time series, but unfortunately using
this variable means we lose 16% of the data. It should be noted that MSA itself is
negatively related to time; there is a clear decreasing trend in MSA (Fig. 14.5). The
negative relationships between MSA, laying, and arrival dates indicate that birds
arrive and lay earlier when sea ice extent increases. This fits well with our knowl-
edge of the reproductive ecology of these species because they need to build up
body reserves (fat) before breeding. So, in years with extensive sea ice, food might
be more abundant allowing birds to build up fat reserves quicker than years with
less sea ice. Consequently, the negative trend in MSA may explain part of the posi-
tive trends in arrival and laying dates, although MSA explained at most 24% of the
variability in arrival and laying dates. Other factors such as the duration of the sea
season or individual characteristics such as age or experience may explain part of
the remaining variability. The analysis using the combined arrival and laying dates
for a species and SOI as explanatory variable showed there was a large difference in
spread in arrival and laying dates for all species and that SOI has a negative effect
on arrival and laying dates of Cape Petrel. We also applied the same analysis using
year as the explanatory variable instead of SOI. We have not presented the results
here, but they showed that the Adelie Penguin had a weak auto-correlation and large
spread in arrival and laying dates (the ratio between the standard errors was 0.57)
and a significant ID and year effect, but no interaction. This means that arrival and
laying dates have increased over time and at the same rate. We found similar results
for the Cape Petrel, except there was no auto-correlation. For the Emperor Penguin,
there was only an ID effect and weak auto-correlation, but no year effect.

It is not surprising to find a large difference in spread in arrival and laying dates
across the species. Unlike arrival dates, laying is closely synchronised in Antarctic
seabird populations, meaning that within a population all individuals lay their egg in
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a short time window every year. Therefore, laying date is probably less affected by
factors such as age, experience, sex or meteorological factors than arrival date. The
fact that arrival and laying dates have increased over time at the same rate for the
Adelie Penguin and the Cape Petrel over such a long period suggests that the time
interval separating those phenological events is relatively inflexible. This probably
reflects the invariance in the timing of physiological mechanisms involved during
the egg development process and to a lesser extent the time needed for birds to build
their nest, courtship and pair.

Finally, an interesting result is the negative effect of SOI on arrival and laying
dates of the Cape Petrel. The negative slope indicates that El Niño conditions (neg-
ative SOI) delay arrival and laying of Cape Petrels. Because Cape Petrels spend the
non-breeding season at more northerly latitudes than Adelie and Emperor Penguins,
they might be more affected by El Niño conditions. This result is also in accor-
dance with previous studies on seabirds that have demonstrated that El Niño condi-
tions usually cause a decrease in oceanic productivity and of seabird demographic
parameters.

14.7 What to Report in a Paper

If we were to write a paper based on the analysis presented in this chapter, we
would present an introduction describing the questions and data. We would then
continue presenting the data in a multiple panel graph (e.g. Fig. 14.2), present the
models (additive model and linear regression) and put emphasise on the potential
auto-correlation problem. The fact that the ARMA(0,0) error structure was the most
optimal structure can be presented without too much numerical output, and the same
holds for the cross-validation. However, you cannot omit this information as they
justify the application of the linear regression or smoothing model without auto-
correlation.

Describing the approach and summarising the results that justify the linear
regression model with an independent error structure does not have to be any longer
than two paragraphs. The results of the linear models should be presented in a table
showing the estimated parameters, t-values, p-values, and R2 and F-statistic for all
time series. You should also comment on the results of a model validation for the
linear regression. (Did the residuals show any patterns in terms of homogeneity,
normality, and residuals values versus year, and residuals values versus explanatory
variables?) As the linear regression model was preferred over the additive model,
state that non-linear patterns are unlikely to occur. The model formulation for the
combined arrival and laying time series and the analysis followed may be confusing
for the reader, and you may want to explain this aspect in more detail. As to what
these results tell us about climate change is left for you to decide.



Chapter 15
Large-Scale Impacts of Land-Use Change
in a Scottish Farming Catchment

A.F. Zuur, D. Raffaelli, A.A. Saveliev, N.J. Walker, E.N. Ieno, and G.M. Smith

15.1 Introduction

A catchment is an area of land defined by the origins and discharges of all tributary
streams feeding large rivers flowing into the sea. It is therefore a natural bio-physical
unit distinct from adjacent catchments and forms the obvious basis for integrated
environmental management policies. In Europe, river catchments tend to be domi-
nated by agriculture, at least at lower altitudes. In the case of the Ythan catchment
(Fig. 15.1), Aberdeenshire, Scotland, where the river rises at only a few hundred
metres, more than 90% of the land area is now under agricultural production. Much
of this is arable crops like wheat, barley, and oil-seed rape, which demand high
inputs of chemical nitrogen. The Ythan catchment also hosts large numbers of pigs
and other livestock (and also some of the authors of this book).

Whilst the Ythan catchment has always been prime agricultural land, there have
been major changes in land-use over the past 40 years because of market trends and
drivers such as the Common Agriculture Policy. This policy encouraged growing of
crops through subsidies not previously available for crops such as barley and wheat
at the expense of less profitable crops such as oats. The conversion of grassland
to cereals, increased application of nitrogen, and increase in animal manures and
slurries over the past 40 years have inevitably affected water quality, specifically
elevated levels of nitrate. These levels were so high in the 1990s that the Ythan
catchment had the distinction of being the first in the UK to be designated a Nitrogen
Vulnerable Zone under the European Community Nitrates Directive.

Staff at Culterty Field Station, University of Aberdeen, were able to document
and describe trends in this process in great detail through a series of monitoring
programmes, data analyses, and field experiments. Data on land-use were obtained
from ‘parish returns’ – records of amounts of land under different crops and num-
bers of animals held for each farm in the parish that are returned to the Scottish
Records Office annually. These data were extracted for all parishes (community
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Fig. 15.1 Small part of the
Ythan estuary. The
photograph was taken by
Alain Zuur

administrative areas) within the catchment for land under oats, wheat, oil-seed rape,
barley, and for numbers of pigs, cattle and sheep for the period 1960s to 1990s. Lev-
els of nitrates (only small amounts can be attributed to sewage) were extracted from
databases held by the North-East River Purification Board and supplemented by the
field station’s own observations. The environmental impact of high levels of nitrates
is expected to be seen as blooms of algae in rivers and estuaries, where they form
extensive green mats that strip the oxygen from the underlying mudflats, reducing
the invertebrates available to feeding shorebirds.

Counts of shorebirds have been made every month for the past 40 years by staff
and students at the field station and most of these data make up the database held
by the British trust for Ornithology for this estuary. Mean counts for the winter
months November–February were calculated for the most abundant waders: oyster-
catcher Haematopus ostralegus, redshank Tringa totanus, dunlin Calidris alpina,
knot Calidris canutus, turnstone Arenaria interpres, bar-tailed godwit Limosa lap-
ponica and curlew Numenius arquata.

Using these data, we were able to trace possible connections from agricultural
policy and land-use change through to ecological impacts on species of high con-
servation importance, the shorebirds. The data sets are interesting because they are
typical of those available for detecting historical trends in variables that may be
linked to a current environmental impact. The time series is unusually long for eco-
logical data, but the data were not originally collected with this specific analysis in
mind (linking agriculture change with shorebird numbers) and they are imperfect in
many respects, as we shall see. All too often the ecologist has to work with whatever
data are available rather than what would be ideal. Unfortunately, it is impossible to
collect data retrospectively, unless one has a time machine.

We analysed these data to try and answer the following questions:

1. Are there any trends in the bird time series?
2. Is there a simple and obvious relationship between agricultural change and shore-

bird numbers?
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3. Is the relationship different for different species of shorebird?
4. Which aspects of land-use best account for changes in water quality and therefore

need to be targeted for restoration programmes?

To answer these questions, we split the analysis into three stages. In the first
stage, we applied a data exploration, and in the second stage, we focussed on the first
question: are there any trends in the bird time series? We used GAMs (Chapters 3
and 6) for this. The reason we used smoothing techniques will become clear after
we have looked at the data exploration. The ‘mixed’ bit is needed because the data
are time series and, as always in ecology, there is heterogeneity. In the last step of
the analysis, we included the information on land-use and agricultural changes.

15.2 Data Exploration

The dataset consists of average winter values for seven bird species (Oystercatcher,
Turnstone, Curlew, Bar-tailed Godwit, Redshank, Knot, and Dunlin) and seven
potential explanatory variables (wheat, barley, oats, cattle, sheep, pigs, and nitrate).
The best way to visualise a dataset with up to 20–25 time series is a multiple panel
graph made with the xyplot function from the lattice package (Fig. 15.2). The
data file contains the variables in columns and the years in rows. To create the mul-
tiple panel graph for these data, we need to create three columns. The first column
should contain all the variables we wish to plot along the vertical axes. Because
there are 14 variables, the second column should contain 14 times year (we need
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Fig. 15.2 Plot of the seven bird species and the potential explanatory variables. A LOESS
smoother (with default amount of smoothing) was added to enhance visual interpretation
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to concatenate Year 14 times). Finally, ID14 is the variable that tells the xyplot
function which elements belong to the same variable. In the R code below, we used
the levels option to ensure that the xyplot function places the panels of the
birds next to each other.

> data(AED); data(Ythan); library(lattice)

> Birds <- as.vector(as.matrix(Ythan[, 2:8]))

> X <- as.vector(as.matrix(Ythan[, 9:15]))

> YX14 <- c(Birds, X)

> Year14 <- rep(Ythan$Year, 14)

> N <- length(Ythan$Year)

> ID14 <- factor(rep(names(Ythan[,2:15]), each = N),

levels = c("wheat", "barley", "oats", "cattle",

"sheep", "pigs", "nitrate", "Oystercatcher",

"Turnstone", "Curlew", "BartailedGodwit",

"Redshank", "Knot", "Dunlin"))

The code below produces Fig. 15.2.

> xyplot(YX14 ∼ Year14 | ID14, xlab = "Time",

ylab = "Variable", layout = c(4, 4),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")),

panel = function(x, y){
panel.xyplot(x, y, col = 1)

panel.grid(h = -1, v = 2)

panel.loess(x, y, col = 1, span = 0.5)

I2 <- is.na(y)

panel.text(x[I2], min(y, na.rm = TRUE), '|', cex = 0.5)})

The new bit of code is the panel.text function. It plots the symbol ‘|’
wherever there is a missing value. Although it takes a lot of complicated R code to
make the xyplot graph, the results are impressive. The panels for the explanatory
variables indicate serious collinearity and a large number of missing values. Most
bird time series seem to have a peak around 1980, and redshanks, oystercatcher,
dunlin, and bar-tailed godwit seem to follow a similar pattern over time. Some
similarity between this pattern and some of the explanatory variables can also be
detected. Although more difficult to see, the different ranges of the y-axis for the
bird panels indicate a potential problem (heterogeneity) if we analyse all birds
simultaneously.

Heterogeneity by different bird species is to be expected and can be dealt with
using (i) a data transformation, (ii) standardisation, or (iii) using the varIdent
residual variance structure as discussed in Chapter 4. However, as we discussed in
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Chapter 2, a data transformation will be avoided as much as possible. We will return
to this point later.

The data exploration indicates that we can expect problems with homogeneity
and that although there may be effects on the bird numbers related to the explanatory
variables, due to the large number of missing values, it may be difficult to fit a model
that contains both the bird numbers and the explanatory variables. In fact, if anything
comes out of the analyses of these data, we should be very happy!

15.3 Estimation of Trends for the Bird Data

The shape of the trends for the birds in Fig. 15.2 suggests using a model of the form

Birdsis = αi + fi (Years) + εis εis ∼ N (0, σ 2) (15.1)

Birdsis is the average number of birds species i in the winter of year s, αi and
fi(Years) are the intercept and smoother for bird species I, respectively, and εis is
normally distributed noise with mean 0 and variance σ 2. If all the birds follow the
same pattern over time, we can drop the index i from the smoother fi(Years). However,
the shape of the smoothers in Fig. 15.2 clearly indicates that this is not the case. The
ranges of the vertical axes in the same figure are rather different and suggest using

Birdsis = αi + fi (Years) + εis εis ∼ N (0, σ 2
i ) (15.2)

The only difference with the previous formula is the index i attached to the vari-
ance; it allows for heterogeneity between bird species. It makes sense to allow for
this form of heterogeneity as some bird species are only ever present in low numbers
while other bird species are normally found in very large numbers. This is a com-
mon problem in ecology as species of interest often occur at very different levels of
abundance leading to lower and higher variances.

The following R code sets up the data for the additive mixed model in Equation
(15.2) with multiple smoothers.

> Birds7 <- as.vector(as.matrix(Ythan[, 2:8]))

> BirdNames <- c("Oystercatcher", "Turnstone",

"Curlew", "BartailedGodwit",

"Redshank", "Knot", "Dunlin")

> ID7 <- factor(rep(BirdNames, each = N),

levels = BirdNames)

> Year7 <- rep(Ythan$Year, 7)

> Oyst.01 <- as.numeric(ID7 == "Oystercatcher")

> Turn.01 <- as.numeric(ID7 == "Turnstone")

> Curl.01 <- as.numeric(ID7 == "Curlew")

> Bart.01 <- as.numeric(ID7 == "BartailedGodwit")
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> Reds.01 <- as.numeric(ID7 == "Redshank")

> Knot.01 <- as.numeric(ID7 == "Knot")

> Dunl.01 <- as.numeric(ID7 == "Dunlin")

> f7 <- formula(Birds7 ∼ ID7 +

s(Year7, by = Oyst.01, bs = "cr") +

s(Year7, by = Turn.01, bs = "cr") +

s(Year7, by = Curl.01, bs = "cr") +

s(Year7, by = Bart.01, bs = "cr") +

s(Year7, by = Reds.01, bs = "cr") +

s(Year7, by = Knot.01, bs = "cr") +

s(Year7, by = Dunl.01, bs = "cr"))

The vector Birds7 contains all bird data in a long vector. We also need a
vector ID7 that tells R which part of Birds7 belongs to a certain species (N is the
number of years that sampling took place). And obviously, we also need to copy
and paste the variable Year seven times. The variables Oyst.01, Turn.01, etc.,
are vectors consisting of zeros and ones. For example, an element of Oyst.01
is equal to 1 if the corresponding observation is an oystercatcher. These can be
used in a GAM together with the by option to model interaction between year and
species identity (which is ID7). As a result, a GAM gives 7 smoothers, one for each
species. To reduce computing time (in some of the model that will be used later),
we decided to use a cubic regression spline (bs = cr in R). The GAM itself is
implemented with the code.1

> library(mgcv); library(nlme)

> lmc <- lmeControl(niterEM = 5000,msMaxIter = 1000)

> M0 <- gamm(f7, control = lmc, method = "REML",

weights = varIdent(form =∼ 1 | ID7))

As you can see, it takes more effort to prepare the data than to do the actual
GAM command. REML estimation is used because we first want to find the optimal
random component (Chapter 4). The weights = varIdent(form =∼ 1 |
ID7) implements the different variances per species and the by command in the
smoother ensures that we have one smoother for each bird species i. The option
control = lmc was used to ensure convergence.

15.3.1 Model Validation

The first validation plot we should make is residuals (normalised) versus fitted val-
ues (Chapter 4). The normalised residuals are corrected for the different variances
per species. We can either plot residuals and fitted values for all species in one graph

1We used R version 2.6 and mgcv version 1.3–27. More recent versions of R and mgcv require a
small modification to the code; see the book website (www.highstat.com) for updated code.
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(and use for example seven different symbols or colours) or draw them in a multi-
ple panel plot with the xyplot function. We will do both. The nlme package has
some handy tools to plot residuals versus fitted values. Obviously, we can use

> E0 <- resid(M0$lme, type = "normalized")

> F0 <- fitted(M0$lme)

and then plot residuals E0 versus fitted values F0 using the plot command or the
xyplot function, but R can do this much faster. The following three commands
each plot (normalised) residuals versus fitted values or time (Fig. 15.3).

> plot(M0$lme, resid(., type = "n") ∼ fitted(.),

abline = 0, col = 1)

> plot(M0$lme, resid(., type = "n") ∼ Year7,

abline = 0, col = 1, xlab = "Year")

> plot(M0$lme, resid(., type = "n") ∼ fitted(.) | ID7,

abline = 0, col = 1,

par.strip.text = list(cex = 0.75))

The problem with this code is that it actually uses the lattice package and draws
fancy multipanel graphs, and therefore, the par(mfrow = c(2, 2)) tool to
plot multiple graphs on the same window does not work. So, how did we create
Fig. 15.3? The answer is in Sarkar (2008): Store each graph in an object, and use
the print.trellis command (see: ?print.trellis) to place the panels
on a grid.
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> p1 <- plot(M0$lme, resid(., type = "n") ∼ fitted(.),

abline = 0, col = 1)

> p2 <- plot(M0$lme, resid(., type = "n") ∼ Year7,

abline = 0, col = 1, xlab = "Year")

> p3 <- plot(M0$lme, resid(., type = "n") ∼ fitted(.) |
ID7, abline = 0, col = 1,

par.strip.text = list(cex = 0.75))

> print(p1, position = c(0, 0, 1, 1),

split = c(1, 1, 2, 2), more = TRUE)

> print(p2, position = c(0, 0, 1, 1),

split = c(2, 1, 2, 2), more = TRUE)

> print(p3, position = c(0, 0, 2, 1),

split = c(1, 2, 2, 2), more = FALSE)

The split option in the print command tells R to divide the graphical win-
dow in a 2-by-2 grid (as determined by the last the numbers) and places each graph
in a particular grid (as determined by the first two coordinates). Panel C is stretched
over two grids because the location option specifies that xmax = 2 (instead
of 1). This is quite complicated R stuff (you could have done the same in Word with
a table), but it can be handy to know. Sarkar (2008) is an excellent reference for
lattice package.

What does it all tells us in terms of biology? Are we willing to assume homo-
geneity of variance based on Fig. 15.3A? We are hesitating a little bit as the residuals
in the middle (between 100 and 400) seem to have slightly less spread. This could
be a sample size issue as only a few birds have values in this range, see Fig. 15.3C.
We can also argue that it looks homogeneous as by chance alone, 5% of the data can
be outside the −2 to 2 interval. We also plotted residuals versus time (Fig. 15.4).
Note there is an increase in residual spread for larger fitted values for some species
(e.g. redshanks, curlew, and dunlin), but not for all! One option is to use a Pois-
son distribution, but because the data are winter averages and not counts, this is
not the best option. Note that if we apply a generalised linear or additive model
with a Poisson distribution, the average winter values are rounded to the nearest
integer.

In Section 4.1, we introduced several approaches to model heterogeneity in a
squid data set. The response variable was testis weight and the explanatory variable
mantel length. In some months, variation in weight increased for larger length, but
not in every month. We used the varPower, varExp, and varConstPower
functions to allow for different spread along the variance covariate length per month.
It seems we need a similar mechanism here to model the (potential) heterogeneity
of variance. The only problem is that while we were able to use length as variance
covariate for the squid data, here we do not have such a variable as the only available
explanatory variables have many missing values. So instead we can use the fitted
values as variance covariate. All that is needed is to adjust the weights option in
the gamm function:
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Fig. 15.4 Graphical validation of the model in Equation (15.2). Residuals versus time for each
species

> M1<-gamm(f7, control = lmc, method = "REML",

weights = varComb(varIdent(form = ∼1 | ID7),

varPower(form =∼ fitted(.) | ID7)))

The variance structure creates the following additive mixed model.

Birdsis = αi + fi (Years) + εis

εis ∼ N (0, σ 2
i |α̂i + f̂i (Years)|δi )

(15.3)

The variance structure for the noise εis looks rather complicated, but it is not.
If δi is equal to 0 for all bird species i, we obtain exactly the same model as in
Equation (15.2). The ‘hats’ above α and fi indicate that these are estimates. If δi is
larger than 0, the variance is proportional to the fitted values. So, this is a variance
structure that allows for heterogeneity within a bird time series. The underlying
principle reminds us of the Poisson distribution, where the mean equals the vari-
ance, but this is a normal distribution. As well as the within-bird-time series het-
erogeneity, we still allow for a different spread per bird using the index i attached
to σ 2.

The problem with the model in Equation (15.3) is the lack of convergence.
This comes as no surprise as the model contains 7 smoothers with cross-validation
applied on each smoother, 7 variances σ i

2, and 7 δis. And even more relevant,
the data contains many gaps due to the missing values and time series are rel-
atively short. We tried several options to deal with this and actually, all failed
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(in terms of numerical convergence) or were considered not particularly helpful.
However, we believe you can learn just as much from unsuccessful approaches
as you can from successful ones. So, we now discuss some of approaches that
failed.

15.3.2 Failed Approach 1

To reduce numerical computing complexity, we initially set the degrees of freedom
for each smoother to 4, leaving it to decide later whether we need to increase or
decrease this number. This requires modifying the s function:

s(Year7, by = Oyst.01, bs = "cr", fx = TRUE, k = 5).

This was done for each smoother in the model. However, this caused a new prob-
lem; the gamm function of the mgcv package needs either a random component or
at least one smoother on which it can apply a cross-validation. Adding a random
intercept has the advantage that it also allows us to automatically model the tempo-
ral correlation within the time series. For example, consider the following model:

Birdsis = α + fi (Years) + ai + εis

εis ∼ N (0, σ 2
i × |α̂i + f̂i (Years)|δi )

ai ∼ N (0, σ 2
a )

(15.4)

Note that the intercept α no longer has an index i. Instead, there is now a random
intercept ai that is normally distributed with mean 0 and variance σ a

2. This model
is the smoothing equivalent of the random intercept mixed effects model discussed
in Chapter 5. Recall that such a model induces the compound symmetry correlation
on the time series. At this stage, it is useful to discuss this correlation structure. The
model in Equation (15.4) is not fundamentally different from Yi = Xi × β + Zi ×
bi + εi, which is the hierarchical mixed model discussed in Chapter 5. Or perhaps
we should write it as Birdsi = Xi × β + Zi × bi + εi. The Xi × β component is
the equivalent of the intercept and the smoothing curve, Zi × bi contains the ran-
dom intercept and εi the residuals. We used a vector notation: Birdsi = (Birdsi1,. . .,
Birdsi27)’ which contains the bird data of species i for all years. Just as in Chapter 5,
we can write that the marginal distribution for Birdsi is normally distributed with
mean Xi × β and covariance Vi. Equation (15.4) implies the following structure
for Vi.

⎛

⎜⎜⎜⎜⎝

σ 2
a + σ 2

i |α̂ + f̂i (Year1)|δi σ 2
a · · · σ 2

a
σ 2

a σ 2
a + σ 2

i × |α̂ + f̂i (Year2)|δi · · · σ 2
a

...
...

. . .
...

σ 2
a σ 2

a · · · σ 2
a + σ 2

i × |α̂ + f̂i (Year27)|δi

⎞

⎟⎟⎟⎟⎠
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This matrix has a dimension of 19 × 19 as each bird species was measured
over 19 years (the other years contain missing values). The covariance between two
observations of the same bird species i is σ a

2, whatever the time lag between the
two observations. The variance of bird species i depends on a bird-specific variance
σ i

2 and the fitted values in year s. (The parameter δi shows how strong the vari-
ance depends on the fitted values for species i.) The problem with this model is that
computing time on an average computer is about 15 min and convergence problems
arise. So we have to ask whether we are really interested in modelling heterogene-
ity between bird species as well as within each time series. The main underlying
questions are related to effects of agricultural use on birds. Therefore, the first form
of heterogeneity may not by of interest to this study. The easiest way to remove
between-bird heterogeneity is by standardising each time series, e.g. by subtracting
the mean of each time series and dividing by its standard deviation. The second form
of heterogeneity requires a bit more thought.

15.3.3 Failed Approach 2

We have already established that we may not be interested in between species het-
erogeneity. Then why should we use seven variances to model it? Standardisation;
subtracting the mean of each time series and dividing it by its standard deviation
ensures that each time series is scaled in the same range. This allows us to drop the
varIdent code to model different variances. The following R code standardises
the data.

> Birds7 <- as.vector(as.matrix(scale(Ythan[,2:8])))

Note that this is nearly the same code as before, except that the scale function
standardises each column in the selected part of the data matrix Ythan. We could
have used:

> Birds7 <- c(scale(Ythan$Oystercatcher),

scale(Ythan$Turnstone),

scale(Ythan$Curlew),

scale(Ythan$BartailedGodwit),

scale(Ythan$Redshank),

scale(Ythan $Knot),

scale(Ythan$Dunlin))

Yet, a third option is to use tapply. We applied models (15.2) and (15.3) again,
but this time we dropped the index i from σ i

2 and α as all the time series are stan-
dardised (all have the same variance, and a mean of 0). R code for this is

f7 <- formula(Birds7 ∼ 1+

s(Year7, by = Oyst.01, bs = "cr") +
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s(Year7, by = Turn.01, bs = "cr") +

s(Year7, by = Curl.01, bs = "cr") +

s(Year7, by = Bart.01, bs = "cr") +

s(Year7, by = Reds.01, bs = "cr") +

s(Year7, by = Knot.01, bs = "cr") +

s(Year7, by = Dunl.01, bs = "cr"))

M2 <- gamm(f7, method = "REML", control = lmc,

weights = varPower(form =∼ fitted(.) | ID7))

Again, the model with heterogeneity within the time series did not converge.

15.3.4 Assume Homogeneity?

Having tried everything we can think of, it is now time to acknowledge that for these
data, we cannot easily model the heterogeneity within a bird time series. Probably,
the data are just too short for this. There are now three options: (i) give up, (ii) trans-
form the data and make statements on the transformed data, or (iii) assume homo-
geneity over time in Fig. 15.4. We decided to go for option 3. If the heterogeneity
was more obvious, we would go for option (ii). The problem with option (ii) is that
for other data sets, we saw that a transformation changed the shape of the trends.
We readdress this issue in Section 15.5.

Before we can go into a discussion what graphs tell us in terms of biology, there
is one last issue to discuss: independence over time.

15.4 Dealing with Independence

We return to the un-standardised data. We still have the potential problem of inde-
pendence. The model in Equation (15.2) assumes that the residuals for bird species
i in year s are independent of year s – 1, s – 2, etc. One way to verify this is the auto-
correlation plot. However, due to the large number of missing values, a variogram
may be a better tool to assess temporal dependence. The following R code extracts
the residuals from the object M0 (the model in Equation (15.2)) and calculates a
(robust) variogram.

> plot(Variogram(M0$lme, form =∼ Year7 | ID7,

maxDist = 10, robust = TRUE),

pch = 16, smooth = FALSE, cex = 1.2)

The function Variogram is part of the nlme package. We used a maximum
distance of 10 years as it is unlikely that birds in year s are affected by birds in
year s – 10 (or over longer time lags). The form option specifies that the time
series structure is within a bird species. If the points are scattered along a horizontal
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line in the variogram, independence of the residuals may be assumed. Figure 15.5
indicates that this may be a valid assumption.

A more formal way of assessing dependence over time is to include a time
series correlation structure in the model and then test with the likelihood ratio
test (if the models are nested) or compare the models with a tool like the AIC
or BIC.

Adding a temporal correlation to the model in Equation (15.2) is relatively easy.

> M0A <- gamm(f7, method = "REML",

control = lmc, weights = varIdent(form=∼1|ID7),
correlation = corSpher(form =∼ Year7 | ID7,

nugget = TRUE, fixed = FALSE))

The only new code is the correlation bit. It implements a spherical correlation
structure as discussed in Chapter 7. In fact, we can try any of the following cor-
relation options: No correlation, corSpher, corRatio, corLin, corGaus,
corExp, and corAR1. R code for these models is given on the book website. The
AIC value for the model without the temporal correlation was 1342.48, and the AICs
of the models with a correlation structure were 1344.61 (corSpher), 1344.61
(corLin), 1343.77 (CorRatio), 1343.76 (CorExp), 1343.61 (CorGaus), and
1342.55 (corAR1). This means that adding a residual auto-correlation structure
does not improve the model. Hence, our ‘optimal’ model is still the one in Equa-
tion (15.2).

We now have a look at the numerical output of M0. The estimated degrees
of freedom, F-statistics, and p-values for the smoothers are obtained using the
anova(M0$gam) command and are as follows.

Parametric Terms:

df F p-value

ID7 6 146.4 <2e-16
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Approximate significance of smooth terms:

edf Est.rank F p-value

s(Year7):Oyst.01 3.626 8.000 6.101 1.72e-06

s(Year7):Turn.01 1.001 1.000 7.331 0.007861

s(Year7):Curl.01 1.001 2.000 6.839 0.001587

s(Year7):Bart.01 3.171 7.000 4.018 0.000594

s(Year7):Reds.01 3.259 7.000 4.882 7.98e-05

s(Year7):Knot.01 1.000 1.000 4.413 0.037946

s(Year7):Dunl.01 1.000 1.000 1.501 0.223209

All smoothers are highly significant, except for the Knot and Dunlin smoothers.
The fitted values (= smoother plus intercept) are given in Fig. 15.6. Three species
(oystercatcher, redshanks, and godwit) have high values around 1980 followed by a
decrease. Knot, curlew, and turnstone show a nearly linear increase since the early
1970s. Confidence bands around the smoother for dunlin are rather larger and you
should avoid drawing any conclusions for this species.

The following R code was used:

> P0 <- predict(M0$gam, se = TRUE)

> Isna <- is.na(Birds7)

> F <- P0$fit

> Fup <- P0$fit + 1.96 * P0$se.fit

> Flow <- P0$fit - 1.96 * P0$se.fit

> xyplot(F + Fup + Flow ∼ Year7[!Isna] | ID7[!Isna],

xlab = "Time", ylab = "Fitted values",

lty=c(1, 2, 2), col = 1, type = c("l", "l", "l"),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")))

Section 5.3.1 in Sarkar (2008) contains full details on the second part of this R
code. First, we predict values from model M0. Because there are missing values, we
have to remove them from the Year7 and ID7 vectors inside the xyplot. The
variables F, Fup, and Flow contain the fitted values, upper confidence band, and
lower confidence band, respectively. The F + Fup + Flow ∼ Year7 bit means
that each vector is plotted versus Year7; it is not adding them up! Information on
line type (lty) and type options are given in Sarkar (2008). Alternatively, just
change the values and see what happens.

The shape of the trends in Fig. 15.6 makes one wonder whether we could sum-
marise the oystercatcher, redshanks, and bar-tailed godwit with one trend and the
turnstone, curlew and knot with another trend. To verify whether this is indeed the
case, we can fit a model with seven trends and a model with three trends, use ML
estimation in both models, and compare them using the AIC. The following code
fits the model with three trends and with seven trends and compares them.
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Fig. 15.6 Smoothing curves (solid line) obtained by the model in Equation (15.2). Dotted lines
are 95% point-wise confidence bands

> ORB.01 <- as.numeric(ID7 =="Oystercatcher" |

ID7 =="Redshank" |

ID7 =="BartailedGodwit")
> TCK.01 <- as.numeric(ID7 == "Turnstone" |

ID7 == "Curlew" |

ID7 == "Knot")

> D.01 <- as.numeric(ID7 == "Dunlin")

> M0.3 <- gamm(Birds7 ∼ 1 +

s(Year7, by = ORB.01, bs = "cr") +

s(Year7, by = TCK.01, bs = "cr") +

s(Year7, by = D.01, bs = "cr"),

method = "ML", control = lmc)

> M0.7 <- gamm(f7, control = lmc, method = "ML",

weights = varIdent(form =∼ 1 | ID7))

> AIC(M0.7$lme, M0.3$lme)

df AIC

M0.7$lme 28 1452.157

M0.3$lme 20 1460.026

The AIC shows that the model with seven trends is better than the model with
three trends. Perhaps, we were fooled in Fig. 15.6 by the different ranges along the
vertical axes. If they are all the same, the smoothers look rather different from each
other.
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15.5 To Transform or Not to Transform

Initially, we were frustrated with the analysis of these data and after a couple
of failed approaches, we convinced ourselves that we were not interested in the
heterogeneity within a time series. We tried several transformations, and by trial and
error, we found that the square root transformation stabilised the within-bird-time
series variance. The problem is that a transformation not only removes heterogene-
ity, but it may also changes the shape of the trends (and therefore the conclusions).
Applying the transformation is simple, just use

> Birds7 <- as.vector(as.matrix(sqrt(Ythan[, 2:8])))

The rest of the code is identical. The varIdent variance structure was needed
and adding a residual auto-correlation did not improve the models. The predicted
trends for these data are given in Fig. 15.7. Except for dunlin, the shapes of the
trends are similar compared to those in Fig. 15.6. The only differences are that
for the square-root-transformed data, we can safely assume homogeneity, but the
smoothers are on the square root scale.

Time

F
itt

ed
 v

al
ue

s

14
16

18
20

22

1970 1975 1980 1985 1990 1995 1970 1975 1980 1985 1990 1995

Oystercatcher

5
6

7
8

9
10

Turnstone

0
5

10
15

Curlew

0
2

4
6

8

BartailedGodwit

15
20

25

Redshank

2
4

6
8

Knot

10
15

20
25

30

Dunlin

Fig. 15.7 Smoothing curves (solid line) obtained by the model in Equation (15.2). Square-root-
transformed bird data were used. Dotted lines are 95% point-wise confidence bands

15.6 Birds and Explanatory Variables

In the previous section, we applied additive mixed models and found that 6 of the
7 birds could be divided into two groups. The oystercatcher, redshanks, and bar-
tailed godwit follow a non-linear pattern over time with the highest values around
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1980. The turnstone, curlew, and knot follow a linear and increasing pattern over
time. Note that this is a visual observation; the actual trends are different from each
other. No pattern for dunlin could be found. The question is now how to link the
explanatory variables to either of the bird time series. The problem is that there are
only 6 years in which both the birds and the explanatory variables were measured.
The algorithm for additive modelling will use only these six years! So, there is no
way we can add the explanatory variables into the additive mixed models used in the
previous section. The other problem is that the shape of the smoothers in Fig. 15.2
indicate serious collinearity between nearly all explanatory variables. One of the
few things that we can do is to plot the smoothers for the explanatory variables and
the smoothers for the birds in one graph and see which ones are similar (Fig. 15.8).
Because the explanatory variables had missing values, we predicted these values to
avoid an erratic curve. But we did not predict values before the first year or beyond
the last year of observation per explanatory variable. We put the curves that looked
similar close to each other.

The concluding question is to decide which explanatory variable is best related
to the two bird trends. Or perhaps we need to rephrase the question to: Which one
is not related to the oystercatcher, redshanks, and bar-tailed godwit trend? The pigs,
cattle, and sheep trends are remarkably similar to the oystercatcher, redshanks and
bar-tailed godwit trend. Note that pigs and wheat follow similar patterns over time,
but none of these clearly match any of the bird trends. Unfortunately, there are not
enough observations in nitrate to say anything sensible, except that when the nitrate
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Fig. 15.8 Smoothing curves for each explanatory variable and the estimated smoothers from
Fig. 15.6. The R code for this graph is presented on the book’s website
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trend went down in the late 1970s, the oystercatcher, redshanks, and bar-tailed god-
wit trends followed. However, this is rather speculative and based on a subjective
observation.

15.7 Conclusions

The main statistical conclusions are that the seven bird time series seem to follow
two patterns. The oystercatcher, redshanks and bar-tailed godwit all follow a similar
(though not identical!) non-linear pattern over time, with the highest values around
1980. The turnstone, curlew, and knot all follow a linear (increasing) pattern over
time. No pattern for dunlin could be found. The oystercatcher, redshank, and bar-
tailed godwit trend seems to match the pigs, cattle, and sheep trends. When nitrate
patterns changed, this bird trend changed as well. However, the data on the explana-
tory variables are too sparse to go beyond giving a nice multipanel graph where the
bird trends and the trends for the explanatory variables are plotted.

These outcomes are interesting both ecologically and statistically. There were
two main groups of trends over time in the bird data; one hump backed species
group and one monotonic species group indicate that there are different ecological
processes at work in this system: higher levels of nutrient enrichment seems good for
some species, but bad for others. This may be at least in part explained by the ways
in the elevated levels of nitrate are known to affect the invertebrates the birds feeding
on. As nitrate levels increase in this system, the growth of mats of fast growing green
seaweeds (henceforth termed ‘alal mats’) is stimulated, but the spatial distribution
of these mats is very patchy. Underneath these patches, few of the invertebrates on
which birds feed survive, but between the patches of weed, the same species of
invertebrate thrive in the enriched conditions. So at low nutrient levels, the over-
all productivity of the estuary will increase, even though invertebrates are excluded
from the patchy algal mats and the estuary can ‘carry’ more birds. At high levels of
nutrients, however, the enriching effects on invertebrate numbers and biomass are
markedly reduced as the algal mats spread into previously unaffected and enriched
areas. Under this extensive cover of algal mats, the invertebrates on which birds
feed virtually disappear over much of the estuary and shorebirds decline. One of
the few species which is not reduced by the algal mats is the tiny mud snail Hydro-
bia ulvae, whose numbers may even increase within the mats. However, the tangled
filamentous structure of the mats substantially reduces the foraging efficiency of
the shorebirds so that there is no compensation for the loss of other invertebrates.
One would therefore expect a non-monotonic trend in shorebirds over time with
increasing nutrient run off as shown by oystercatcher, redshank, and bar-tailed god-
wit. Our analysis indicates that other factors are at work with respect to curlew,
turnstone, and knot: Either they do not respond to algal mats in the same way as the
other species or the continually increasing numbers on the estuary are a reflection
of demographic processes happening outside the system, perhaps on the breeding
grounds many thousands of kilometres distant. The statistical approaches used here
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have crystallised this in a way which was not apparent in previous analyses, such as
the likely different causes of changes in different shorebird species and allowed the
framing of new research questions that can be explored in this system.

15.8 What to Write in a Paper

The first question we have to ask is as follows: Can we write a paper about the
results presented in this chapter? The data analysed cover the life span of a scientific
career, yet the data are too sparse to analyse bird data and agricultural variables in
the same model. Having said this, fancy methods are not essential to compare trends
in birds with agricultural variables. The link between nitrate and the oystercatcher,
redshanks, and bar-tailed godwit trend is completely speculative and requires far
more study before anything sensible can be said. This is something that should be
made clear in the discussion of the paper! However, if you were to submit this
chapter for publication, we would include the following.

1. An introduction describing the questions.
2. A Data and Methods section explaining how the data were collected and a few

paragraphs on additive mixed modelling. Because this is a relatively new statisti-
cal method, half a page may be needed. You should explain the need for trying to
add residual temporal correlation and heterogeneity structures. The referee may
ask why you needed additive modelling, rather than just applying a transforma-
tion. Also justify why you used the Gaussian model and not the Poisson GLM or
GAM.

3. It is tempting to present Fig. 15.2, but there will be a certain repetition with the
graphs showing the final results.

4. You then need to summarise Section 15.3. Present the starting model, interme-
diate models, and the final model, (if these were not already presented in the
Methods section), give AIC tables and likelihood ratio tests, and validate the
optimal model. Present the F-values and p-values for the smoothers of the opti-
mal model. Include the smoothers (or fitted values) for the optimal model (this
is Fig. 15.6).

5. Make clear that due to the sparseness of the data, it is not possible to analyse bird
data and agricultural variables in the same model. The only sensible thing to do
is to present Fig. 15.8.

6. In the discussion, be sure not to say that sheep, barley or cattle are driving the
mean winter values of oystercatcher, redshanks, and bar-tailed godwit. If any-
thing, sheep, barley, or cattle are a measure of farming intensity, and increase
use of fertilisers together with waste from livestock may drive nitrate concentra-
tions in the Ythan. From this point onwards, the story becomes speculative, but
interesting!



Chapter 16
Negative Binomial GAM and GAMM
to Analyse Amphibian Roadkills

A.F. Zuur, A. Mira, F. Carvalho, E.N. Ieno, A.A. Saveliev, G.M. Smith,
and N.J. Walker

16.1 Introduction

This chapter analyses amphibian fatalities along a road in Portugal. The data are
counts of kills making a Gaussian distribution unlikely; restricting our choice of
techniques. We began with generalised linear models (GLM) and generalised addi-
tive models (GAM) with a Poisson distribution, but these models were overdis-
persed. To solve this, you can either apply a quasi-Poisson GLM or GAM, or use
the negative binomial distribution (Chapter 9). In this particular example, either
approaches can be applied as the overdispersion was fairly small (around 5), but with
many ecological data sets it can be considerably larger, in which case the negative
binomial GLM (or GAM) is the natural choice. As many textbooks give examples
using quasi-Poisson GAMs and GLMs and only a few using the negative binomial,
we decided to use the negative binomial distribution.

We chose GAM because the relationships between roadkills and explanatory
variables were non-linear. We address issues like collinearity, residual patterns, and
spatial correlations.

16.1.1 Roadkills

Since the second part of the twentieth century, roads have become a common feature
in contemporary landscapes. For example, in North America alone, the road network
has reached eight million kilometres and road construction is still increasing. Roads
provide people and goods mobility, and are a central element in society (Forman
et al., 2002). However, their impact on wildlife can be harmful as they (i) fragment
populations, (ii) present barriers to dispersal as well as access to food and mates,
and (iii) restrict gene flow. Also a large numbers of fatalities can occur as a result of
animal–vehicle collisions.
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The life cycle of most amphibians has an aquatic phase, corresponding to repro-
duction and to tadpole development and metamorphosis; and a terrestrial phase,
when individuals use adjacent territory for foraging, shelter, periods of dormancy or
overwintering (Semlitsch and Bodie, 2003). High levels of roadkills occur when
roads cross amphibian migration routes to and from spawning sites or during
juvenile dispersal (Langton, 2002).

The data presented in this chapter come from a two-year study on verte-
brate roadkills in a National Road of southern Portugal (IP2, stretch Portalegre-
Monforte, 27 km long). The surveyed road has paved verges with two lanes
and a moderate amount of traffic (less than 10,000 vehicles per day). Road sur-
roundings are dominated by cork Quercus suber and holm oak Q. rotundifolia
tree stands, named ‘montado’ and open land, including pastures, meadows, and
fallows.

The road was inspected for amphibian roadkills every two weeks between March
1995 and March 1997. Surveys were made by a car slowly (10–20 km per hour)
driving along the road on the hard-shoulder. Each animal found dead was identified
to species level, whenever possible, and its geographic location, on UTM coordi-
nates, was determined with help of detailed cartography (1:2000) of horizontal and
vertical road profiles and aerial photographs. All carcasses were removed from the
road to avoid double counting.

For data analysis purposes, the road was divided in 500 m segments. The
response variable is the total number of amphibian fatalities per segment. All
animals found dead on each segment were allocated to the coordinates of its middle
point. Figure 16.1 shows an example of one of the species recorded.

Detailed digital maps of land use were made through interpretation of aerial
photographs corrected with field observations. Explanatory variables were iden-
tified from these maps using a Geographic Information System. A list with all
available explanatory variables and the abbreviations used is given in Table 16.1.

Fig. 16.1 Pelobates
cultripes, one of the species
that was used in our data.
The photograph was taken by
Marco Caetano
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Table 16.1 List of explanatory variables and the abbreviation used in this chapter

Variable Abbreviation

Open lands (ha) OPEN.L
Olive grooves (ha) OLIVE
Montado with shrubs (ha) MONT.S
Montado without shrubs (ha) MONT
Policulture (ha) POLIC
Shrubs (ha) SHRUB
Urban (ha) URBAN
Water reservoirs (ha) WAT.RES
Length of water courses (km) L.WAT.C
Dirty road length (m) L.D.ROAD
Paved road length (km) L.P.ROAD
Distance to water reservoirs D.WAT.RES
Distance to water courses D.WAT.COUR
Distance to Natural Park (m) D.PARK
Number of habitat Patches N.PATCH
Edges perimeter P.EDGE
Landscape Shannon diversity index L.SDI

They include areas occupied by each land cover class, total length of roads and
water courses on a 2,000 m strip centred on each road segment; landscape indexes
(total number of patches; total perimeter of edges between different land cover
classes; and landscape Shannon diversity index which relates to landscape het-
erogeneity); and distances from the segment centre to water and to the southwest
limit of S. Mamede Natural Park (a mountain range NE-SW oriented that is known
for its high levels of humidity and rainfall, where landscapes are particularly well
preserved and are good examples of harmonious interactions between man and
nature).

The underlying ecological question in this chapter is simple: is there a relation-
ship between amphibian roadkills and any of the explanatory variables?

16.2 Data Exploration

The data were measured along the road, and the sampling positions are marked as
dots in Fig. 16.2. The R code we used for this is as follows.

> library(AED); data(RoadKills)

> RK <- RoadKills

> library(lattice)

> xyplot(Y ∼ X, aspect = "iso", col = 1, pch = 16,

data = RK)
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Fig. 16.2 Positions of the sampling points along the road

The first two commands access the data. We renamed the object RoadKills
to RK as it is shorter. The xyplot command produces Fig. 16.2. The variable
D.PARK is the distance (along the road) to the Natural Park, north of the sampling
area. It therefore represents the distance (along the road) between each sampling
point and the most northerly sampling site. If D.PARK had not been quantified,
you would need to calculate the distance between each observation and the most
northerly point yourself using the Pythagoras rule.

Using Cleveland dotplots (not shown here), pairplots, and initial GAM analyses,
we decided to square root transform the explanatory variables POLIC, WAT.RES,
URBAN, OLIVE, L.P.ROAD, SHRUB, and D.WAT.COUR.

There are 17 explanatory variables and only 52 observations. With such a low
number of observations, we prefer not to use more than 5 or 6 explanatory vari-
ables, especially if we intend to use smoothing techniques. Furthermore, correlation
coefficients between some of the explanatory variables are high. Because correla-
tion coefficients only show pairwise correlations, we used variance inflation factors
(VIF) to assess which explanatory variables are collinear and should be dropped
before starting the analyses. VIFs were also used in Appendix A. We wrote our own
R functions to calculate VIF values and these are part of our AED package. They are
calculated with the following commands.
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> RK$SQ.POLIC <- sqrt(RK$POLIC)

> RK$SQ.WATRES <- sqrt(RK$WAT.RES)

> RK$SQ.URBAN <- sqrt(RK$URBAN)

> RK$SQ.OLIVE <- sqrt(RK$OLIVE)

> RK$SQ.LPROAD <- sqrt(RK$L.P.ROAD)

> RK$SQ.SHRUB <- sqrt(RK$SHRUB)

> RK$SQ.DWATCOUR <- sqrt(RK$D.WAT.COUR)

> Z<-cbind(RK$OPEN.L, RK$SQ.OLIVE, RK$MONT.S,RK$MONT,

RK$SQ.POLIC, RK$SQ.SHRUB, RK$SQ.URBAN,

RK$SQ.WATRES, RK$L.WAT.C, RK$L.D.ROAD,

RK$SQ.LPROAD, RK$D.WAT.RES, RK$SQ.DWATCOUR,

RK$D.PARK, RK$N.PATCH, RK$P.EDGE, RK$L.SDI)

> corvif(Z)

The resulting VIF values are given in Table 16.2. As explained in Appendix A,
a cut-off value of 5 or even 3 can be used to remove collinear variables; we used 3.
To find a set of explanatory variables that does not contain collinearity, we removed
one variable at a time, recalculated the VIF values, and repeated this process until
all VIF values were smaller than 3. As a result, MONT, P.EDGE, N.PATCH, L.SDI,
and SQ.URBAN were dropped. This means that we have 12 remaining explanatory
variables. This is still a large number of variables!

We also present a scatterplot of all 12 selected explanatory versus the num-
ber of amphibian roadkills, see Fig. 16.3. We added a LOESS smoothing curve
to help interpretation. The shape of the curves and the spread of the data around the
smoothing curves do not look promising for good analysis. The only variables that
seem to have a clear relationship with the roadkills are D.PARK and D.WAT.RES.

The R code for this graph is a bit a pain, but it is worth the effort. We basically
need three columns of data. In the first column (Killing12), we copy and paste
the variable containing the roadkills 12 times.

In the second column (X12), we concatenate the data of all 12 explanatory vari-
ables. The third column (ID12) needs to contain the name of the first explanatory

Table 16.2 Variance inflation factors for the full set of explanatory variables

Variable GVIF Variable GVIF

OPEN.L 161.01 L.D.ROAD 4.41
SQ.OLIVE 34.44 SQ.LPROAD 3.38
MONT.S 3.96 D.WAT.RES 2.11
MONT 213.63 SQ.DWATCOUR 2.55
SQ.POLIC 3.89 D.PARK 2.91
SQ.SHRUB 3.32 N.PATCH 24.30
SQ.URBAN 14.03 P.EDGE 19.36
SQ.WATRES 1.98 L.SDI 10.02
L.WAT.C 3.64
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Fig. 16.3 Scatterplots of the number of amphibian roadkills (y-axis) against each of the 12 remain-
ing explanatory variables. The heading in a panel indicates which explanatory variable is plotted
along the x-axis. A smoothing (LOESS) curve was added in each panel

variable 52 times, the name of the second variable 52 times, etc. The rest is some
fancy xyplot coding.

> X12 <- c(RK$OPEN.L, RK$SQ.OLIVE, RK$MONT.S,

RK$SQ.POLIC, RK$SQ.SHRUB, RK$SQ.WATRES,

RK$L.WAT.C, RK$L.D.ROAD, RK$SQ.LPROAD,

RK$D.WAT.RES, RK$SQ.DWATCOUR, RK$D.PARK)

> Killings12 <- rep(RK$TOT.N, 12)

> I12 <- rep(c("OPEN.L", "OLIVE", "MONT.S", "POLIC",

"SHRUB", "WATRES", "L.WAT.C", "L.D.ROAD",

"L.P.ROAD", "D.WAT.RES", "D.WAT.COUR",

"D.PARK"), each = 52)

> ID12 <- rep(I12, 12)

> library(lattice)

> xyplot(Killings12 ∼ X12 | ID12, col = 1,

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

scales = list(alternating = TRUE,

x = list(relation = "free"),

y = list(relation = "same")),

xlab = "Explanatory variables",

ylab = "Number of roadkillings",

panel = function(x, y){
panel.grid(h = -1, v = 2)

panel.points(x, y, col = 1)

panel.loess(x, y, col = 1, lwd = 2)})
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Fig. 16.4 Scatterplots of the explanatory variables (y-axis) versus the spatial variable D.PARK
(distance from the first point expressed in km). The heading in a panel indicates which explanatory
variable is plotted along the y-axis. A smoothing (LOESS) curve was added in each panel

The strip and strip.default options ensure that the boxes with the labels
are white. The scales option allows for different ranges along the x-axes, but all
y-axes have the same range. The panel function adds a grid, points, and a LOESS
smoother; see also the bioluminescent case study in Chapter 17.

Now that we have this fancy R code, we would like to go one step back and focus
on collinearity again. Figure 16.4 shows a similar plot as in Fig. 16.3, except that
the explanatory variables are now plotted along the y-axis and the variable distance
to the first point (D.PARK) along the x-axis.

We made this graph to get a feel for the spatial patterns of the explanatory vari-
ables. The variables OLIVE, D.WAT.RES, and L.D.ROAD show a clear pattern with
D.PARK. Note that non-linear relationships are not picked up by the VIF. GAMs are
rather sensitive to collinearity (Chapter 3), and we should not use D.PARK together
with any of these three variables as they all represent the spatial position of the
sampling locations. Because D.PARK has a clear ecological interpretation and it is
easier to use in the independence verification later on, we decided to drop OLIVE,
D.WAT.RES, and L.D.ROAD. The R code to produce Fig. 16.4 is similar to the code
used for Fig. 16.3 and is not reproduced here.

16.3 GAM

The data exploration did not show any clear linear patterns between roadkills and
the explanatory variables; so we need to move on to using a GAM. Furthermore,
an initial GLM with a Poisson distribution and logarithmic link function gave an
overdispersion of 5, and we therefore proceed with a GAM with a negative bino-
mial distribution and logarithmic link function. The negative binomial distribution
(Chapters 8 and 9) is useful if the variance is much larger than the mean. As it is for
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this data set, where the mean number of roadkills is 25.9 and the variance is 589.3.
Recall from Chapter 9 that the negative binomial GAM is given by

RKi ∼ NB(μi , k)

E(RKi ) = μi and Var(RKi ) = μi + μ2
i

k

μi = eα+ f1(OLIVEi )+...+ f10(D.WAT.COURi )

RKi is the number of amphibian roadkills at site i, where i = 1, . . . , 52. The
notation fj(X) stands for ‘smoothing function of the explanatory variable X’, and NB
is a negative binomial distribution with mean μi and dispersion parameter k. The
explanatory variables in the model are OPEN.L, MONT.S, SQ.POLIC, SQ.SHRUB,
SQ.WATRES, L.WAT.C, SQ.LPROAD, SQ.DWATCOUR, and D.PARK. To fit the
GAM, we can use the following R code.1

> library(mgcv)

> library(MASS)

> M1 <- gam(TOT.N ∼ s(OPEN.L) + s(MONT.S) +

s(SQ.POLIC) + s(SQ.SHRUB) + s(SQ.WATRES) +

s(L.WAT.C) + s(SQ.LPROAD) + s(SQ.DWATCOUR) +

s(D.PARK), family = negative.binomial(1),

data = RK)

The package MASS is needed for the negative binomial distribution. The (1) in
the code negative.binomial(1) means that the gam function will estimate
the optimal dispersion parameter k.

The problem here is that this model gives an error message: Model has more
coefficients than data. Because the model is applying cross-validation,
some combinations of smoothers will use more than 52 degrees of freedom and we
have only 52 observations. One option is to set an upper limit to the degrees of
freedom; just extend the code with s(OPEN.L, k = 4) and do this for all terms
in the GAM.

To find the optimal model, you can use shrinkage smoothers; these will also con-
sider 0 degrees of freedom. If the model has multiple smoothers with 0 degrees of
freedom, then you can drop them simultaneously. It is a faster alternative to a step-
wise backward selection using, for example, the AIC or GCV. Shrinkage smoothers
are obtained by using the bs option inside the s command, and specifying one of
the shrinkage smoothers, for example, s(OPEN.L, k = 4, bs = "ts") or
s(OPEN.L, k = 4, bs = "cs"). You can do this for all smoothers.

The anova command can be used to obtain F-statistics and approximate
p-values for the smoothers. Results are not shown here, but most of the smoothers
are not significant at the 5% level. Dropping the least significant smoother, and
refitting the model until all terms are significant, is a highly confusing exercise for

1We used R version 2.6 and mgcv version 1.3–27. More recent versions of R and mgcv require a
small modification to the code; see the book website (www.highstat.com) for updated code.
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this data set. In one round, variables x and y are highly significant, and in another
round, variable z is highly significant, but not x and y. This is clear evidence that
there is still a certain degree of collinearity in the model. However, whichever model
we applied, the variable D.PARK was always significant.

Another problem with this whole approach is that by setting an upper limit to
the degrees of freedom, we may miss important variables that have a highly non-
linear effect. We therefore follow a different model selection approach of forward
selection. We started with a GAM that used only one explanatory variable, fitted 9
different models, and compared their AICs (obtained by the AIC command). The
model with the (by far) lowest AIC was the one with D.PARK. Its AIC was 352.5,
whereas the second best model (with only OPEN.L) had an AIC of 423.2. We then
fitted 8 GAMS, each with two explanatory variables, one which was D.PARK. The
combination D.PARK and OPEN.L had the lowest AIC (340.3). We then continued
with GAMs containing 3 smoothers: D.PARK, OPEN.L, and a third variable, but
no combination gave a model with a better AIC and significant smoothers. Hence,
following a forward selection approach, we end up with D.PARK and OPEN.L. To
run this model in R, use

> M2 <- gam(TOT.N ∼ s(OPEN.L) + s(D.PARK),

family = negative.binomial(1), data = RK)

> anova(M2)

Family: Negative Binomial(28.7654)

Link function: log

Formula:

TOT.N ∼ s(OPEN.L) + s(D.PARK)

Approximate significance of smooth terms:

edf Est.rank F p-value

s(OPEN.L) 8.107 9.000 3.641 0.00282

s(D.PARK) 8.727 9.000 26.509 6.78e-13

The smoother for D.PARK is highly significant, and the OPEN.L smoother has
a p-value of 0.003. The estimated smoothers are given in Fig. 16.5. The pattern for
D.PARK can be seen in all sub-optimal models and also in the data exploration
graphs. It shows a clear decrease along the gradient up to 18 km from the park and
a slight increase after that distance. It is important to note that D.PARK reflects
the distance to a mountain range where rainfall and humidity are higher than in
surrounding flat areas. A decreasing gradient in these environmental conditions is
expected to take place along the road as we move south. Moreover, both edges of
the sampled road are in the boundaries of two localities (Portalegre and Monforte)
with an agriculture matrix of small orchards and vegetable gardens. These are places
where water availability in small ponds and channels for irrigation proposes is usu-
ally high. So the pattern found for D.PARK smoother is consistent with amphibian
needs, concerning water availability. As higher amphibian abundances are expected
in moist and wetter areas you would expect higher numbers of roadkills in these
environments. The highest fatalities occurring in the first few kilometres of the
sampled road probably also reflects the cumulative effect of water availability on
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Fig. 16.5 A: Smoother for OPEN.L. B: Smoother for D.PARK. Both smoothers are from the
optimal GAM model

mountain range and land use at this end of the road. At the other end of the road,
only the land use is influencing the results.

The shape and interpretation of the smoother for OPEN.L is unclear. Based on
the vertical ranges in both panels, the variable D.PARK contributes more to the
fitted values than OPEN.L. We are rather tempted to drop OPEN.L from the model
as we expect that the bumpy pattern may reflect some collinearity problems between
D.PARK and OPEN.L. Figure 16.4 already indicated some sort of pattern between
them, and perhaps, it was not a good idea to use them both.

The output of the summary command (not shown here) shows that this model
explains 93.7% of the variation, and the dispersion parameter for the negative
Binomial distribution is 28.7 (see also Chapter 9).

As part of the model validation, we also need to look at independence. Sites
close to each other may have similar roadkill levels. To verify this, we can plot the
residuals against the spatial coordinates. The problem is that the ranges along the
horizontal and vertical axes in Fig. 16.2 make it rather difficult to do this. However,
we can distort the shape of the picture a little bit by omitting the aspect option in
the xyplot command:

> E <- resid(M2, type = "pearson")

> I <- vector(length = length(E))

> I[E < 0] <- 1

> I[E >=0] <- 16

> library(lattice)

> xyplot(Y ∼ X, cex = 2 * abs(E) / max(abs(E)),

pch = I, col = 1, data = RK)

The resulting graph (Fig. 16.6) shows the distorted road, but it allows for a
visual inspection of the residuals. There are no immediate clear clusters of nega-
tive or positive residuals, and there are no clear clusters of large (in absolute sense)
values.
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Another part of the model validation process consists of plotting the residuals of
the optimal GAM model versus all explanatory variables; see Fig. 16.7. You should
not be able to see any patterns in these graphs. In this case, there are some patterns,
but they are not strong enough as judged by the AIC (adding any of these terms as a
smoother to the model results in higher AIC or non-significant smoothers) to be of
concern.
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The R code to produce Fig. 16.7 is similar to the code used for Figs. 16.3 and
16.4 and is not presented here. Just replace the first column for the vertical axes by
the residuals obtained by residuals (M2, type = "pearson").

16.4 Understanding What the Negative Binomial is Doing

Before continuing with the GAMM section, we show what the negative binomial
model is doing. In this discussion, it is easier to use a model that only con-
tains D.PARK. Besides, we were not impressed with the role of OPEN.L any-
way. The following code fits the negative binomial GAM with only D.PARK as a
smoother.

> M3 <- gam(TOT.N ∼ s(D.PARK), data = RK,

family = negative.binomial(1))

The estimated smoother has a similar pattern as Fig. 16.5B. The estimated para-
meter k is 11.8. To better visualise what this model is doing, we will draw the fitted
values on the real scale, add confidence bands around the fitted values, and super-
impose values from a negative binomial distribution with the mean value given by
the fitted GAM values and the dispersion parameter of 11.8. The following code
achieves this, and the results are given in Fig. 16.8.

> M3Pred <- predict(M3, se = TRUE, type = "response")

> plot(RK$D.PARK, RK$TOT.N, cex = 1.1, pch = 16,

main = "Negative binomial GAM",

xlab = "Distance to park",

ylab = "Number of road killings")
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Fig. 16.8 Fitted values (solid line) and approximate 95% confidence bands (dotted lines) for the
mean obtained by the negative binomial GAM. The large filled dots are observed values, and the
small dots are 100 random samples per site taken from a negative binomial distribution
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> I <- order(RK$D.PARK)

> lines(RK$D.PARK[I], M3Pred$fit[I], lwd = 2)

> lines(RK$D.PARK[I], M3Pred$fit[I] +

2 * M3Pred$se.fit[I], lty = 2, lwd = 2)

> lines(RK$D.PARK[I], M3Pred$fit[I] -

2 * M3Pred$se.fit[I], lty = 2, lwd = 2)

> for (i in 1:52){
y <- rnbinom(100, size = 11.8, mu = M3Pred$fit[i])

points(rep(RK$D.PARK[i], 100), y, cex = 0.5)}

The predict command takes the results from the GAM model and predicts
fitted values on the response scale. The plot command sets up the graph with
the observed values (pch = 16 produces filled circles). The lines commands
are used to draw the fitted values (solid thick line in the middle) and approximate
pointwise 95% confidence bands (thick dotted lines) for the mean. So far, we have
used no new R code; all this was used earlier in Chapter 3. The new bit comes
now. The loop takes the fitted values at site i (given by μ = M3Pred$fit[i]),
and using a parameter of k = 11.8, it draws 100 values from a negative binomial
distribution, which are superimposed on the graph with the points command at
the value of D.PARK for each the site. It gives an impression of the likely (road
killing) values at any particular site. Unfortunately, it is rather difficult to draw the
negative binomial density curves on top of this graph as we did in Chapter 2 for
the Normal distribution. Figure 16.9 shows density curves for different values along
the D.PARK gradient, and you can imagine these density curves on top of the fitted
values in Fig. 16.8.

Density curves from a Poisson GAM are considerably less wide.
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16.5 GAMM: Adding Spatial Correlation

In the previous section, we applied a GAM and found that the optimal model con-
tains a smoother for D.PARK and OPEN.L. The residuals were plotted against the
spatial coordinates, and we could not see any clear spatial patterns in these residu-
als. Instead of making this plot, we can also make a variogram of the residuals. The
easiest option is to use the function Variogram from the nlme package, which
is designed to work with the gls, lme, and gamm functions. All we need to do
now is to rerun the GAM as a GAMM, just like we reran the linear regression with
a GLS in Chapter 4 and use the Variogram function on its results. The code is
given below and the resulting graph in Fig. 16.10, where there is a minor indication
that points close to each other are more similar than points further separated along
the road (this can be seen from a slightly increasing pattern in the variogram). How-
ever, one can equally well argue that the points form a horizontal band of points,
indicating independence.

> library(nlme)

> RK$D.PARK.KM <- RK$D.PARK / 1000

> M4 <- gamm(TOT.N ∼ s(OPEN.L) + s(D.PARK), data = RK,

family = negative.binomial(theta = 11.8))

> M4Var <- Variogram(M4$lme, form =∼ D.PARK.KM,

nugget = TRUE, data = RK)

> plot(M4Var, col = 1, smooth = FALSE)

It is also possible to add a spatial correlation structure to the model and see
whether it improves anything. This can easily be done by using one of the available
correlation structures corExp, corSpher, corRatio, or corGaus. According
to the protocol defined in Chapters 4 and 5, we should start with a model containing
smoothers of all explanatory variables. However, such a model did not converge. We
therefore used the optimal model from the GAM with D.PARK and OPEN.L and
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Fig. 16.10 Variogram of the residuals of the optimal GAM model with D.PARK and OPEN.L
as smoothers. The variogram indicates independence as the points seem to form almost a cloud of
horizontal points. Spatial correlation is present if we can see an increasing pattern up to a certain
level
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added a spatial correlation structure. Of all the spatial correlation structures, only
the corGaus converged. This model is fitted by the following R code.

M5 <- gamm(TOT.N ∼ s(OPEN.L) + s(D.PARK), data = RK,

family = negative.binomial(theta = 11.8),

correlation = corGaus(form =∼ D.PARK.KM,

nugget = TRUE))

However, the estimated range is close to 0, meaning that the chosen correla-
tion structure makes no sense. When fitting these models without the smoother for
OPEN.L, most convergence problems disappeared, but the spatial correlation func-
tions gave rather different ranges and sills. It may be better to choose the range and
sill interactively based on the residuals from the optimal GAM models in Fig. 16.10.

16.6 Discussion

This chapter provides an example of a data analysis that shows how important it is
to do a good model validation and how confused you can get from a GAM if you
ignore collinearity before starting the analysis. Having a large number of explana-
tory variables that are all linked to the spatial position of the sites (distance to water,
distance to a park, etc.) does not help.

The results indicate that the variable D.PARK is the most important variable
explaining amphibian roadkills. The optimal GAM model also contained OPEN.L,
but the shape of the smoother is difficult to interpret and the model contained a small
(tiny) amount of residual spatial correlation.

16.7 What to Write in a Paper

You need to emphasise the data exploration and problems with collinearity. You
also need to discuss the interpretation of the variable D.PARK and why it was used
as an explanatory variable. It is important to explain that there is no violation of
independence in the model.



Chapter 17
Additive Mixed Modelling Applied on Deep-Sea
Pelagic Bioluminescent Organisms

A.F. Zuur, I.G. Priede, E.N. Ieno, G.M. Smith, A.A. Saveliev, and N.J. Walker

17.1 Biological Introduction

The oceans, with a mean depth of 3,729 m and extending to a maximum depth of
11 km comprise the largest habitat on earth. The distribution of living organisms in
this vast environment is far from uniform and description of this variation in space
and time is challenging, both from the point of view of sampling and of statistical
analysis. Most life in the oceans is dependent on primary production in the sur-
face layers, generally in the epipelagic zone down to a depth of 200 m, where there
is sufficient solar radiation to sustain photosynthesis. Microscopic algae or phyto-
plankton containing the pigment chlorophyll intercept solar light and use the energy
to combine CO2 and water to produce simple sugars polysaccharides, oils, proteins,
and all the other constituents of the living organism. The algae and phytoplankton
are either consumed by planktonic animals or dies loses buoyancy and becomes
part of the downward stream of particulate organic matter (POC) falling towards the
sea floor. The primary consumers themselves produce faecal pellets that enhance
the POC flux and also form the basis of the food chain in the surface layers of the
oceans. Predators living at greater depths also ascend at night to feed on the surface
riches and then descend during the day digesting and excreting as they go. Thus,
surface-derived production is exported downwards by passive and active processes
sustaining life throughout the water column down to the abyssal sea floor.

There is therefore a general pattern of decrease in species abundance and biomass
with depth. There are linear and non-linear components to this decline. Pressure,
which increases linearly with depth, tends to disrupt biochemical reactions so that
deep living organisms have acquired specially adapted protein structures. Below
the photic zone, temperatures become lower, defining a cut off at the thermocline
beneath which biochemical processes are slower. In this zone, biomass consumes
oxygen, which in the absence of replenishment by photosynthesis can result in an
oxygen minimum zone at around 1,000 m depth where life can become impossible.
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Below this depth, sea water is cold, well-oxygenated, and ventilated by water orig-
inating from the sinking of cold water in the polar regions. Non-linearities can also
be introduced by the presence of distinct water masses of different densities stacked
on top of each other at different depths producing a layered effect in the ocean.
Widder et al. (1999), for example, describes high animal abundances in a thin layer
of less than a metre thick in the Gulf of Maine at a density discontinuity.

Most deep sea organisms are capable of emitting light in the form of biolumi-
nescence. Usually blue light is produced either from discrete light organs or as
luminescent secretions released into the water. This luminescence can be mechan-
ically stimulated and is either the result of an alarm response by the organism or
in the case of fragile animals, disintegration, and release of luminescent material
into seawater. This is the mechanism that produces the so-called phosphorescent
wake of ships and boats on calm nights in the open ocean. For scientific investiga-
tions, bathyphotometers are used. These work by pumping water through a cham-
ber equipped with a light sensor, which counts the number of photons produced
per litre of water. This system works well in the surface layers where organisms
may occur at over 1,000 m–3 but pumping becomes impractical at depths greater
than 1,000 m where organisms are rare. For investigations in deeper waters, Priede
et al. (2006) developed a free-fall vehicle with a downward looking high sensitiv-
ity ISIT (Intensified Silicon Intensified Target) video camera focussed on a 0.19 m2

mesh screen that filled the field of view of the camera. Flashes of light produced by
luminescent organisms impinging on the screen as it descends at 0.6 m·s–1 through
the water column are counted to estimate the number of bioluminescent organisms
per m3 of seawater at different depths. Since over 80% of deep sea organisms are
capable of luminescence, this is a novel means of producing continuous vertical
profiles of marine life abundances. In practise, the ISIT profiler cannot be used at
depths less than 300 m, because surface light could damage the sensitive camera and
obscure bioluminescent flashes. Luminescent sources are counted over 30-s time
samples, which correspond to a depth interval of 18 m between readings depend-
ing on the exact descent rate of the lander, which can vary slightly from profile
to profile.

Abundance of deep-sea bioluminescent organisms is also dependent on the inten-
sity of overlying primary production that can vary considerably in different parts of
the ocean. Temperate latitudes are characterised by highly seasonal peaks of pri-
mary production in the spring followed by a fall out of POC towards the seafloor
during summer, whereas in the centre of tropical gyre regions, primary production is
low and uniform throughout the year (Longhurst, 1998). In addition to seasonal and
regional differences, primary production can be very irregular, occurring in patches
such as eddies of water spinning in the vicinity of oceanic fronts.

Bradner et al. (1987), using a free-falling photomultiplier device, concluded
that in the Pacific Ocean off Hawaii bioluminescence decreases exponentially with
depth. The first results from the ISIT free-fall profiler in the Tropical Atlantic Ocean
indicated a monotonic decline in abundance with depth, but the relationship was not
truly exponential (Priede et al., 2006). These studies, however, gave no information
on seasonal changes.
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17.2 The Data and Underlying Questions

The data analysed in this chapter were gathered during a series of four cruises of
the Royal Research Ship Discovery over two years (2001 and 2002) in the temper-
ate NE Atlantic west of Ireland (Gillibrand et al., 2006); see Fig. 17.1. The primary
purpose of the cruises was to investigate deep-sea fish living on the sea floor in the
Porcupine Seabight and on the Porcupine Abyssal Plain. Cruises were organised
in spring and late summer to collect samples before and after the seasonal down-
ward flux of POC that occurs in June and July (Lampitt et al., 2001). Timing of the
cruises could not be precisely controlled since ship allocation is determined by con-
flicts between requirements of different programmes and logistic considerations. In
2001, the cruises were in April and August, and in 2002, they were in March and
October. The ISIT free-fall profiler was deployed opportunistically between trawl-
ing and other sampling operations. Each location where the ship stopped to launch
the profiler is termed a station. Depending on the weather conditions, the crew would
then prepare to launch the instrument over the stern (back) of the ship as it moved
forward slowly at approximately 1 knot. Once the equipment was streaming behind
the ship, it was released and allowed to fall towards the sea floor. A timer activated
the recording system after a set delay; so the depth of starting the recording and the
precise location of the profile depended on the promptness of deck and crane oper-
ations by the ship’s crew. This introduced inevitable variation in data collection. At
the maximum depth of 4,800 m, the descent would take over two hours, greater than
the maximum one-hour recording capacity of the ISIT video system. The recorder
was therefore set to start and stop at intervals to ensure sampling between the surface
and the sea floor. Sometimes sampling was concentrated at particular depths. When
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the vehicle had reached the sea floor an acoustic command from the ship, triggered
release of ballast, and the vehicle ascended because of its positive buoyancy and was
recovered back on board the RRS Discovery.

As there were no previous data of this kind to inform a formal sampling design,
three aims influenced final sample design, which was also constrained by the ongo-
ing ship programme: (i) to produce some replicates as close together as possible
in time and space, (ii) to investigate spatial variation in waters of different depths,
and (iii) to produce a balanced set of samples across the seasons. It was evident
as soon as the first data were viewed that, particularly in summer and autumn, a
simple paradigm of an exponential decrease with depth was inappropriate. This has
resulted in the need for a sophisticated approach to the statistical analysis describing
the profiles and answering questions about spatial homogeneityover the geographi-
cal sample area and about seasonal differences.

The aim of this chapter is not only to analyse the data but also to explain how
to make multi-panel graphs for grouped data. We have used these graphs in nearly
every chapter, but here we will use them in more detail and also make our own
panel functions. A detailed explanation of these graphs can be found in Chapter 3 of
Pinheiro and Bates (2000). They used specific functions from the nlme package to
create multi-panel figures. Instead of using the Pinheiro and Bates plot function
for grouped data, we will use the more flexible xyplot function from the lattice
package. We show that intelligent use of graphs considerably simplifies the statis-
tical analysis. Perhaps we should phrase this differently. Good multi-panel graphs
help us to develop questions in cases when you are not 100% sure in which direc-
tion to steer the analysis. Call it a ‘hypothesis generating brainstorming session’.
Therefore, we start constructing multi-panel graphs for grouped data (which can
also be seen as part of the data exploration), and this will help us decide what type
of statistical models to apply and how to apply them.

17.3 Construction of Multi-panel Plots for Grouped Data

Possible explanatory variables are time (of the day), month, year, station, season,
latitude, longitude, and depth. Except for the last three variables, all are nominal.
Figure 2.11 in Chapter 2 shows the bioluminescence sources per m2 plotted against
depth for each individual station. The graph indicates that the profiles from stations
4, 5 and 10 can be dropped, as the depth range is considerably smaller than for
the other profiles. The question is now which profiles are similar and which are
different. We discuss various different approaches.

17.3.1 Approach 1

Measurements took place in months 3 (March), 4 (April), 8 (August), and 10
(October). It may be the case that profiles from the same month are similar and
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Fig. 17.2 Source–depth profiles per month. Each line represents a station. Note that the April
profiles are similar. The graph may be improved by allowing for different ranges along the
vertical axes

profiles from different months are dissimilar. Before applying complicated statisti-
cal methods to test this, we will draw a multi-panel graph. It has four panels. The
first panel contains the profiles from month 3, the second panel from month 4, etc.
The following R code accesses the data and draws the multi-panel graph with four
windows (Fig. 17.2).

> library(AED); data(ISIT)

> ISIT$fMonth <- factor(ISIT$Month)

> ISIT$fStation <- factor(ISIT$Station)

> ISIT$fYear <- factor(ISIT$Year)

> ISIT2 < -ISIT[ISIT$fStation != "4" &

ISIT$fStation != "5" &

ISIT$fStation != "10" ,]

> library(lattice)

> MyLines <- function(xi, yi, ...){
I <- order(xi)

panel.lines(xi[I], yi[I], col = 1)}
> xyplot(Sources ∼ SampleDepth | fMonth, data = ISIT2,

groups = fStation, xlab = "Depth", ylab = "Sources",

panel = panel.superpose,

panel.groups = MyLines)
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The code starts by accessing the data. The object ISIT2 is identical to ISIT
(original data), except that stations 4, 5, and 10 are removed. It then creates a
function called MyLines. Its task is to draw a line in the panels, while avoiding
spaghetti plots. Finally, the xyplot creates a multi-panel figure with four windows.
Each panel corresponds to a month. The option groups specifies that the data from
the same station are grouped. The command panel = superpose ensures that
lines for all stations (defined by groups) from the same month are superimposed in
the same panel. Finally, the panel.groups option specifies which task should be
carried out on the data defined by the groups option (station in this case). It calls
our own function MyLines. The graph shows that the profiles in April are similar,
but there are more differences between the profiles in other months. There is also
more variation in the sources in the first 2,000 m compared to the deeper depths. This
immediately indicates problems with heterogeneity. However, the April profiles do
not seem to have this problem. This means that we may need models that allow for
heterogeneity along depth in some months or stations, but not in all. Stations 1, 2,
and 3 were all completed as close as possible to each other and all within a period
of 90 hours, indicating that these can be considered as good replicate samples.

The measurements were taken in four months spread across two years, and the
xyplot can easily be extended to draw a multi-panel plot with month and year
information. We can also tidy up our R code. Panel labels now have a white back-
ground, the y-axes are allowed to have different ranges, and the label along the y-axis
has m–3, something that may take some time to work out how to do. We also divided
depth by 1,000 to minimise the number of zeros in the labels along the horizontal
axes. More sophisticated methods exist for this, see, for example, the labels option
in the xyplot help file.

> xyplot(Sources ∼ SampleDepth / 1000 | fMonth * fYear,

groups = fStation, data = ISIT2,

strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...),

scales = list(alternating = TRUE,

x = list(relation = "same"),

y = list(relation = "free")),

xlab = "Depth (km)",

ylab = expression(paste(Sources," m"ˆ{-3}, "")),

panel = panel.superpose,

vpanel.groups = MyLines)

The resulting graph in Fig. 17.3 shows that measurements in April and August
only took place in 2001 and the March and October sampling only in 2002.

This makes it impossible to test for a month-year interaction, and we only use
month as an explanatory variable. Similar problems exist for the explanatory vari-
able time of the day. This reduces the explanatory variables to depth, month, sta-
tion, latitude, and longitude. There is also a risk with the last three variables as
each station was at a unique latitude and longitude (Fig. 17.1), a certain degree of
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Fig. 17.3 Source–depth profiles by year and month. The lower four panels are for 2001 and the
upper four panels for 2002. From left to right are the months

collinearity exists between station against latitude and longitude. This may become
an issue if we use models that contain station as a factor, and latitude and longitude
as smoothers or continuous explanatory variables.

The results so far indicate that there is a non-linear depth effect. In some months,
the profiles are similar and in other months, profiles are not that similar, and
there is heterogeneity between groups of profiles and within a station along depth.
In the next section, we need a statistical model that describes the sources as a
function of depth, station, month, latitude, and longitude. A possible model is of
the form

Sis = αi + fi (Depths) + Monthi + εis εis ∼ N (0, σ 2 × |Depth|δi ) (17.1)

The sources at station i at depth s, Sis, are modelled as an intercept that differs
per station, a smoothing function of depth, a month effect, and εis is the unexplained
information. The smoothing function f has an index i indicating that the shape of the
smoother can be different per station. This means that the source–depth relationship
is allowed to differ per station. From a computing point of view, this is rather ambi-
tious as there are 17 stations. Furthermore, the multiple panel graph in Fig. 2.11
indicates that we may expect heterogeneity along the depth gradient. Recall from
Chapter 4 that there are different ways of implementing such an error structure. One
option is the varPower method given in Equation (17.1). It models the residual
spread for profile i in such a way that its variance is proportional to the variance
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covariate Depth. It is also possible to attach an index i to the variance σ 2. This
allows for a different spread per station. Other alternatives exist and will be consid-
ered below. The only information that has not been used yet is spatial location. The
model in Equation (17.1) assumes that residuals from different depths and stations
are uncorrelated.

It may not be possible to fit the proposed model as it requires 17 smoothers with
different degrees of freedom and a large number of variance components. However,
the shape of the smoothers in Figs. 17.2, 17.3, and 17.4 indicate that various profiles
are similar, and perhaps, we can replace these by one smoother. This means that
Equation (17.1) can be changed into

Sis = αi + f j (Depths) + Monthi + εis εis ∼ N (0, σ 2 × |Depth|δi ) (17.2)

The only difference is the index attached to the smoother: a j instead of an i. We
are now looking for groups of profiles that can be modelled by a single smoother.
Hopefully, j will take only a limited number of values. Something like j = 3, 4, 8, and
10 referring to the four months. In this case, profiles of each month are modelled
by a single smoother for each month and we end up with a model that has only
four smoothers. We could also try a model with only one smoother. However, the
shape of the smoothers in Figs. 17.2, 17.3, and 17.4 indicate that things will not be
as simple as this. The smoothers from month 4 (station 1, 2, and 3) are very similar
and may be summarised by only one smoother, but then it becomes rather difficult to
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and 3, (ii) stations 6 and 9,
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group profiles based on eyeballing. The original motivation for making the grouped
multi-panel graphs was to detect groups of profiles.

17.3.2 Approach 2

Another way to group profiles is based on their geographical position. We can look
at the map in Fig. 17.1 and group stations that are close to each other. A slightly
less subjective approach is to calculate distances between the stations and apply
clustering on the (Euclidean) distance matrix. The results can be presented in a
dendrogram (Zuur et al., 2007). Judging from the dendrogram which stations should
be grouped together is still subjective, but less subjective than looking at the map in
Fig. 17.1. The following R code extracts the x- and y-coordinates for each station
(it would have been easier to read them from a 16-by-2 ASCII file), calculates the
Euclidean distances between the 16 stations, applies clustering with average linkage
(Zuur et al., 2007), and presents the results in a dendrogram (Fig. 17.4). Stations that
are grouped first (at the bottom) are close to each other.

> Xcoord <- vector(length = 16)

> Ycoord <- vector(length = 16)

> UStation <- unique(ISIT2$Station)

> for (i in 1:16) {
Xcoord[i] <- ISIT2$Xkm[UStation[i]==ISIT2$Station][1]
Ycoord[i] <- ISIT2$Ykm[UStation[i]==ISIT2$Station][1]

}
#Calculate a distance matrix between the 16 stations

#using Pythagoras

> D <- matrix(nrow = 16, ncol = 16)

> for (i in 1 : 16){
for (j in 1 : 16){
D[i,j] <- sqrt((Ycoord[i] - Ycoord[j]) ˆ 2 +

(Xcoord[i] - Xcoord[j]) ˆ 2)}}

> colnames(D) <- unique(ISIT2$Station)

> rownames(D) <- unique(ISIT2$Station)

> MyNames <- unique(ISIT2$Station)

#Apply clustering

> Dist <- as.dist(D)

> hc <- hclust(Dist, "ave")

> plot(hc, labels = MyNames)

The dendrogram in Fig. 17.4 suggests using the following groups of stations:
(i) stations 1, 2, and 3, (ii) stations 6 and 9, (iii) stations 7, 8, and 11, (iv) stations
12, 13, 14, 15, and 19, (v) stations 16 and 17, and (vi) station 18. It should be noted
that this grouping is only based on the geographical position of the stations and
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information on sources at these stations is not taken into account. Comparison with
Fig. 17.1 shows that stations 1, 2, and 3 are very close to each other, and stations 16,
17, and 18 are the offshore stations. Between these two groups are stations within
the mouth of the Porcupine Seabight.

17.3.3 Approach 3

The last approach used here to group profiles is as follows. Two profiles can be
labelled as similar if they are highly correlated. The problem is that we cannot calcu-
late a (Pearson) correlation coefficient because the data are not measured at exactly
the same depths. For example, the first four measurements of station 1 are at 517,
547, 582, and 614 m. For station 2, these are 501, 865, 989, and 927 m. One way to
get source values at the same depth at both stations is to apply additive modelling
on each profile and predict source values at predefined depth intervals. This gives
us two profiles with (predicted) values at the same depth, allowing us to calculate
a correlation coefficient. If we do this for all stations, we can calculate a 16-by-16
correlation matrix. To visualise the patterns in this matrix, non-metric multidimen-
sional scaling or clustering can be used to identify groups of profiles.

The following R code was used:

> MyDepth <- seq(from = min(ISIT2$SampleDepth),

to = max(ISIT2$SampleDepth), by = 25)

> NEWSOURCES <- matrix(nrow = 175,ncol = 16)

> NEWSOURCES[] <- NA

> library (mgcv)

> j <- 1

> for (k in MyNames){
Mi <- gam(Sources ∼ s(SampleDepth), data = ISIT2,

subset = (ISIT2$Station == k))

Depthi <- ISIT2$SampleDepth[ISIT2$Station == k]

I1 <- MyDepth > min(Depthi) & MyDepth < max(Depthi)

mynewXdata <- data.frame(SampleDepth = MyDepth[I1])

M.pred <- predict(Mi, newdata = mynewXdata)

NEWSOURCES[I1,j] <- M.pred

j <- j + 1 }
> D <- cor(NEWSOURCES, use = "pairwise.complete.obs")

> colnames(D) <- unique(ISIT2$Station)

> rownames(D) <- unique(ISIT2$Station)

> Dist <- as.dist(1 - D)

> hc <- hclust(Dist, "ave")

> plot(hc, labels = MyNames)

The code starts by calculating the depth gradient along which we will pre-
dict source values. The variable MyDepth goes from the smallest to the largest
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observed depth value in the study with steps of 25 m. This vector is of length
175. A matrix NEWSOURCES is created. It will contain the predicted source val-
ues along the variable MyDepth at the 16 stations. We then start a loop, and
in each iteration, data from one station are analysed using additive modelling. A
new data frame is created with depth values between the lowest and highest mea-
sured depths (with steps of 25 m). Source values along these depth ranges are pre-
dicted and stored at the appropriate place in the matrix NEWSOURCES. Once this
process is carried out for each station, this matrix contains predicted source val-
ues at the same depths. The only remaining problem is that NEWSOURCES has
many missing values as some profiles were measured at deeper depths at some
stations, or the other way around, at the less deep stations. The option use =
"pairwise.complete.obs" ensures that the correlation matrix between the
16 profiles does not contain missing values (unless the depth ranges between the
two stations were completely different as originally happened when station 10 was
included). The rest of the code is identical as above and produces the dendrogram in
Fig. 17.5. Using a degree of subjectivity, we can distinguish the following groups:
(i) stations 1, 2, 3, and 12, (ii) stations 13, 14, and 15, (iii) stations 6, 7, 8, and
9, (iv) stations 11 and 19, and (v) stations 16, 17, and 18. Inspection shows that
groups (i) and (ii) are all spring (March and April) samples. Group (v) comprises
the three stations over the Porcupine Abyssal plain from October 2002. Groups (iii)
and (iv) are all autumn samples from August and October within the Porcupine
Seabight.

In the next section, we apply GAM models with one smoother per group.
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17.4 Estimating Common Patterns Using Additive
Mixed Modelling

In the previous section, several potential models were discussed. It is clear that the
source–depth relationship is non-linear and we should take into account hetero-
geneity between and within the stations. There is also the possibility of violation
of independence. This may come as a surprise, but recall in Chapters 6 and 7 we
checked for temporal correlation in the data. We don’t have repeated measurements
in time, but we do have them along depth! The depth gradient can be seen as a spa-
tial gradient, and this means that we may need to add a spatial (depth) correlation
structure to the model.

In the previous section, we mentioned that numerical problems may be expected
if 16 smoothing curves are used (one for each station). An initial analysis confirmed
this problem. We therefore need to reduce the number of smoothing curves and we
consider the following options.
• Use one smoothing curve for all stations.
• Use one smoothing curve for each month (four smoothers in total).
• Use one smoothing curve for each group derived from Fig. 17.4 (six smoothers

in total).
• Use one smoothing group for each group derived from Fig. 17.5 (five smoothers

in total).
We will set the scene with the first option and then discuss how to proceed with

the other models and then judge which approach is the best.

17.4.1 One Smoothing Curve for All Stations

Instead of applying the additive mixed model in Equation (17.2), we start with a sim-
pler model to show why we need a more complex one. Obviously, you can argue that
the data exploration already indicated that we need to allow for heterogeneity, but it
is always worth while formally showing why a more complex approach is required.

Sis = αi + f (Depths) + Monthi + εis εis ∼ N (0, σ 2) (17.3)

The model has one smoothing curve for all stations, a month effect (nominal vari-
able), and a station effect (nominal variable, represented by αi). The residuals are
assumed to be independently, normally distributed with the same variance. The esti-
mated smoothing curve is presented in Fig. 17.6A, and the residuals against fitted
values in Fig. 17.6B. The latter graph confirms our suspicions; there is heterogeneity.
So in spite of all the terms in the model being significant, we can bin it.

The following R code was used.

> library(mgcv); library(nlme)

> M1 <- gam(Sources ∼ fStation + s(SampleDepth) +

fMonth, data = ISIT2)

> E <- resid(M1)

> F <- fitted(M1)
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> op <- par(mfrow = c(2, 1), mar = c(5, 4, 1, 1))

> plot(M1)

> plot(F, E, xlab = "Fitted values", ylab = "Residuals")

> par(op)

The mar option in par modifies the white space around the graphs. The other
R code has been discussed elsewhere.

To work towards a model that can cope with heterogeneity, we consider the fol-
lowing series of models that increase in complexity.

Sis = α + ai + f (Depths) + Monthi + εis εis ∼ N (0, σ 2) (17.4A)

Sis = α + ai + f (Depths) + Monthi + εis εis ∼ N (0, σ 2
i ) (17.4B)

Sis = α + ai + f (Depths) + Monthi + εis εis ∼ N (0, σ 2|Depths |δ) (17.4C)

Sis = α + ai + f (Depths) + Monthi + εis εis ∼ N (0, σ 2
i |Depths |δ) (17.4D)

Sis = α + ai + f (Depths) + Monthi + εis εis ∼ N (0, σ 2
i |Depths |δi ) (17.4E)

Instead of using a fixed intercept, we decided to use a random intercept. This
is the equivalent of a random intercept mixed model (Chapter 4). So, in all mod-
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Fig. 17.6 A: Estimated smoothing curve for the additive model in Equation (17.3). B: Residuals
versus fitted values showing heterogeneity. Cross-validation was used to estimate the degrees of
freedom
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els we assume that ai is normally distributed with mean 0 and variance σ a
2. The

advantage of this approach is that instead of estimating 16 intercepts, we now only
need to estimate one (α) and a variance term σ a

2. The variance component ai allows
for random variation around the intercept. The model in Equation (17.4A) assumes
homogeneity, and it was only added to provide a reference point. The model in
Equation (17.4B) assumes heterogeneity per station but homogeneity within a sta-
tion along depth, that in Equation (17.4C) assumes homogeneity between stations
but heterogeneity within a station along depth (but the strength of the heterogene-
ity along the depth gradient is the same for each station), that in Equation (17.4D)
allows for heterogeneity between stations and within stations along depth (same
strength), and finally, the model in Equation (17.4E) implies heterogeneity between
stations and heterogeneity within stations along depth. The crucial point in Equa-
tion (17.4E) is that the heterogeneity within stations along depth is allowed to differ
between the stations. Hence, it is the most complete (and complicated) model in this
set of models. It should be noted that the only difference between these five models
are the random components. In the models, we apply later in this chapter, we use
the same five random components. We refer to them as models A to E. The only
difference between the models in Equations (17.4A–E) and the ones used later is
the fixed effects structure (smoothers).

The following code applies models in Equations (17.4A–E) in R and compares
them using the AIC and BIC criteria.1 It was observed that the numerical algorithms
performed better when we rescaled the depth so that values were between 0.5 and
5 (km) instead 500–5,000 m:

> lmc <- lmeControl(niterEM = 5000, msMaxIter = 1000)

> M17.4A <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2)

> M17.4B <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2,

weights = varIdent(form =∼ 1 | fStation))

> M17.4C <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2,

weights = varPower(form =∼ Depth1000))

> M17.4D <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2,

weights = varComb(varIdent(form =∼ 1 | fStation),

varPower(form =∼ Depth1000)))

> M17.E <- gamm(f1, random=list(fStation =∼ 1),

method = "REML",control = lmc, data = ISIT2,

weights = varComb(varIdent(form =∼ 1 | fStation),

varPower(form =∼ Depth1000 | fStation)))

1We used R version 2.6 and mgcv version 1.3–27. More recent versions of R and mgcv require a
small modification to the code; see the book website (www.highstat.com) for updated code.
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> AIC(M17.4A$lme, M17.4B$lme, M17.4C$lme, M17.4D$lme,

M17.4E$lme)

df AIC

M17.4A$lme 8 4734.141

M17.4B$lme 23 4269.503

M17.4C$lme 9 4258.752

M17.4D$lme 24 3859.231

M17.4E$lme 39 3675.986

The only difference between the calls to the gamm function for these five models
is the weights option. See Chapter 4 for a more detailed discussion. The names
of the R objects correspond to the equation numbers on the previous page. The out-
put of the AIC command shows that the model with heterogeneity between stations
and within stations is the best model (from these five!). This is model E. The esti-
mated smoothing curve and (normalized) residuals versus fitted values are given
in Fig. 17.7. Note that all the hard work earlier did help to solve heterogeneity
problems! The R code that was used to create Fig. 17.7 is similar to that for Fig.
17.6 and is not given here.

There is one thing we have ignored so far and that is spatial dependence. There
are two ways we can violate the independence assumption: correlation between sta-
tions and/or correlation within (groups of) stations along the depth gradient. The first
form of dependence is difficult to model within the random component structure,
and it is easier to use covariates for this. We could for example use more smoothers
or other explanatory variables. The second form of dependence can be checked by
making a variogram (Fig. 17.8) with the following two lines of R code:
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fitted values (B) for the
model in Equation (17.4E).
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of Fig. 17.6 and note how all
the fancy random structures
have solved the
heterogeneity problem
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> Vario17.4E <- Variogram(M17.4E$lme, robust = TRUE,

data = ISIT2 form =∼ Depth1000 | fStation)

> plot(Vario17.4E)

Independence of residuals expresses itself in the variogram as a horizontal band
of points. In this case, the variogram shows a sharp increase during the first 1,000 m
(1 km) and a small decrease thereafter.

Thus the model implies that residuals that are within a range of 1,000 m are
correlated. We specifically wrote ‘the model implies’ as the most likely explanation
is that the dependence in caused by an improper fixed effects structure (meaning:
not enough smoothers or missing covariates).

One option is to include a correlation structure along depth within the additive
modelling structure, but a better approach (to start with) is to extend the model with
more smoothers (or covariates) and see whether that solves the problem.

This is done next. If it turns out that adding more smoothers or covariates does
not solve the problem, then we should consider adding a correlation on the residuals
within the additive mixed model. But that is a last resort.

17.4.2 Four Smoothers; One for Each Month

To solve the independence problem discussed in the previous paragraph, we extend
the fixed effects part of the model by using one smoother for all stations of the same
month. Just as before, we have to take into account possible violation of hetero-
geneity, and therefore, we consider models with similar random error structures as
before. Little is lost (as can be judged by plotting residuals versus fitted values) by
using different variances per month instead of station; it saves considerable comput-
ing time!
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Sis = α + ai + f j (Depths) + Monthi + εis εis ∼ N (0, σ 2) (17.5A)

Sis = α + ai + f j (Depths) + Monthi + εis εis ∼ N (0, σ 2
j ) (17.5B)

Sis = α + ai + f j (Depths) + Monthi + εis εis ∼ N (0, σ 2 × |Depths |δ) (17.5C)

Sis = α + ai + f j (Depths) + Monthi + εis εis ∼ N (0, σ 2
j × |Depths |δ) (17.5D)

Sis = α+ai + f j (Depths)+Monthi +εis εis ∼ N (0, σ 2
j ×|Depths |δ j ) (17.5E)

The differences between the models in Equations (17.4A–E) and (17.5A–E) is
the index j attached to the smoothing function f and the multiple variances per month
instead of station. The index j take the values j = 3, 4, 8, and 10 referring to the
four months. Hence, each month is allowed to have a different depth-source pro-
file. The following R code implements the model in Equations (17.5A), (17.5B),
and (17.5E).

> f1 <- formula(Sources ∼
s(Depth1000, by = as.numeric(Month == 3)) +

s(Depth1000, by = as.numeric(Month == 4)) +

s(Depth1000, by = as.numeric(Month == 8)) +

s(Depth1000, by = as.numeric(Month == 10)) +

fMonth)

> M17.5A <- gamm(f1,random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2)

> M17.5B <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2,

weights = varIdent(form =∼ 1 | fMonth))

> #....

> M17.4E <- gamm(f1, random = list(fStation =∼ 1),

data = ISIT2, method = "REML", control = lmc,

weights = varComb(varIdent(form =∼ 1 | fStation),

varPower(form =∼ Depth1000 | fStation)))

The other models can be implemented in the same way as before, and to save
space, the R code is not shown here (it can also be found on the book website).
Just as before, the AIC indicated that model E is the best. The estimated smoothing
curves per month are given in Fig. 17.9. Note that we can see a clear distinction
between the shapes in different months.

As part of the model validation, we also need to plot residuals versus fitted val-
ues to assess homogeneity (not shown here) and residuals versus each explanatory
variable to asses independence. The plot of the (normalized) residuals versus depth
(Fig. 17.10) shows that there is a problem as there are clear residual patterns. To aid
visual interpretation, we added a LOESS smoother. It may also be useful to fit an
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Fig. 17.10 Normalised residuals plotted versus depth for model (17.5E). Note that for some
stations there is a clear residual pattern. To aid visual interpretation, LOESS curves were added.
The R code for this figure is presented on the book website

additive model in each panel in Fig. 17.10 and inspect the significance levels of the
smoothers. As we are fitting a smoother on residuals (as a function of depth), we
should not see significant smoothers! But for stations 15 (month 3), 7, 9 and 11 (all
from month 8), and 17 and 18 (month 10) we could still find a strong and significant
relationship between residuals and depth.
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The dependence problem is also detected if we make a variogram of the nor-
malised residuals. It has a similar shape as in Fig. 17.8.

One option to solve this problem is to include a spatial correlation structure
within the additive model, which is achieved by adding the correlation option to
the gamm function:

correlation = corSper(form =∼ Depth1000 | fStation,

nugget = TRUE, fixed = FALSE).

But just as before, the residual pattern indicates that the grouping structure by
months is not optimal for all stations. So, instead of adding a complicated spatial
correlation structure, we should first aim to improve the fixed effects structure. This
means that we have to use more covariates or a different grouping of stations.

So, to summarise this part, the fixed effect part of the model was extended from
one smoother to four (one per month). Stations 12, 13, 14, and 15 are from month 3;
stations 1, 2, and 3 from month 4; stations 6, 7, 8, 9, and 11 from month 8; and
stations 16–19 from month 10. But the model validation showed that especially
within month 8, stations are not similar. But for month 4 (stations 1–3) and month 3
(especially stations 12–14) profiles are similar! To gain further insight, we continue
with a grouping structure by geographical distances.

17.4.3 Smoothing Curves for Groups Based
on Geographical Distances

In Section 17.2, we discussed how to divide the 16 stations in 5 groups based on
geographical distances. Our proposed grouping of stations was (i) stations 1, 2, and
3; (ii) stations 6 and 9; (iii) stations 7, 8, and 11; (iv) stations 12, 13, 14, 15, and
19; (v) stations 16 and 17; and (vi) station 18. The R code below runs the same 5
models as in Equations (17.4) and (17.5), except that the fixed structure is adjusted
to take into account our new groups.

> G1 <- ISIT2$Station == 1 | ISIT2$Station == 2 |

ISIT2$Station == 3

> G2 <- ISIT2$Station == 6 | ISIT2$Station == 9

> G3 <- ISIT2$Station == 7 | ISIT2$Station == 8 |

ISIT2$Station == 11

> G4 <- ISIT2$Station == 12 | ISIT2$Station == 13 |

ISIT2$Station == 14 | ISIT2$Station == 15 |

ISIT2$Station == 19

> G5 <- ISIT2$Station == 16 | ISIT2$Station == 17

> G6 <- ISIT2$Station == 18

> f1 <- formula(Sources∼
s(Depth1000, by = as.numeric(G1)) +

s(Depth1000, by = as.numeric(G2)) +
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s(Depth1000, by = as.numeric(G3)) +

s(Depth1000, by = as.numeric(G4)) +

s(Depth1000, by = as.numeric(G5)) +

s(Depth1000, by = as.numeric(G5)) + fMonth)

> M.GeoA <- gamm(f1,random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2)

> M.GeoB <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2,

weights = varIdent(form =∼ 1 | fMonth))

> # ...

> M.GeoE<-gamm(f1, random=list(fStation =∼ 1),

data = ISIT2, method = "REML", control = lmc,

weights = varComb(varIdent(form =∼ 1 | fMonth),

varPower(form =∼ Depth1000 | fMonth)))

The other models can be run with similar code. The model with heterogeneity
between groups and heterogeneity along depth (with differences per group) is the
best, as judged by the AIC. This is model E. Just as in the previous analysis, we made
a variogram of the (normalised) residuals, and we also plotted (normalised) residuals
versus depth. These graphs are not shown here, but both indicated violation of inde-
pendence. Hence, grouping stations based on geographical distances does not give
groups in which the profiles have similar depth profiles. We also tried small modifi-
cations of the grouping structure, but this did not solve the independence problem.

17.4.4 Smoothing Curves for Groups Based on Source
Correlations

In Section 17.3, we also discussed how to calculate correlations between predicted
source profiles and used these to determine a grouping structure. Recall that we
determined the following five groups: (i) stations 1, 2, 3, and 12; (ii) stations 6, 7,
8, and 9; (iii) stations 11 and 19; (iv) stations 13, 14, and 15; and (v) stations 16,
17, and 18. Adjusting the R code in order to implement this grouping of stations is
relatively simple. All we need is the following piece of code:

> G1 <- ISIT2$Station == 1 | ISIT2$Station == 2 |

ISIT2$Station == 3 | ISIT2$Station == 12

> G2 <- ISIT2$Station == 6 | ISIT2$Station == 7 |

ISIT2$Station == 8 | ISIT2$Station == 9

> G3 <- ISIT2$Station == 11 | ISIT2$Station == 19

> G4 <- ISIT2$Station == 13 | ISIT2$Station == 14 |

ISIT2$Station == 15

> G5 <- ISIT2$Station == 16 | ISIT2$Station == 17 |

ISIT2$Station == 18
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> f1 <- formula(Sources ∼
s(Depth1000, by = as.numeric(G1)) +

s(Depth1000, by = as.numeric(G2)) +

s(Depth1000, by = as.numeric(G3)) +

s(Depth1000, by = as.numeric(G4)) +

s(Depth1000, by = as.numeric(G5)) + fMonth)

> M.cor4A <- gamm(f1, random = list(fStation =∼ 1),

method = "REML", control = lmc, data = ISIT2)

> # etc. . .

Other models can be fitted by using the same code as above. Again, the AIC
indicated that model E is the best. We plotted the residuals versus depth and a large
number of stations contained a significant (as determined by a smoother) residual–
depth pattern, especially stations 12, 7–9 (entire group 2), 11, 15, 16, and 17. This
means that the chosen grouping is not a good one.

17.5 Choosing the Best Model

In the previous section, we grouped stations by month, geographical distances and
based on correlations between predicted source values. None of the approaches pro-
duced a grouping of stations in which residual patterns did not show any violation
of independence. Well, this is not entirely true. All analysis showed that the source–
depth relationship for stations 1, 2, and 3 are similar, and the same holds for stations
12, 13, and 14. So, at least we can identify these two groups. The other profiles,
however, cannot be grouped so easily. In a final attempt, we decided to fit an addi-
tive mixed model with two groups of stations (1, 2, 3 and 12, 13, 14), and we used
one smoother for each group. Hence, the fixed effects structure assumes that (i) sta-
tions 1, 2, and 3 have the same source–depth relationship, (ii) stations 12, 13, and
14 have the same source–depth relationship, and (iii) all other stations have differ-
ent source–depth relationships. Furthermore, we used one smoother for each of the
other stations. The same five random error structures described in Equations (17.4)
and (17.5) were used. Some of these models, especially E, are highly complicated,
and may potentially not converge. To reduce computing time, we set the degrees of
freedom for each smoother to 4, and to our surprise all five models converged.

In terms of the random structure, the model that contains all the options (hetero-
geneity between groups, along depth but not for all groups), model E, was the best
as judged by the AIC. However, the BIC indicated model C (heterogeneity along
depth).

The good news is that the variogram of the normalised residuals of model C
did not show a clear violation of independence. Figure 17.11 shows the estimated
smoothing curve for each station. Note that the smoothers for stations 1, 2, and
3 are identical, and the same holds for those of stations 12, 13, and 14. Based
on this graph, the analysis can be taken further by grouping stations 7, 8, and
19 to see whether that improves the model. The way to proceed is to (i) adopt
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Fig. 17.11 Estimated smoothing curves for each station obtained by the model with 12 groups

the variance structure of model C, (ii) switch to maximum likelihood estimation
(method = "ML"), and (iii) compare models in terms of the smoothers. We leave
this as an exercise to the reader, but initial analyses indicated that there is not much
to be gained by further grouping the stations.

17.6 Discussion

The data were originally published using (i) a logarithmic (log10) transformation on
the sources, (ii) a random effect for station, and (iii) one smoother; see Gillibrand
et al. (2007). The transformation solved a lot of trouble; the AIC still identified as
optimal the most complicated model E, whilst the BIC indicated model C (only
heterogeneity along depth). Even a visual inspection of the residuals of model A did
not show any clear heterogeneity! Hence, a logarithmic transformation makes life
much easier! However, there is still violation of independence; so we need to add
more smoothers or covariates.

However, this is not a trivial exercise, as we showed in this chapter. The ques-
tion is then: To transform or not to transform? Our opinion is that working with
the original (untransformed) data gives more information on what is going on. We
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did not even discuss the numerical output for the optimal models; the heterogeneity
parameters give a wealth of information as well. In our view, only when numerical
instability of the estimation routines becomes an issue, transforming and/or standar-
dising an option.

In Chapter 4, we mentioned that the model selection should follow a top-down
approach by starting with a fixed effects structure that contains all explanatory
variables and possible interaction terms. We did not follow that approach here, sim-
ply because the full model had numerical problems. So, we started by grouping
stations and trying to find the optimal grouping structure. But the price we paid for
this is that from the beginning, we were facing violation of independence and only
when we used a close-to-optimal model, the problem became less serious.

So, what does this exercise tell us?
Firstly the close similarity and clustering of stations 1, 2, and 3 indicates that

reproducibility of results is good, and there is probably no need to expend sampling
effort in replicate profiles. The ISIT system has since been adapted to fit onto a
standard oceanographic CTD (Conductivity, temperature, and depth) profiler (Heger
et al., 2008).

Secondly, it is evident that there is a seasonal change in profiles between spring
and autumn with a post-summer peak in abundance of bioluminescent sources at
about 1,200 m. Simple mathematical curves such as the exponential relationship
proposed by Bradner et al. (1987) are clearly inappropriate. The estimation of
smoothing curves (Fig. 17.10) is very useful for the biologist since it provides an
objective means of combining sets of data and producing estimates of the depth of
the peak and mean number of sources m–3 at different depths.

Thirdly, contrary to what was stated by Gillibrand et al. (2007), there is a dif-
ference between stations in the Porcupine Seabight compared with those offshore
over the Porcupine Abyssal Plain. Examining the panels in Fig. 2.11, it seems the
autumn peak below 1,000 m is less strong in the offshore stations (16, 17 and 18)
than closer inshore (19, 6, 7, 8, 9).

The reasons for the deep bioluminescent layer is unclear, but is probably related
to two effects. The peak almost certainly represents a seasonal increase in deep
biomass fed by organic matter flux from the spring bloom in surface waters. This
effect is probably accentuated by accumulation in a layer of North Atlantic inter-
mediate water at this depth, which is derived from Mediterranean water moving
northwards from Gibraltar. This effect may be stronger further inshore, where there
is a northward moving shelf edge current.

17.7 What to Write in a Paper

Within the field of bioluminescent research, Gillibrand et al. (2007) and this case
study are two of the first texts where advanced statistical methods have been
used. If you are submitting a paper in a subject area where additive mixed mod-
elling techniques are uncommon, you will face the daunting task of convincing
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an entire group of scientists of the need for complicated statistical methods. The
best starting point is Fig. 2.11 as it clearly shows that linear regression meth-
ods (or ANCOVA) are unsuitable. It may be an option to discuss the heterogene-
ity problem by showing only Fig. 17.6B. At that point, you will need to discuss
why you did not apply a logarithmic transformation. Predicting values on the
original scale may be a valid argument and so is the fact that a transformation
changes relationships between sources and depth. In order to make the referee
(and reader) of your paper happy, a non-technical explanation of additive mixed
modelling and especially the variance structures is required. If you fail to do this,
they will come back with the question: Why do you need all this complicated
modelling?

In approach 3 (Subsection 17.3.3) we used the data to calculate Pearson correla-
tion coefficients and applied clustering on them. We then used the same data in the
GAMMs (using the results from the clustering). This approach is likely to receive
(valid) criticism!

Acknowledgments We thank Dr Emma Gillibrand for permission to use data from her PhD
thesis.



Chapter 18
Additive Mixed Modelling Applied
on Phytoplankton Time Series Data

A.F. Zuur, M.J Latuhihin, E.N. Ieno, J.G. Baretta-Bekker, G.M. Smith,
and N.J. Walker

18.1 Introduction

This chapter looks at a data set where our first reaction was: ‘How in heavens
name are we going to analyse these data?’ The data consist of a large number
of phytoplankton species measured at 31 stations in Dutch estuarine and marine
waters. Measurements took place 0–4 times per month from 1990 until present
(2005). Environmental data (e.g. temperature, salinity, etc.) were also measured,
albeit sometimes at different sampling times! The statistical analysis of these data
is complicated for several reasons:

1. Environmental variables and phytoplankton variables were not always measured
at the same time.

2. There may be temporal correlation, there may be spatial correlation, and both
correlation structures may be complicated.

3. The data contain a large number of species.
4. The data are irregularly spaced.
5. There may be heterogeneity over time (e.g. more variation in summer than in

winter).
6. Trends over time and in space may be non-linear.
7. The phytoplankton data were counted by different laboratories.

This chapter is a spin-off from a technical report produced by the first two authors
of this book for Rijkswaterstaat – Centre for Water Management, a Dutch govern-
mental department. In that report, univariate methods were applied on aggregated
phytoplankton series. The motivation to use aggregated data was to reduce the large
number of zeros in the original data. An alternative statistical analysis is to apply
multivariate methods like the Mantel test, BIOENV and ANOSIM; see Clarke and
Warwick (1994), Legendre and Legendre (1998), and Zuur et al. (2007) for details.

A.F. Zuur (B)
Highland Statistics Ltd., Newburgh, AB41 6FN, United Kingdom

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, DOI 10.1007/978-0-387-87458-6 18,
C© Springer Science+Business Media, LLC 2009
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Fig. 18.1 Melosira
nummuloides under the
microscope; one of the small
diatom species of the
DIAT1-group (Photo
C. Brochard – Koeman en
Bijkerk bv)

The problem with these multivariate methods is that the permutation methods used
to assess statistical significance ignore the temporal and spatial correlation struc-
tures in the data. Here, we follow the technical report approach and focus on a group
of aggregated phytoplankton species. To save space, we only use one group: small
diatoms (between 0 and 1,000 μm3). These will be denoted by DIAT1 (Fig. 18.1).
Other groups are not considered in this chapter.

As from Section 18.3, we describe an analysis that, in theory, can cope with
some of the problems. It should be noted, however, that different analysis strate-
gies are possible, but may give different results and that our chosen approach can
be improved on and should be considered as a first attempt. However, given the
complexity of the data, any statistical method will have serious difficulties with
these data.

18.1.1 Biological Background of the Project

Marine biodiversity is under significant anthropogenic pressures such as physi-
cal engineering, physical and chemical pollution, eutrophication (enrichment with
nutrients), and the introduction of invasive species. Eutrophication due to anthro-
pogenic nutrient loading has greatly impacted ecological processes in marine
waters, and therefore, a lot of effort has been put into reducing nitrogen and
phosphorus discharges. To detect the effectiveness of such policy actions in the
Netherlands, the Dutch national monitoring programme aims to provide the required
information. In addition to a physical and chemical monitoring programme that had
been running for several decades, Rijkswaterstaat began a biological monitoring
programme for surface waters in the early 1990s. The primary goal of this pro-
gramme is to provide biological information, especially in relation to long-term
changes. The marine biological monitoring programme has been designed to assess
ecosystem functioning and food-web relationships determine the structure of this
system. Phytoplankton, the free-living, drifting, and mainly photosynthetic organ-
isms in aquatic systems, is the major producer and forms the basis of the marine food
web. Higher organisms such as benthic fauna, fish, and sea birds are all indirectly
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dependent on phytoplankton. Hence, information about the status of the phyto-
plankton community is essential to assess ecosystem functioning. In general, the
growth of phytoplankton is regulated by underwater light and nutrient availability.
Species composition and abundance of phytoplankton vary from season to season.
The growth season usually starts with a bloom of diatoms in (early) spring followed
by the blooming of Phaeocystis sp and in summer, blooms of (dino-)flagellates.
Moreover, distinct differences can be detected between the various water bodies (in
this chapter we call them areas), both in terms of species composition and abun-
dance. The nutrient regime of the Dutch estuaries, the Delta in the south and the
Wadden Sea and Ems estuary in the north, is mainly influenced by freshwater dis-
charges with strongly elevated levels of nitrogen (N) and phosphorus (P) originat-
ing from farmland. For the North Sea ecosystem on the contrary, the much more
oligotrophic Atlantic Ocean is the main source of nutrients. It seems reasonable to
assume there is still some influence of riverine water in the coastal zone, but this
rapidly decreases when going to the open sea. In general, increasing salinity goes
hand in hand with decreasing nutrient concentrations. Nutrient enrichment usually
results in an increase of phytoplankton biomass and often coincides with shifts in
phytoplankton species composition. This latter phenomenon is due to different char-
acteristics between individual algal species which have different storage capacities,
nutrient uptake kinetics, etc. For example, silicon is an essential nutrient for diatoms,
which is a major group of algae. But concentrations of this element seem unaffected
by human activities. This implies that, due to eutrophication with N and P, it is likely
that the species composition will change in the direction of increased abundance of
algal species not dependent on silicon for their growth.

The mechanisms and implications of eutrophication for freshwater systems are
reasonably well understood, but this is not the case for marine ecosystems, and
the response of marine ecosystems to eutrophication is less predictable. It is sug-
gested (Cloern, 2001) that the interaction between all the parameters characterizing
a marine ecosystem – e.g. tidal regime, turbidity, depth, and biomass of benthic
suspension feeders – play an important role. More precisely, the complex interac-
tion of all physical and biological attributes operating together seems to act as a
filter to modulate the response of an ecosystem to nutrient enrichment. As a result,
some estuarine-coastal ecosystems appear to be highly sensitive to change in nutri-
ent inputs, while others appear to be more resistant.

The main underlying question in this study is whether there are trends visible
in the phytoplankton community, and if any, what trend, and whether there is a
relationship with environmental variables. The rest of this chapter now follows the
structure of the original technical report. Since April 1990, the species composition
of phytoplankton has been monitored at 31 stations, which have been aggregated
into ten different areas. Figure 18.2 presents the locations of the stations and defines
the areas.

Water samples were collected from each sampling station and preserved with
Lugol’s solution, while at a limited number of stations a duplicate series was also
counted live to improve identification. Samples were counted using an inverted
microscope, and densities were subsequently calculated as number per liter. The
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Fig. 18.2 Station locations and the area boundaries

sampling frequency depended on the season: monthly during winter and fortnightly
during summer. All stations were sampled just below the water surface. When the
water column is stratified, and this usually occurs on some, mainly offshore, stations
in the summer, then samples were also taken at the thermocline and a few metres
above the bottom with a Rosette sampler. This study is based on the Lugol-preserved
samples taken close to the water surface.

To improve consistency in the phytoplankton data over time, the first year of
the time series, 1990, has been skipped because the phytoplankton monitoring only
started in April that year. Moreover, some taxa were left out because they were not
consistently counted over time, and many taxa that can be individually identified
microscopically today, were lumped together in the early years. Thus, the initial
number of about 600 different taxa was reduced to a dataset that contains 175 taxa
from 1991 on. As explained above, in this chapter we only focus on an even more
aggregated group of small diatoms.

The environmental variables that were used in the technical report are dissolved
inorganic nitrogen (DIN = ammonium, nitrite plus nitrate), dissolved inorganic
phosphorus (DIP), silicon, total nitrogen, total phosphorus (all in μmol/l), salin-
ity, temperature (Celsius), Secchi depth (dm), and suspended matter (mg/l). Here,
we only use DIN and temperature for illustrative purposes.
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18.2 Data Exploration

Instead of starting with a discussion of the statistical modelling approach, we first
apply a data exploration as it spreads some light on the type of data we are working
with. We arbitrarily chose DIN for this. Standard data exploration tools for multiple
time series are a xyplot and bwplot (both from the lattice package), box-
plots, and Cleveland dotplots. Pairplots are less useful for this particular example,
because the DIAT1, DIN and temperature data were not sampled at the same time.
Figure 18.3 shows a graph of log-transformed DIN values versus time, for each
station. The following code was used to make the graph.

> library(AED); data(RIKZDATAEnv); library(lattice)

> RIKZ2 <- RIKZDATAEnv #Saves space

> RIKZ1 <- RIKZ2[RIKZ2$Year > 1990, ]

> I <- !is.na(RIKZ1$DIN)

> RIKZ <- RIKZ1[I, ]

> RIKZ$LDIN <- log(RIKZ$DIN)

> RIKZ$fStation <- factor(RIKZ$Station)

> RIKZ$MyTime <- RIKZ$Year + RIKZ$dDay3 / 365

> xyplot(LDIN ∼ MyTime | Station, data = RIKZ,

xlab = "Time", col = 1, type = "h",

strip = function (bg = 'white', ...)

strip.default(bg = 'white', ...))

The first series of commands are used to access the data, discard data from
1990, remove rows with missing values (it makes the model validation easier), and
it applies a logarithmic transformation. The variable MyTime is used to provide
sensible axis labels. We used the option type = "h" to ensure that observations
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are not presented as points (in which case the graph becomes one big cloud of obser-
vations) or lines (missing values are not shown properly).

The graph shows there are differences per station in terms of absolute values,
variation and number of missing values. The same graph for the untransformed data
showed even more differences in absolute values per station. The question is now,
what are we going to do with this? One option is to use log-transformed data, and
another option is to standardise each time series. The latter option means that the
data at stations like R50, with low values, become equally important as stations like
ZUID with much higher values. Because DIN is a measure of available nutrients,
we prefer not to make all series equally important, hence our choice for the log-
transformation. The fact that we use a logarithmic transformation, and not a square
root, is based on the range of the data.

For the same reason, a logarithmic transformation was applied on DIAT1. There
was no need to transform temperature.

Figure 18.4 shows a conditional boxplot of the log transformed DIN values con-
ditional on station. It shows that there are considerable differences between the sta-
tions, indicating that whatever model we apply, the term station has to be included.

We can either do this as a fixed term and pay the price of 30 regression param-
eters or use it as a random effect. The latter option makes more sense as it will
allow us to make a general statement. If station is used as a fixed term, our state-
ments and conclusions only hold for these particular 31 stations. Other advantages
of using station as a random effect is that is saves a large number of parameters
(one variance term versus 30 regression parameters) and it introduces a correlation
structure between the observations at the same station (albeit it is the rather basic,
compound symmetrical correlation structure; see Chapter 6).

Another aspect we need to take into account is seasonality. Figure 18.5 shows
boxplots of log-transformed DIN values for each area conditional on month. Note
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Fig. 18.5 Boxplots of log-transformed DIN versus month per area. Each area consists of various
stations. There is a clear seasonal pattern that differs per area

there is a clear seasonal pattern at all areas, but not all patterns are identical. This
means that we may have to include an interaction term between seasonal effects and
area in the model. Note that for some months, in some areas, there is a group of
observations outside the boxplot. For untransformed data, we saw similar patterns.
We will discuss these points later.

The R code to produce Figs. 18.4 and 18.5 is given below. The code is self-
explanatory, and in case of any doubts, consult the help files.

> #Figure 18.4:

> RIKZ$fMonth <- factor(RIKZ$Month)

> bwplot(LDIN ∼ fMonth | Area, data=RIKZ, xlab="Month",
strip = function(bg = 'white', ...)

strip.default(bg = 'white', ...), col = 1,

scales = list(rot = 45, cex = .6))

> #Figure 18.5

> boxplot(LDIN∼fStation, data = RIKZ, xaxt = "n")

> text(1:31, par("usr")[3] - 0.25, srt = 45, adj = 1,

labels = levels(RIKZ$fStation), xpd = TRUE,

cex = 0.75)

18.3 A Statistical Data Analysis Strategy for DIN

If environmental and phytoplankton data had been measured at the same time, the
following model could be our starting point.

Phytoplankton datas = f (environmental datas) + noises
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The notation f() stands for ‘is a function of ’, well at least for the moment. The
index s represents the sampling time (e.g. day). However, most statistical software
routines will drop each observation where at least one of the variables is missing.
This means that if the response and environmental variables are not sampled at the
same time, you may end up with no data at all. Hence, conventional methods like
linear regression, generalised linear modelling (GLM), or generalised additive mod-
elling (GAM) cannot easily be used to model the function f. So, the first item from
our list of problems, given in Section 18.1, is already causing a major headache. Our
solution is to use a different model with the form:

Variable = f (Time) + noise

This means that each variable, either environmental or phytoplankton, is mod-
elled as a function f of time, which represents the trend. We will apply this model on
each variable, and compare the estimated trends. The advantage of this approach is
that we do not have to compare the environmental and phytoplankton data directly,
but just their temporal trends. These trends are smoothing functions over time and
have values at the same time points. This allows us to compare the trends of different
variables. We should note that our prime aim is to compare long-term trends and not
the short-term (or, within-year) variation.

However, the bad news is this model is still complex. We still need to be
able to deal with heterogeneity (more variation in summer months than in winter
months), spatial and temporal correlation, non-linear trends, etc. A method that can
potentially cope with this complexity is mixed modelling or if we allow for non-
linear (or better: non-parametric) trends: additive mixed modelling.

In linear mixed modelling and additive mixed modelling, the model selec-
tion approach should follow a protocol that roughly contains the following steps
(Fitzmaurice et al., 2004; Diggle et al., 2002; Chapters 5 and 6):

1. Start with a model that is as good as you can get it in terms of the fixed explana-
tory variables.

2. Using the fixed terms from step 1, find the optimal random structure. This means
that for the noise component, we have to try different options (e.g. random
effects, temporal correlation, different variances, etc).

3. For the optimal random structure found in step 2, find the optimal fixed
structure.

This is a scheme that works well for linear mixed models applied on relatively
small data sets, but for a large and complicated data set like ours, we have to be a bit
more creative. In the remaining part of this section, we show how we sequentially
develop our models and finally end up with something that seems to do the job. The
starting point is again a model of the form

LDIN = intercept + f (Time) + ε
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The ε represents the noise or unexplained bit and LDIN the log-transformed DIN
data. First we need to add some indices. We have 31 stations, and measurements
which are taken over time. This gives

LDINis = intercepti + fi (Times) + εis

where i is the station index from 1 to 31 and s represents the time units. The noise
term εis is assumed to be normally and independently distributed with mean 0 and
variance σ 2. The model above allows for a different trend at each station (the func-
tion f has a subscript i). If smoothing techniques are applied to model the function
f, then it is almost impossible to fit a model with 31 trends on a data set of this size.
If we are lucky, only one trend will be needed for all stations, and the subscript i
can be dropped from the function f. From the data exploration section, we know that
the model needs a long-term trend, station effect, and a seasonal component; so a
possible starting point is

LDINis = intercept + factor(Stationi ) + f (Times) + factor(Months) + εis (18.1)

The function f is now a smoothing function over time and is typically modelled
with a spline. We have seen the notation factor in various other chapters; it is used to
tell R that the corresponding variable is categorical. Used here, it indicates the vari-
ables Station and Month are considered as categorical variables in Equation (18.1).
The costs are 11 parameters for Month and 30 for Station. We will return to the
30 parameters for Station in a moment. For the seasonal component, we have mul-
tiple options. Instead of using a categorical variable Month, you can also use sinus
or cosines functions (Pinheiro and Bates, 2000) or a smoother f(DayInTheYears),
where the variable DayInTheYears takes values between 1 and 365 (Wood, 2006).
Based on initial runs, the latter option performs the best as judged by the AIC. Note
that we are not too fussy about leap years.

Regarding the argument Times in the function f(Times), we have two options. We
can use the day of sampling expressed as the number of days since the first sampling
day of the experiment (or since 1 January 1991). But you then need to ensure that
sampling day for all variables is expressed relative to the same starting date! The
second option is to use f(Years), where Years has integer values between 1991 and
2005. It takes less computing time and is slightly easier for comparing trends of
different variables, and this is the approach we use here.

Up to now, the model contains components for trends over time and trends within
a year (the seasonal pattern). However, sampling took place at 31 stations and we
also have the spatial coordinates for each station (denoted by Xi and Yi). In the same
way as temporal trends were added, we can include a spatial trend f(Xi,Yi), which
is a 2-dimensional smoother. This gives the following model:

LDINis = intercept + factor(Stationi) + f (Years) + f (DayInTheYears)

+ f (Xi , Yi) + εis
(18.2)
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The problem with this model is that we are paying the penalty of 30 regression
parameters for the station effect. This is in fact the same discussion that we had when
random effects were introduced in Chapter 5. Are we really interested in knowing
which stations have higher values than others? Do we want to make statements for
only these 30 stations? In this case, the answer to both questions is no, and this
is a typical example of using a random intercept for station. It allows us to make
statements for all similar stations along the Dutch coast and saves several degrees
of freedom. Therefore, model (18.2) becomes

LDINis = intercept + f (Years) + f (DayInTheYears) + f (Xi , Yi ) + ai + εis (18.3)

The random intercept ai is assumed to be normally distributed with mean 0 and
variance σ station

2. So far, adding terms was based on common sense and some initial
analyses. At this stage, it is perhaps useful to apply the model and see where it fails.
This will guide further improvements, if needed.

The advantage of the model in Equation (18.3) is that we have decomposed the
time series into long-term trends and short-term trends. Each of these components
can be extracted and compared with other environmental long-term and short-term
trends, or with the phytoplankton short-term and long-term trends.

The following R code is used to implement the model in Equation (18.3).

> RIKZ$X <- RIKZ$X31UE ED50 #spatial coordinates

> RIKZ$Y <- RIKZ$X31UN ED50 #spatial coordinates

> library(mgcv)

> M1 <- gamm(LDIN ∼ s(Year) + s(dDay3) + s(X, Y),

random = list(fStation =∼ 1), data = RIKZ)

The variable dDay3 contains the coding of the sampling day in a year, expressed
as a number between 1 and 365. The results of this model are given in Fig. 18.6,
which was produced with the following R code.
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Fig. 18.6 Results for the
model in Equation (18.3):
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component f(Years). Upper
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Normalised residuals versus
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heterogeneity
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> op <- par(mfrow = c(2, 2))

> plot(M1$gam, select = c(1))

> plot(M1$gam, select = c(2))

> plot(M1$gam, select = c(3))

> E <- resid(M1$lme, type = "normalized")

> F <- fitted(M1$lme)

> plot(x = F, y = E, xlab = "Fitted values",

ylab = "Residuals", cex = 0.3)

> par(op)

There are various problems with the model in Equation (18.3) with both hetero-
geneity and patterns in the residuals. The latter problem is probably due to using
only one smoother for long-term trends at all stations and using one seasonal com-
ponent for all stations. The data exploration had already indicated that these patterns
differ per station. Hence, a natural extension is to use multiple long-term trends and
multiple seasonal smoothers. To find a balance between what is needed and what can
be done with current software and the numerical capacity of computers, we intro-
duce an interaction term between some of the smoothers and area. If we use one
long-term smoother per area and one seasonal pattern per area, the model becomes

LDINis = intercept + farea(Years) + farea(DayInTheYears) + f (Xi , Yi ) + ai + εis

(18.4)

The term farea(Years) is the long-term smoother for a particular area (each
area consists of multiple stations), and the same holds for the within-year pattern
farea(DayInTheYears). Recall that there are 10 areas, meaning the model has 10
+ 10 + 1 = 21 smoothers. Instead of the notation farea(Years), you can also use
fa(Years) or even f(Years):Area. The choice of notation depends on your own pref-
erence or the style of the journal you are aiming for. The R code to fit the model in
Equation (18.4) is given by1

> M2 <- gamm(LDIN∼
s(Year, by = as.numeric(Area == "WZ"), bs = "cr") +

s(Year, by = as.numeric(Area == "GM"), bs = "cr") +

s(Year, by = as.numeric(Area == "VD"), bs = "cr") +

s(Year, by = as.numeric(Area == "ED"), bs = "cr") +

s(Year, by = as.numeric(Area == "OS"), bs = "cr") +

s(Year, by = as.numeric(Area == "WS"), bs = "cr") +

s(Year, by = as.numeric(Area == "KZ"), bs = "cr") +

s(Year, by = as.numeric(Area == "NZ"), bs = "cr") +

s(Year, by = as.numeric(Area == "NC"), bs = "cr") +

s(Year, by = as.numeric(Area == "VM"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "WZ"), bs = "cr") +

1We used R version 2.6 and mgcv version 1.3–27. More recent versions of R and mgcv require a
small modification to the code; see the book website (www.highstat.com) for updated code.
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s(dDay3, by = as.numeric(Area == "GM"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "VD"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "ED"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "OS"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "WS"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "KZ"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "NZ"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "NC"), bs = "cr") +

s(dDay3, by = as.numeric(Area == "VM"), bs = "cr") +

s(X, Y), random = list(fStation =∼ 1), data = RIKZ)

It looks intimidating, but it is only a simple extension of the model in
Equation (18.3). The by option is used to ensure that the particular smoother is
only applied on a subset of the data where the argument of the by option is equal
to 1. The as.numeric() is used to convert the value TRUE to a 1 and FALSE
to 0. The AIC of models (18.3) and (18.4) is 18366.07 and 16648.41, respectively.
You can also try intermediate models with multiple long-term smoothers and a sin-
gle seasonal smoother, or the other way around, but their AICs are all larger than
16648.41. We used cubic regression splines (bs = "cr") for the temporal trends
because with large data sets these have shorter computing times than the default thin
spline smoother.

The estimated long-term and seasonal smoothers obtained by this model are
given in Figs. 18.7 and 18.8. The code to make these graphs is complex and given
on the book website. Several long-term smoothers have similar patterns, e.g. WZ,
ED, and GM. In fact, most trends have two peaks; one in the early 1990s and one
towards the end of the 1990s. The trend for VM shows a strong decrease since 1998.
As to the seasonal patterns per area, you can see that some areas (e.g. WS, ED) have
a less strong seasonal pattern. The other areas have all slightly different shapes.
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Fig. 18.7 Estimated long-term smoother for each area obtained by the model in Equation (18.4)
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contains the days from 1 to 365

As part of the model validation process, we plotted normalised residuals ver-
sus month (for all stations), see Fig. 18.9. If you wonder why we did this, then the
answer is ‘common sense’. In most ecological systems, the spread in the data differs
between months or seasons. You can get the same message by redrawing the lower
right panel in Fig. 18.6 and use different colours per month or season. Figure 18.9
shows that there is more variation in spring and summer than in autumn and
winter, which violates the homogeneity assumption. The figure was created with
the following R code.

> E2 <- resid(M2$lme, type = "n")

> plot(E2 ∼ RIKZ$fMonth, xlab = "Month",

ylab = "Normalised residuals")
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Fig. 18.9 Normalised residuals plotted versus month obtained by model (18.4)
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A solution for the heterogeneity problem is to relax the assumption that the resid-
uals εis are normally distributed with mean 0 and variance σ 2. Instead, we can use
a Normal distribution with mean 0 and variance σ m

2, where m stands for month.
Hence, the residuals are allowed to have a different spread per month. The prob-
lem is that computing time for such a model for these data can be long (hours on a
modern computer), and therefore, it may be a more realistic option to use a differ-
ent variance per season (four variances) or per 6-month period (two variances). We
decided to go for four variances and define the seasons as months 1–3, 4–6, 7–9,
and 10–12. However, further fine-tuning of the model can still be achieved. The
R code for the model with four variances is a simple extension of the previous R
code and is not reproduced here. We only have to define a variable defining the four
seasons:

> n <- length(RIKZ$Month)

> RIKZ$M14 <- vector(length = n)

> RIKZ$M14[1:n] <- 0

> RIKZ$M14[RIKZ$Month >= 1 & RIKZ$Month <= 3] <- 1

> RIKZ$M14[RIKZ$Month >= 4 & RIKZ$Month <= 6] <- 2

> RIKZ$M14[RIKZ$Month >= 7 & RIKZ$Month <= 9] <- 3

> RIKZ$M14[RIKZ$Month >= 10 & RIKZ$Month <= 12] <- 4

> RIKZ$fM14 <- factor(RIKZ$M14)

Allowing for different variances is done with the weights option and the
varIdent structure; see also Chapter 5. All we have to do is add the code
weights = varIdent(form = ∼1 | fM14) to the gamm function pre-
sented above.

Unfortunately, this model did not converge. Using the varIdent function
with two variances (two seasons) neither converged. However, using 10 long-term
smoothers and one seasonal pattern for all smoothers plus four variances for the
seasons (and a random intercept) did not cause any numerical problems. If this sort
of numerical trouble happens, it can be quite a challenge to sort out. One option
is to increase the number of iterations in the gamm routine or reduce the conver-
gence criteria, see the help file of gamm how to do this. Other options are to fix the
degrees of freedom (and not use cross-validation) or set the four variances to fixed
values (e.g. based on the residual variation of previous models). Unbalanced data,
missing values, etc., can also cause convergence problems. We tried all of this, but
without success. However, replacing the 10 seasonal smoothers by a fMonth ×
Area component in the model in Equation (18.4) and re-running the code did not
give any converge problems. The estimated long-term smoothers obtained by this
model had nearly identical shapes as those in Fig. 18.7. Furthermore, extending this
model with four residual variances did not cause any numerical problems. Again,
its estimated long-term trends are similar as to those in Fig. 18.7 and are therefore
not presented again.
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Fig. 18.10 Normalised residuals of the model with 10 long-term smoothers, seasonal components
modelled by fMonth× Area, a spatial trend, a random intercept for stations, and four variances.
Note that Area is automatically a factor due to its coding. Residuals are grouped per month

However, the model validation did show some problems. Although the residual
spread is approximately the same in all months, we still have more negative residuals
in the spring and summer than in the autumn and winter (Fig. 18.10). We had already
seen this behaviour in the data exploration section. By plotting the residuals versus
time for each station (Fig. 18.11), we can see that there is no clear pattern in these
large values. One option to deal with this is to include a nested (within station)
random intercept for month. This allows for random variation around the seasonal
pattern, and this variation can be different per month. However, this would only
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hide the fact that we have large observations in some months and stations. This
may well be a sampling issue; not all stations are sampled on the same day due
to practicalities of travel arrangements (some stations are separated by 250 km). If
DIN values are high (for a short period) in a certain region, then you may measure it
at one station, but values may have dropped already by the time you reach the next
station. So, instead of hiding it in random effects, we will leave it as it is. The R code
to produce Figs. 18.10 and 18.11 is not reproduced here as it closely follows earlier
code.

Plotting normalised residuals versus fitted values showed that there is still a cer-
tain degree of heterogeneity in the residuals. This is because some stations have less
variation in DIN values. This can also be seen in the data exploration section and
even in Fig. 18.11. Another way of spotting this is to plot fitted values against residu-
als and use a different colour per station. It is difficult to solve this. It is not practical
to use the varIdent structure and 31 different variances as computing time would
drastically increase. A better option is to scale each time series, for example, by
using: LDINis/max(LDINis). Such a standardisation ensures all the time series have
similar variation, but the average values can still be different (this in contrary to
centring and dividing by the standard deviation).

The last aspect we look at (as part of the model validation process) is spatial
patterns in residuals. We made a bubble plot of averaged (per station) residuals
(Fig. 18.12), and there seems to be no clear clustering of positive (or negative)
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Fig. 18.12 Bubble plot for averaged residuals per station. Large dots represent large residuals with
black dots for negative residuals and grey dots for positive residuals. The R code to produce this
graph is available from the book website
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residuals. It is also possible to make this graph for data of each year or each season.
Alternatively, variograms can be made of residuals per station or per year. It would
be a nice challenge to make an xyplot with multiple variograms in it, but we will
leave this as an exercise for the reader.

To allow for spatial or temporal correlation in the residuals, you can attempt to
add the correlation option to the gamm function, but our initial attempts resulted in
convergence problems due to the large sample size. So, we are pushing things a little
bit too far with current software and hardware.

As to the numerical output, all trends were highly significant. However, we advise
being cautious with these p-values as there is considerable residual information left
in the model. It may be an option to allow for more smoothers for the series or
analyse these time series separately.

18.4 Results for Temperature

The same modelling strategy was applied on the (untransformed) temperature
data. We started the model selection process from scratch. The data exploration
showed that the patterns over time show less variation compared to the DIN data.
Figure 18.13 shows the boxplots of temperature per month for each area. It will be
interesting to test whether the seasonal pattern change per area or not.

The same strategy used for the DIN analysis was followed. The AIC showed
that the model with 10 long-term smoothers, 10 seasonal smoothers, a spatial trend,
and a random intercept was the best model. There was only minor (visual) evidence
of heterogeneity and therefore no real need to use multiple variances per season.
The estimated long-term smoothers are shown in Fig. 18.14. It may be an option
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Fig. 18.14 Long-term trends for temperature by area. The solid line is the smoother and the dotted
lines are 95% confidence bands

to group some of the areas and use only one smoother for them, but this makes
the comparison with the phytoplankton data, presented later, more difficult. The
10 seasonal components are given in Fig. 18.15; note that NZ, NC, VD, and KZ
trends are slightly different from the others. The shape of these curves also shows
why a sinus function would not work; the patterns are not symmetrically shaped
during the year. The spatial trend f(X,Y) is presented in Fig. 18.16.

The R code for the temperature data analysis is identical to the code used in the
previous section and is not presented again.
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Fig. 18.16 Spatial trend for the temperature data. The solid line represents the contour lines and
the dotted lines are confidence bands. It is also possible to plot this graph as a 3-dimensional picture

18.5 Results for DIAT1

In this section, the aggregated DIAT1 (diatoms between 0 and 1,000 μm3) phyto-
plankton series are analysed. An initial data exploration was carried out, and this
indicated that a log-transformation was needed.

The main difference with the environmental data and these data is that during
the 15 years of sampling, four different laboratories were successively involved
with the counting of the phytoplankton. There was no overlap between the lab-
oratories and there is a clear ‘laboratory’ effect that can be seen using a simple
boxplot or a more advanced boxplot produced by the bwplot function from the
lattice package, see Fig. 18.17. At most areas, values taken by laboratory D are
the highest. However, this was also the laboratory that took the most recent sam-
ples. If we include the term factor(Laboratory) in model (18.4) and replace
LDIN by LDIAT1, the categorical variable laboratory is highly significant. In fact,
the estimated trends for the model with and without the laboratory effect are only
slightly different, especially during the period when laboratory D was in charge of
counting. The question then rises, whether there is indeed a laboratory effect or
whether abundances have increased during the period when laboratory D counted.
Unfortunately, there is no way we can distinguish between the two. The only thing
that we can say is that the estimated laboratory effect (as measured by estimated
parameters for each level of the categorical variable) is larger than you would expect
based on common sense approach to our existing ecological understanding. We have
found similar changes of abundance between other years, not corresponding with
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Fig. 18.17 Boxplot of log-transformed DIAT1 conditional on laboratory (represented by A, B, C,
and D) per area

factor Lab. As well as looking further into this particular DIAT1-group either on
the level of species or per station, the Lab-pattern appeared not to be of a structural
kind. Summarising, we cannot say whether any changes over time in abundances
are due to a laboratory effect or whether it represents a real change. We therefore
concluded that the laboratory effect is small compared to observed changes and
ignored it.

The modelling approach followed similar lines used for the environmental vari-
ables. Note that most long-term trends in Fig. 18.18 seem to increase up to about
2001. Seasonal patterns are rather different per area (Fig. 18.19). Some areas show
a clear diatom blooming in early spring followed by a smaller bloom in late autumn.
The spatial pattern is given in Fig. 18.20.
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Fig. 18.18 Estimated trends for log-transformed diatoms (DIAT1). The model did not contain a
laboratory effect
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18.6 Comparing Phytoplankton and Environmental Trends

In the previous three sections, we applied a Gaussian GAMM on multiple times
series for DIN, temperature, and DIAT1. For each variable, we have 10 long-term
trends. The question now is whether there is any relationship between the DIAT1
trends and the DIN and temperature trends. One may be tempted to consider DIAT1
as a response variable and DIN and temperature as explanatory variables. However,
the original data set had approximately 8–10 explanatory variables, and there was
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considerable collinearity between these variables. This makes it rather difficult to
pinpoint any of the variables as the driving variable. An extra interpretation prob-
lem is caused by the seasonal patterns in the original data, as this may cause the
high correlations between the explanatory variables. We therefore go for the sim-
ple approach comparing the long-term DIAT1 trends with the DIN and temperature
trends using Pearson correlation coefficients. There is no point in comparing the
ED DIAT1 trend with the WS DIN trend as these areas are 250 km apart. Hence, it
makes more sense to compare the DIAT1 and environmental trends per area.

A word of caution is also needed. Long-term trends tend to be smooth functions
by definition, and the Pearson correlation coefficient between two smooth functions
tends to be high. Furthermore, we are going to calculate 20 correlation coefficients,
which means that there are potential problems with multiple testing. Our view on
this is to just calculate the correlations, present them graphically, see which com-
binations have the highest correlations, and refrain from interpreting p-values. The
estimated Pearson correlations are given in Table 18.1 and a graphical presentation
of these correlations in Fig. 18.21. The graphical presentation may look like overkill,
but it is useful if more environmental variables are used. Another way to present
the estimated correlations is presented in Fig. 18.22; the correlations between the
DIAT1 and environmental variables are presented in two panels, the font size of
the labels is proportional to the (absolute) estimated correlations. The advantage of
this graph is that you have a better overview where (spatially) the areas with high
correlations are.

The R code to calculate the correlation between the trends and to produce
Figs. 18.21 and 18.22 is rather complicated and is given on the book website. The
main problem in the R code is to access the estimated smoothers. By default, the
plot.gam function is creating smoothers of length 100; hence, the smoothers in
for example Fig. 18.18 are interpolated curves. Here we used long-term smoothers
of length 15 (because there are 15 years).

Table 18.1 Estimated Pearson correlation coefficients between the DIAT1 trends and the corre-
sponding (i.e. same area) DIN and temperature trends

DIN TEMP

DIAT1WZ –0.29 0.62
DIAT1GM –0.33 0.78
DIAT1VD –0.36 0.48
DIAT1ED –0.3 0.68
DIAT1OS –0.2 0.37
DIAT1WS –0.39 0.66
DIAT1KZ –0.61 0.58
DIAT1NZ –0.54 0.79
DIAT1NC –0.85 0.3
DIAT1VM –0.51 0.32
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Fig. 18.21 Graphical presentation of the estimated Pearson correlation coefficients in Table 18.1.
The endpoint of a line gives the value (along the y-axis) of a DIAT1 trend with the corresponding
environmental variable (for the same area)
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Fig. 18.22 Graphical
presentation of the estimated
Pearson correlation
coefficients. The font size of
the labels for an area is
proportional to the absolute
value of the estimated
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18.7 Conclusions

The analysis of the Rijkswaterstaat time series was one of the more challenging
exercises in this book. However, it is a type of data set you are very likely to
come across if you work with ecological or environmental monitoring data. By no
means is this a finalised analysis. It would, for example, be good to add temporal
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residual correlation structures using, for example, the option correlation =
corAR1(form =∼ dDay1 | fStation) within the gamm function. At the
time of writing, our (new) computer (with a Windows operating system) was not
able to carry out such analyses for this data set (and due to the complex mathemati-
cal calculations, it is unlikely to run neither on a Mac, LINUX, or UNIX operating
system). It would be even better to use a spatio-temporal residual correlation struc-
ture, which you would have to program yourself. Before making any attempts to
include a correlation structure, you should make an experimental variogram of the
normalised residuals per station and plot the experimental variograms in a lattice
plot. If these suggest there is no temporal correlation, then there is no point trying
to add a temporal correlation structure inside the model.

The data presented here is merely an illustration how to deal with data of this
type and is a spin-off from a technical report. The original report used more envi-
ronmental variables and more phytoplankton groups. Because we only used a small
part of the data here, we will not go into a biological discussion of the results.

The technical aspects of the analysis of multiple phytoplankton species are sim-
ple; just apply the same methodology on the most important species and use good
visualisation tools to present the results.

18.8 What to Write in a Paper

If this chapter was your work, you are faced with a dilemma. The residuals of the
estimated models still show patterns. So you either have to present this as a paper
with preliminary results and make it clear that further work is going on or you
can argue that this is as much as can be done with current hardware and software,
and because all terms in the model are highly significant, the results are reasonable
robust. Whichever route you go, you have to be very careful with the interpreta-
tion of the results due to the remaining patterns. However, in the technical report we
analysed the data slightly differently, but the estimated long-term trends were nearly
identical to the ones presented here. Perhaps, some simulation studies to assess sen-
sitivity would be a useful addition to convince the referees.



Chapter 19
Mixed Effects Modelling Applied on American
Foulbrood Affecting Honey Bees Larvae

A.F. Zuur, L.B. Gende, E.N. Ieno, N.J. Fernández, M.J. Eguaras, R. Fritz,
N.J. Walker, A.A. Saveliev, and G.M. Smith

19.1 Introduction

In this chapter, we apply mixed modelling to honeybee data. The data are considered
nested because multiple observations were taken from the same hive. A total of 24
hives were sampled.

American Foulbrood (AFB) is an infectious disease affecting the larval stage of
honeybees (Apis mellifera) and is the most widespread and destructive of the brood
diseases (Shimanuki, 1997). The causative agent is Paenibacillus larvae (Genersch
et al., 2006) and the spore forming bacterium infects queen, drone, and worker lar-
vae. Only the spore stage of the bacterium (Fig. 19.1) is infectious to honey bee
larvae. The spores germinate into the vegetative stage soon after they enter the lar-
val gut and continue to multiply until larval death. The spores are extremely infec-
tive and resilient, and one dead larva may contain billions of spores (Hansen and
Brødsgaard, 1999).

Although adult bees are not directly affected by AFB, some of the tasks carried
out by workers might have an impact on the transmission of AFB spores within
the colony and on the transmission of spores between colonies. When a bee hatches
from its cell, its first task is to clean the surrounding cells, and its next task is tending
and feeding of larvae. Here, the risk of transmitting AFB spores is particularly great
if larvae that succumbed to AFB are cleaned prior to feeding susceptible larvae
(Lindstrom, 2006).

Because AFB is extremely contagious, hard to cure, and lethal at the colony level,
it is of importance to detect outbreaks, before they spread and become difficult to
control (Lindstrom, 2006). Reliable detection methods are also important for studies
of pathogen transmission within and between colonies. Of the available methods,
sampling adult bees has been shown the most effective (Nordström et al., 2002).
Hornitzky and Karlovskis (1989) introduced the method of culturing adult honey
bees for AFB, and demonstrated that spores can be detected from colonies without
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Fig. 19.1 Left: Honeybee. Right: Vegetative stage of the bacteria at microscopic level

clinical symptoms. Recently, culturing of P. larvae from adult honey bee samples
has been shown to be a more sensitive tool for AFB screening compared to culturing
of honey samples (Nordström et al., 2002). When samples of adult bees are used,
the detection level of P. larvae is closely linked to the distribution of spores among
the bees. For this reason, we will model the density of P. larvae with the potential
explanatory variables as number of bees in the hive, presence or absence of AFB,
and hive identity. Technical details on how spores were counted can be found in
Hornitzky and Karlovskis (1989).

19.2 Data Exploration

There are three observations per hive, with a total of 24 hives. Figure 19.2A shows
a Cleveland dotplot for the spores (density) conditional on hives. Recall from
Chapter 2 that this graph groups the observations from the same hive along the
vertical axis, and the values of the spores can be read from the horizontal axis.
Two hives have considerably higher values than the others, indicating that serious
problems with homogeneity can be expected if linear regression or mixed effects
modelling is applied. One option is to use different variances per hive (Chapter 4),
but this would result in 24 extra variances. This might make the estimation pro-
cess for multiple variances with generalised least squares (GLS) unstable. We there-
fore prefer to transform the data using a logarithmic transformation. A square root
transformation was also tried, but was considered too weak to ensure homogene-
ity. Because some observations have the value of 0, a log10(Yij + 1) transformation
was applied, where Yij is the density of spores in observation j in hive i, with j =
1, . . . , 3, and i = 1, . . . , 24. The transformed data are shown in Fig. 19.2B. The R
code to access the data, transform the spore data, and make the two Cleveland dot-
plots, is given below. The first two commands are used to access the data. The par
command sets up the graphical window and the mar option controls the amount of
white space around the individual panels. The dotchart command was discussed
in Chapter 2.



19 Mixed Effects Modelling Applied on AFB Affecting Honey Bees Larvae 449

A B 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 50000 100000 150000 200000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 1 2 3 4 5

Fig. 19.2 A: Cleveland dotplot for the untransformed spores (densities) data. The data are grouped
by hives. B: Cleveland dotplot for the log10-transformed data. The vertical axes show the three
observations per hive and the horizontal axes the values of the spores data

> library(AED); data(Bees)

> Bees$fhive <- factor(Bees$hive)

> Bees$Lspobee <- log10(Bees$spobee + 1)

> op<- par(mfrow = c(1, 2), mar = c(3, 4, 1, 1))

> dotchart(Bees$spobee, groups = Bees$fhive)

> dotchart(Bees$Lspobee, groups = Bees$fhive)

> par(op)

Instead of using the Cleveland dotplot, we could have used a conditional
boxplot. However, with only three values per hive, this would have been less
useful.

The explanatory variable Infection quantifies the degree of infection (AFB),
with values 0 (none), 1 (minor), 2 (moderate), and 3 (major). Although mixed effects
modelling can cope with a certain degree of unbalanced data, in this case it may be
better to convert the variable Infection in 0 (no infection) and 1 (infection is
present) as there are only a few observations that have the value 2 or 3 for this
variable. The R code to do this is

> Bees$Infection01 <- Bees$Infection

> Bees$Infection01[Bees$Infection01 > 0] <- 1

> Bees$fInfection01 <- factor(Bees$Infection01)
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Fig. 19.3 Boxplot of
log-transformed spores
densities conditional on the
variable fInfection01
(AFB). Note that there are
considerably more
observations with
fInfection01 equal to 0.
The width of a boxplot is
proportional to sample size

All observations for the variable Infection that are larger than 0 are set to 1.
After this transformation, 17% of its values are equal to 1 and 73% are 0.

A boxplot of spores conditional on Infection01 shows clear differences
between the two levels (Fig. 19.3). The boxplot was made with the command

> boxplot(LSpobee ∼ fInfection01, data = Bees,

varwidth = TRUE)

Other graphical validation tools were also applied, for example, the coplot
and xyplot, but no clear patterns were found. These graphs and R code are not
presented here.

19.3 Analysis of the Data

The response variable is the log-transformed density of spores and the explanatory
variables are infection (nominal with two classes) and number of bees. To investi-
gate whether there is a hive effect, we first applied a linear regression model on the
data. As explanatory variables we used infection and number of bees together with
their interaction. The standardised residuals from this model were plotted against
hive (Fig. 19.4) and show a clear pattern. In this graph, we want to see residuals
that are scattered around zero, but in this case, we have various hives where all three
residuals are above the zero line or all are below the zero line. This indicates there
is within-hive correlation.

An option is to include hive as an explanatory variable. However, if we do this as
a fixed term, paying the price of losing 23 degrees of freedom is rather high! And
on top of that, the resulting model would only hold for these 24 hives. A logical
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Fig. 19.4 Standardised residuals from the linear regression model where log transformed spores
are modelled as a function of infection, number of bees, and their interaction

solution is to proceed with a random intercept model (Chapter 5). The advantages
of such an approach are (i) it only requires one extra parameter (the variance for the
random intercept), compared to the linear regression model that required 23 extra
parameters; (ii) we can make a statement for hives in general and not only these 24;
and (iii) as an extra bonus, it introduces a correlation structure between observations
of the same hive.

The following R code was used to apply the linear regression model, extract the
normalised residuals and produce the boxplot in Fig. 19.4. The abline command
adds the horizontal line at zero.

> M1 <- lm(LSpobee ∼ fInfection01 * BeesN, data = Bees)

> E1 <- rstandard(M1)

> plot(E1 ∼ Bees$fHive, xlab = "Hives",

ylab = "Standardised residuals")

> abline(0, 0)

Recall from Chapters 4 and 5 that the selection approach for linear mixed effects
models should broadly follow a protocol consisting of 10 steps. In step 1, we start
with a model that has as many explanatory variables as possible (in the fixed part
of the model), then we find the optimal random structure (steps 2–6), the optimal
fixed structure (steps 7–8), present the results of the optimal model using REML
estimation (step 9), and finally, give an interpretation (step 10). We follow these
same steps here.

Step 1 of the Protocol

Earlier in this chapter, we started with a model that contained all the explanatory
variables and their interaction in the fixed part of the model. In this case, there are
only two fixed explanatory variables.
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Steps 2–6 of the Protocol

Starting with a random intercept model, we have

LSpobeeij = α + β1 × BeesNij + β2 × fInfection01ij

+ β3 × BeesNij × fInfection01ij + ai + εij

In words, the log-transformed spores are modelled as an intercept (α),
plus a linear ‘number of bees per hive’ effect (BeesN), an infection effect
(fInfection01), the interaction between these two terms, a random intercept
ai that is assumed to be normally distributed with mean 0 and variance σ a

2, and
something that is ‘real’ noise (εij). The index i refers to hives (i = 1, . . . , 24) and
j to the observation within a hive (j = 1, . . . , 3). The term εij is the within-hive
variation, and is assumed to be independently normally distributed with mean 0 and
variance σ 2.

We use the function lme from the R package nlme to fit the random intercept
model in Equation (19.1). To assess whether the mixed effects model is better than
the ordinary linear regression model, we need to refit the latter one using the gls
function without the random intercept. The anova function can then be used to
compare AICs or apply a likelihood ratio test. The required R code and output of
the anova command are given below.

> library(nlme)
> M2<-gls(LSpobee ∼ fInfection01 * BeesN, data = Bees)
> M3<-lme(LSpobee ∼ fInfection01 * BeesN,

random =∼ 1 | fHive, data = Bees)
> anova(M2,M3)

Model df AIC BIC logLik Test L.Ratio p-value
M2 1 5 251.5938 262.6914 -120.79692
M3 2 6 175.0129 188.3299 -81.50643 1 vs 2 78.58097 <.0001

We can either use the AIC to select the optimal model or apply the likelihood
ratio test. The AIC values indicate that the mixed model is preferred. The problem
with the likelihood ratio test is that we are testing on the boundary (Chapter 5). The
correct p-value is obtained by typing

> 0.5 * (1 - pchisq(78.58097, 1))

This is still smaller than 0.001; so both approaches favour the mixed model.
There are a few ways to extend the random part of the model. We can try a

random intercept and slope model, and we can try using multiple variances. As to
the first option, the BeesN effect may be different per hive and the same may hold
for the fInfection01 effect. However, both options gave higher AICs. The R
code for these models and model comparisons are given below.

> M4 <- lme(LSpobee ∼ fInfection01 * BeesN,
random =∼ 1 + BeesN | fHive, data = Bees)
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> M5 <- lme(LSpobee ∼ fInfection01 * BeesN,
random =∼ 1 + fInfection01 | fHive, data = Bees)

> anova(M2, M3, M4, M5)

Model df AIC BIC logLik Test L.Ratio p-value
M2 1 5 251.5938 262.6914 -120.79692
M3 2 6 175.0129 188.3299 -81.50643 1 vs 2 78.58097 <.0001
M4 3 8 178.8460 196.6020 -81.42299 2 vs 3 0.16689 0.9199
M5 4 8 177.7606 195.5167 -80.88032

As extending the model with random slopes gives no improvement, we can look
at an alternative of adding multiple variances for the residuals εij. One option is
to fit the model with and without multiple variances and compare them with the
AIC or the likelihood ratio test. Another option is to plot the residuals of the
model that is the best so far, the random intercept model in Equation (19.1), and
see whether anything is wrong. We chose the second approach. The command
plot(M3, col = 1) produces a plot of the residuals against fitted values for
the random intercept model (Fig. 19.5). Note that there is some evidence of het-
erogeneity as the residual spread is slightly smaller for larger fitted values. These
are actually the observations for which Infection01 is equal to 1 (this can be
seen by using colours or different symbols), which suggests extending the random
intercept model in Equation (19.1) from εij ∼ N(0, σ 2) to εij ∼ N(0, σ k

2), where
k = 1, 2.

This means that we use a variance for the observations that have no infection and
a different variance for the observations that have Infection01= 1. Technically,
the varIdent variance structure is used for this; see also Chapter 4. The AIC of
this model (171.65) is slightly better than the random intercept model (175.01) in
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Fig. 19.5 Residuals versus fitted values for the mixed model
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Equation (19.1), and the likelihood ratio test gives a p-value of 0.02, indicating that
we have weak evidence to reject the null hypothesis that both variances are the same.
The normalised residuals (not shown here) now look better.

The R code below fits the new model, and compares it with the random intercept
model.

> M6 <- lme(LSpobee ∼ fInfection01 * BeesN,
random =∼ 1 | fHive, data = Bees,
weights = varIdent(form =∼ 1 | fInfection01))

> anova(M3, M6)

Model df AIC BIC logLik Test L.Ratio p-value
M3 1 6 175.0129 188.3299 -81.50643
M6 2 7 171.6587 187.1952 -78.82933 1 vs 2 5.3542 0.0207

Steps 7 and 8 of the Protocol

We now continue with the seventh and eighth step of the protocol to find the optimal
fixed structure for the selected random structure. This means that using our optimal
random structure (random intercept plus two variances for εij), we need to look at the
optimal fixed structure. As discussed in Chapters 4 and 5, we can either do this using
the t-statistics from the summary command, sequential F-tests using the anova
command, or likelihood ratio tests of nested models. The first two approaches
require REML estimation with the third approach needing ML estimation. We will
use the last approach as the first two approaches can easily be carried out by the
reader, and there is a higher degree for ‘confusion’ with the third approach.

In the first step, we need to apply the model with all terms and a model without
the interaction. Note that we cannot drop any of the main terms yet. The update
command is used to fit the model without the interaction term; see also Chapters 4
and 5.

> M7full <- lme(LSpobee ∼ fInfection01 * BeesN,
random =∼ 1 | fHive, method = "ML", data = Bees
weights = varIdent(form =∼ 1 | fInfection01))

> M7sub <- update(M7full, .∼. -fInfection01 : BeesN)
> anova(M7full, M7sub)

Model df AIC BIC logLik Test L.Ratio p-value
M7full 1 7 129.8792 145.8159 -57.93962
M7sub 2 6 128.4452 142.1052 -58.22262 1 vs 2 0.5660039 0.4519

The anova command gives L = 0.56 (df = 1) with p = 0.45, allowing us to drop
the interaction term to give a model with two main terms. We can now either switch
to approach one and use the t-statistics to assess the significance of these two main
terms or we can be consistent and go on with the likelihood ratio testing approach.
We prefer consistency. The following code reapplies the model, drops each of the
main terms in turn, and then applies the likelihood ratio test.
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> M8full <- lme(LSpobee ∼ fInfection01 + BeesN,
random =∼ 1 | fHive, method = "ML", data = Bees,
weights = varIdent(form =∼ 1 | fInfection01))

> M8sub1 <- update(M8full, .∼. -fInfection01)
> M8sub2 <- update(M8full, .∼. -BeesN)
> anova(M8full, M8sub1)

Model df AIC BIC logLik Test L.Ratio p-value
M8full 1 6 128.4452 142.1052 -58.22262
M8sub1 2 5 144.6700 156.0533 -67.33497 1 vs 2 18.22471 <.0001

> anova (M8full,M8sub2)

Model df AIC BIC logLik Test L.Ratio p-value
M8full 1 6 128.4452 142.1052 -58.22262
M8sub2 2 5 129.3882 140.7715 -59.69408 1 vs 2 2.942923 0.0863

The two anova commands give p < 0.001 and p = 0.08, making the term
beesN the least significant, and we continue without it. This leaves us with one
final model comparison of the models with and without the term fInfection01.
The following R code is used:

> M9full <- lme(LSpobee ∼ fInfection01,
random =∼ 1 | fHive, method = "ML", data = Bees,
weights = varIdent(form =∼ 1 | fInfection01))

> M9sub1 <- update(M9full, .∼. -fInfection01)
> anova(M9full, M9sub1)

Model df AIC BIC logLik Test L.Ratio p-value
M9full 1 5 129.3882 140.7715 -59.69408
M9sub1 2 4 147.0532 156.1599 -69.52661 1 vs 2 19.66507 <.0001

The last anova command gives L = 19.66 (df = 1, p < 0.0001), indicating
that infection is highly significant. So after a considerably amount of R coding, we
end up with a model where only one fixed explanatory variable, infection, is highly
significant.

Step 9 of the Protocol

In the last two steps of the protocol (9 and 10), we have to refit the model with
REML, further validate and present the results, and then explain what it all means.
The last part is the difficult bit and will be done in the discussion. The first part is
easy:

> Mfinal <- lme(LSpobee ∼ fInfection01,

random =∼ 1 |fHive, data = Bees, method="REML",
weights = varIdent(form =∼ 1 | fInfection01))

> summary(Mfinal)
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Linear mixed-effects model fit by REML

Data: Bees

AIC BIC logLik

130.1747 141.4171 -60.08733

Random effects:

Formula: ∼1 | fHive

(Intercept) Residual

StdDev: 0.9892908 0.3615819

Variance function:

Structure: Different standard deviations per stratum

Formula: ∼1 | fInfection01

Parameter estimates:

0 1

1.000000 0.473795

Fixed effects: LSpobee ∼ fInfection01

Value Std.Error DF t-value p-value

(Intercept) 1.757273 0.2260837 48 7.772666 0

fInfection011 2.902090 0.5461078 22 5.314135 0

Correlation:

(Intr)

fInfection011 -0.414

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.1548732 -0.6068385 0.2019003 0.5621671 1.6855583

Number of Observations: 72

Number of Groups: 24

Let us to summarise all this information. The optimal model is given by

LSpobeeij = 1.75 + 2.90 × fInfection01ij + ai + εij

where ai ∼ N(0, 0.982). For the within-hive residuals, we have εij ∼ N(0, 0.362) if
the observation has no disease (Infection01 = 0) and εij ∼ N(0, 0.362× 0.472)
if it has a disease (Infection01 = 1). If an observation has no diseases, then the
expected density of spores is 1.75 on the logarithmic scale. If it has a disease, then
the expected density is 1.75 + 2.90 = 4.65. Depending on the hive, there is a random
variation on both expected values. This is due to the random intercept, and 95% of
its values are between –1.96 × 0.36 and 1.96 × 0.36.

Finally, we inspect the residuals of the optimal model. This should actually be
done in steps 7 and 8, but because we want to do this for the REML estimates, we do
it here. We need to inspect the optimal model for homogeneity of the residuals εij.
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(Intercept)Fig. 19.6 QQ-plot of the
mixed effects model
MFinal

We have already discussed how to do this using the command plot(Mfinal).
Results are not presented here, but we can safely say they indicate homogene-
ity. We can also assume normality of these residuals. This can be verified with
qqnorm(Mfinal). It produces a QQ-plot of the normalised residuals. Results
are not presented here, but normality is a reasonable conclusion in this case. Finally,
we need to verify the normality assumption for the random effects. Use the R com-
mand qqnorm(Mfinal, ∼ranef (.),col = 1), and again, normality seems
a reasonable conclusion (Fig. 19.6).

Another useful command is intervals(Mfinal). It shows the approximate
95% confidence bands of the parameters and random variances.

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 1.302701 1.757273 2.211845

fInfection011 1.769532 2.902090 4.034648

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: fHive

lower est. upper

sd((Intercept)) 0.7259948 0.9892908 1.348076
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Variance function:

lower est. upper

1 0.2770579 0.473795 0.8102339

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

0.2904009 0.3615819 0.4502102

We have now finished steps 1–9 of the protocol and we discuss the interpretation
of the model in the next section.

19.4 Discussion

In this chapter, we applied linear mixed effects modelling because the data are
nested (three observations per hive). The model showed that there is a significant
disease effect on the spore density data. The intraclass correlation is 0.982/(0.982 +
0.362) = 0.88 if a hive has no disease and 0.982/(0.982 + 0.362× 0.472) = 0.97 if
a hive has the disease. This is rather high, and means that the effective sample size
is considerably smaller than 3 × 24 = 72 (Chapter 5). We might as well take one
sample per hive and sample more hives.

If the number of spores are analysed instead of density, we can use generalised
estimation equations with a Poisson distribution (Chapter 9) or generalised linear
mixed modelling with a Poisson distribution (Chapter 13).

19.5 What to Write in a Paper

A paper based on the results presented in this chapter should include a short descrip-
tion of the problem (introduction) and the set up of the experiment (methods). It
will need to justify the use of the logarithmic transformation on spores densities
and the use of mixed effects modelling. You should also outline the protocol for
model selection, and in the results section, mention how you got to the final model.
There is no need to present all the R code or results of intermediate models. You
may want to include one graph showing homogeneity of the residuals. You should
also present the estimated parameters, standard errors, t-values, and p-values of the
optimal model. Warn the reader that the data are unbalanced (not many observations
with a disease); so care is needed with the interpretation.
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Chapter 20
Three-Way Nested Data for Age Determination
Techniques Applied to Cetaceans

E.N. Ieno, P.L. Luque, G.J. Pierce, A.F. Zuur, M.B. Santos, N.J. Walker,
A.A. Saveliev, and G.M. Smith

20.1 Introduction

In the previous case study, we showed how multiple samples from bacteria in honey
bees from the same hive gave a nested data structure, and mixed modelling tech-
niques were applied to allow for correlations between observations from the same
hive. The bee data provided an example of two-way nested data, and the underlying
theory for this was discussed in Chapter 5. In this chapter, we go one step further
and use three-way nested data, which extends the two-way approach discussed in
Chapter 5. The underlying theory builds on the approach used for two-way data,
and we recommend reading Chapter 5 before starting this chapter as we assume
familiarity with the theory, model selection, and R code for two-way nested data.

We use a subset of the data analysed in Luque (2008), who compared the results
from three staining methods to determine the age of cetaceans stranded in Spain
and Scotland. The data are nested in the sense that samples derive from multiple
species, and from each species, we have various specimens (individual animals).
From each specimen, several teeth were sectioned and tooth sections were stained
using three staining methods (the Mayer Haematoxylin, Ehlrich Haematoxylin, and
Toluidine Blue methods), giving three age estimates from each tooth. A diagram of
the nested structure is given in Fig. 20.1. The three age observations per specimen
(obtained by the three staining methods) are likely to be correlated, but we may also
expect correlation between age readings within the same species (if, for example,
different species have different lifespans and/or different age classes tend to become
stranded and thus become the source of samples). The response variable is the esti-
mated age of the animal. Available explanatory variables are sex (male or female),
location of stranding (Scotland or Spain), and stain (Mayer Haematoxylin, Ehlrich
Haematoxylin, and Toluidine Blue).

In Chapter 4 of West et al. (2006), a three-way nested data set on mathematic
scores for students within multiple classes and multiple schools is analysed. From a
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Fig. 20.1 Sketch of the nested structure of the data. Six cetacean species were sampled. These were
Delphinus delphis, Lagenorhynchus acutus, Phocoena phocoena, Stenella coeruleoalba, Stenella
frontalis, and Tursiops truncatus. For each species, various specimens (animals) were available.
The number of specimens per species range between 3 and 25. From each specimen, three esti-
mated age readings were obtained by the three staining methods (labeled as 1, 2, and 3 in the
graph)

statistical point of view, there are not many differences between their classroom
example and our cetacean data set. In fact, we will closely follow their steps.
The only difference is that West et al. (2006) used two different model selection
approaches; (i) the step-down approach, which was presented as our protocol with
steps 1–10, and (ii) a step-up approach. The classroom data are analysed with the
step-up approach. For the cetacean data, we will follow our familiar step-down
approach.

20.2 Data Exploration

The first question to ask with nested data is how much variation is there between
specimens and between species? Figure 20.2 shows a boxplot of age conditional on
specimen. Recall that we have three observations per specimen. The graph shows
that we have a large between-specimen variation, which means we probably need to
use ‘animal’ as a random effect. The same graph was made for species (Fig. 20.3)
and shows there is considerably less between-species variation. This should not be
too surprising as each animal has only one true age, but the samples of stranded ani-
mals for each species should include the range of age classes present in the popula-
tions. Even if one species tends to be longer-lived than another, there will inevitably
be a considerable overlap in ages present.

We also made boxplots of age conditional on sex, age conditional on loca-
tion, and age conditional on staining method. Results are not shown here, but they
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Fig. 20.2 Boxplot of age conditional on animal. Each boxplot consists of three observations from
the same animal. Not all numbers are plotted along the horizontal axis due to limited space
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Fig. 20.3 Boxplot of age conditional of species. There is considerably less between-species vari-
ation compared to between-animal variation

indicate that the variation in ages recorded in Scotland is considerably less than
Spain, indicating we may need to use different variances per country. There are also
three observations with undetermined sex, and to allow for interactions between sex,
location, and age determination, we removed these observations.

The following R code was used to access the data, make the two boxplots, and
remove the three observations where sex was undetermined. By now, you should
be familiar with this code. The object Cetaceans2 contains the male and female
data (the class unknown was dropped).
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> library(AED); data(Cetaceans)

> Cetaceans$fSpecies <- factor(Cetaceans$Species)

> Cetaceans$fDolphinID <- factor(Cetaceans$DolphinID)

> boxplot(Age ∼ fSpecies, data = Cetaceans)

> boxplot(Age ∼ fDolphinD), data = Cetaceans)

> I <- Cetaceans$Sex==0
> Cetaceans2 <- Cetaceans[!I,]

20.3 Data Analysis

The starting point for the analysis is a model of the form

Ageijk = fixed partijk + random partijk (20.1)

The variable Ageijk is the age of observation i in animal j of species k. The index
k runs from 1 to 6 and i from 1 to 3. The number of animals per species differs.
We start discussing the fixed part of the model and then the random part. Recall
from Chapters 4 and 5 that the protocol dictates that we start with a model that
contains as many fixed explanatory variables as possible. In this case, we have three
nominal explanatory variables. We therefore start with a model containing sex, stain,
and location as main terms, all two-way interactions, and the three-way interaction.
Hence, the fixed part consists of

Sexijk + Stainijk + Locationijk + Sexijk × Stainijk + Sexijk × Locationijk+
Stainijk × Locationijk + Sexijk × Stainijk × Locationijk

This model is fitted with the gls function to serve as a reference model. The
following code was used for this.

> library(nlme)

> Cetaceans2$fSex <- factor(Cetaceans2$Sex)

> Cetaceans2$fLocation <- factor(Cetaceans2$Location)

> Cetaceans2$fStain <- factor(Cetaceans2$Stain)

> f1 <- formula(Age ∼ fSex * fStain * fLocation)

> M1 <- gls(f1, method = "REML", data = Cetaceans2)

We can now go to step 2 of the analysis. The random effect ‘animal’ is nested
within the random effect ‘species’. Just as West et al. (2006), we argue that if the
random effect ‘animal’ is included in the model, then the random effect ‘species’
should also be included in the model. Making our starting point for the random part,

ak + a j |k + εijk
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The term εijk is the unexplained error and represents the within-animal variation.
It is assumed to be normally distributed with mean 0 and variance σ 2. However, the
data exploration indicated that there may be different spread per location and we
should be prepared at some stage to test whether multiple variances are needed per
location. But to avoid too many steps at once, we will wait until we reach steps 3–5
of the analysis before considering this in any detail.

Recall that the index k refers to species k. We assume that ak is normally dis-
tributed with mean 0 and variance σ species

2. The term ak is a random intercept and
allows for variation between the species. The amount of variation is determined
by σ species

2. The term aj|k looks intimidating, but represents the variation between
animals (index j) of the same species (index k). We assume it is normally dis-
tributed with mean 0 and variance σ animal

2. Summarising, ak allows for variation
between the species and aj|k for the variation between animals within the same
species.

Therefore, our starting model contains a sex, location, and stain effect as well as
all their interactions, and we also use random intercepts that model between-species
variation and between-animal variation within the species.

As part of this analysis (step 2), the first model comparison is between the model
with the two random effects ak and aj|k and a model without them. Recall that these
random effects are nested. If the between-animal variation is important, then we
should use both random effects. So, we will not test whether the random effect ak on
its own is important. The following code applies the model with both random effects
and compares the model with and without the random effects using the anova
command.

> M2 <- lme(f1, random =∼1 | fSpecies / fDolphinID,

data = Cetaceans2, method = "REML")

> anova(M1, M2)

It is important that you define the variables fSpecies and fDolphinID as
factors before the lme command or R will give an error message. The output of the
anova command is as follows:

Model df AIC BIC logLik Test L.Ratio p-value
M1 1 13 1101.4488 1141.8261 -537.7244
M2 2 15 740.3277 786.9168 -355.1638 1 vs 2 365.1212 <.0001

The AIC indicates that the model with the two random effects is considerably
better. The likelihood ratio statistic is L = 365.12, and the cited p-value indicates
that we can reject the null hypothesis H0: σ animal = 0 in favour of the alternative H1:
σ animal > 0. However, note that we are testing on the boundary, and therefore, the
cited critical p-value should be multiplied with 0.5; see also Chapter 5 or Chapter 4
in West et al. (2006). Even after applying this correction, we still come to the same
conclusion that we need the two random intercepts.
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We now have two options. We can either apply a model validation, check for
homogeneity (especially plotting residuals versus location), or extend the model by
allowing for multiple variance based on location and see whether it improves the
model. The motivation for the last approach is because the data exploration showed
a clear difference in spread per location. Recall from Chapter 4 that adding such a
variance structure extends the model to

εijk ∼ N(0, σ 2
s )

The index s refers to the two locations, allowing the residuals from the two loca-
tions to have a different spread. Based on the data exploration, we decided to include
the multiple variance structure and see whether it improved the model. Some might
argue that this variance structure should have been used in the starting model, but
there are two reasons for not doing this; firstly because we prefer to start as simple
as possible and secondly the explanatory variables could have explained the differ-
ences in spread. The following R code was used to extend the model.

> M3 <- lme(f1, random =∼ 1 | fSpecies / fDolphinID,

weights = varIdent(form =∼ 1 | fLocation),

data = Cetaceans2)

The only new bit of code is the weights option with the varIdent variance
structure (see also Chapter 4). The anova command shows that the AIC of this
model is 733.01 and the likelihood ratio statistic is L = 9.30 (df = 1, p = 0.002),
making this the best model so far. We can now proceed to steps 7–9 of the analysis
to find the optimal fixed structure for our selected random structure.

To find the optimal model in terms of the fixed explanatory variables, we can
either use the t-statistics, sequential F-tests, or likelihood ratio tests. In this instance,
as we have factors with more than two levels (stain), we decided to use the third
option. This part of the analysis was described earlier in Chapter 5, and we assume
the reader is familiar with the tedious repetitive process of fitting a full model drop-
ping all allowable terms in turn, applying likelihood ratio tests of nested models
dropping the least significant term, and repeating the whole process until all terms
are significant.

We first fitted a model with all terms (main terms: all two-way interactions and
the three-way interaction) and then a model without the three-way interaction. Both
models were fitted with maximum likelihood estimation (ML). The likelihood ratio
test indicated that we could drop the three-way interaction (L = 5.05, df = 2, p =
0.07). The process then continued by dropping each of the three two-way interaction
terms in turn and identified the least significant with the likelihood ratio test. The
first interaction term to go out was the sex × location term (L = 0.35, df = 1,
p = 0.55), followed by the sex × stain interaction (L = 1.5, df = 2, p = 0.46), and
finally, sex as a main term was dropped (L = 0.68, df = 1, p = 0.40) as it was not
included in the remaining two-way interaction term. At this point, the fixed part of
the model contained stain, location, and the stain × location interaction. Dropping
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the interaction gave L = 19.14 (df = 2, p < 0.001), giving the optimal model in
terms of fixed terms. In words, it is given by

Ageijk = Stainijk + Locationijk + Stainijk × Locationijk + ak + a j |k + εijk

We refitted the model with REML and applied a model validation. There are no
problems with homogeneity. The numerical output of the model is obtained with the
summary command:

> options(digits=4)
> summary(M3)

Linear mixed-effects model fit by REML
Data: Cetaceans2

AIC BIC logLik
734.7 766.1 -357.4

Random effects:
Formula: ∼1 | fSpecies

(Intercept)
StdDev: 1.285

Formula: ∼1 | fDolphinID %in% fSpecies
(Intercept) Residual

StdDev: 5.503 0.6496

Variance function:
Structure: Different standard deviations per stratum
Formula: ∼1 | fLocation
Parameter estimates:

Scotland Spain
1.000 1.596

Fixed effects: list(f1)
Value Std.Error DF t-value p-value

(Intercept) 4.050 1.3502 114 3.000 0.0033
fStainMayer 0.398 0.1624 114 2.454 0.0157
fStainToluidine 0.227 0.1624 114 1.395 0.1657
fLocationSpain 3.928 1.8085 52 2.172 0.0345
fStainMayer:fLocationSpain 1.481 0.3255 114 4.551 0.0000
fStainToluidine:fLocationSpain 0.672 0.3255 114 2.063 0.0414
Correlation:

(Intr) fStnMy fStnTl fLctnS fSM:LS
fStainMayer -0.060
fStainToluidine -0.060 0.500
fLocationSpain -0.718 0.045 0.045
fStainMayer:fLocationSpain 0.030 -0.499 -0.249 -0.090
fStainToluidine:fLocationSpain 0.030 -0.249 -0.499 -0.090 0.500

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.97802 -0.31902 -0.04765 0.30647 3.33243
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Number of Observations: 177
Number of Groups:

fSpecies fDolphinID %in% fSpecies
6 59

The Mayer staining method when applied to samples from Spain is significantly
different from the Ehlrich (baseline) method when applied to sample from Scotland
(baseline). The Toluidine method is also significantly different from the Ehlrich
method, but a p-value of 0.04 is not really that impressive. It may be an option to
change the baseline and see whether the Mayer and Toluidine methods differ from
each other. Note that the main term location makes a major contribution for Spain
to the fitted values.

The summary command also gives information on the random terms. The esti-
mated values for σ , σ animal, and σ species are 0.64, 5.50, and 1.18, respectively. The
multiplication factors for the different standard deviations per stratum for location
are 1 for Scotland and 1.59 for Spain. The residual spread in Spain is therefore con-
siderably larger than it is in Scotland. This means that more of the age variation is
explained by the available explanatory variables in Scotland than in Spain.

20.3.1 Intraclass Correlations

We now discuss the interpretation of the random intercepts. The output above shows
that the random effect ak, representing the between species variation, is N(0, 1.282),
the random effect aj|k, representing the between animal variation in the same species,
is N(0, 5.502) for observations from Scotland, the random noise εijk is N(0, 0.642),
and for observations from Spain, the random noise εijk is N(0, 1.022). The value
of 1.02 is obtained by multiplying 0.64 and 1.59. The values can be used to cal-
culate the intraclass correlation at the species level (ICCspecies) and at the animal
level (ICCanimal). The formulae were taken from West et al. (2006) and are as
follows:

ICCspecies = σ 2
species

σ 2
species + σ 2

animal + σ 2

ICCanimal = σ 2
species + σ 2

animal

σ 2
species + σ 2

animal + σ 2

The only difference is that we need to calculate these ICCs for both Scotland and
for Spain as we have two σ s. The actual calculations are just a matter of filling in the
values and give the ICCs for Scotland: ICCspecies = 0.05 and ICCanimal = 0.98 and for
Spain: ICCspecies = 0.05 and ICCanimal = 0.96. Hence, there is massive correlation
between the three observations of the same animal for data of both countries, as we
would of course expect for this dataset. The correlation between animals of the same
species is low. Just as West et al. (2006), we can show the implications of these ICC
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values. Suppose we have three animals from the same species. The model we fitted
implies the following marginal correlation structure for the Spanish data.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
1 1 0.96 0.96 0.05 0.05 0.05 0.05 0.05 0.05
2 1 0.96 0.05 0.05 0.05 0.05 0.05 0.05
3 1 0.05 0.05 0.05 0.05 0.05 0.05
4 1 0.96 0.96 0.05 0.05 0.05
5 1 0.96 0.05 0.05 0.05
6 1 0.05 0.05 0.05
7 1 0.96 0.96
8 1 0.96
9 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The values 1–3 are teeth from the same animal. The correlation between these
three observations is very high (0.96). The same holds for observations 4–6; these
are also from the same, albeit a different, animal. These are also highly correlated.
And the same holds for observations 7–9, which are all from a third animal. How-
ever, the correlation between two age observations from different animals, say 1
and 4, is low (0.05). The lower part of the correlation matrix is identical to the
upper part.

20.4 Discussion

Some of the results displayed above are obvious from the nature of the data. We
expect the three staining methods to give similar results on age for the same animal,
and we would expect a fairly wide overlap in the ages of animals available for dif-
ferent species. However the overlap between age ranges for the different species is
not complete, as for example, common dolphins live longer than harbour porpoises.

It is less obvious what the ‘country’ effect means (and why ages should be more
variable in one country than another) as all the teeth were prepared and assessed
by the same team. There was a different range of species among strandings in the
two countries and although we restricted the analysis to the three most common
species, their relative abundance differs between countries. So there could be some
confounding of country and species effects. There may also have been differences
in the effectiveness of staining due to different storage procedures for teeth used by
the local sampling programmes (in Scotland, teeth are normally stored in alcohol,
whereas the Spanish samples had been stored frozen).

However, one important effect we have ignored is that the variation in age read-
ings probably depends on age: teeth of older animals are more difficult to inter-
pret because the later incremental growth layers are closer together. Spain had a
higher proportion of common dolphins in the sample (as compared to dominance of
porpoises in the Scottish sample) meaning the Spanish sample was biased towards
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older, larger animals. Thus, if we had included length (highly correlated with age
but independent of the age measurements) as an explanatory variable, the country
effect may have disappeared.

The objective of the original study was to compare the efficacy of several stain-
ing methods to prepare dolphin teeth used to determine age. The heterogeneity of
the available teeth samples presented challenges that could not be easily overcome
without the availability of mixed effects modelling. The availability of mixed effects
modelling should not be considered a replacement for good sampling design, but it
does offer a solution to problems created by opportunistic sampling, where these are
the only data available.

20.5 What to Write in a Paper

We can be very short: The same as we suggested in Chapter 19. Present boxplots
to emphasise the large between-animal variation, discuss the need for mixed effects
modelling, explain the model selection approach and present the results, discuss the
model validation, and explain what it means in terms of biology.



Chapter 21
GLMM Applied on the Spatial Distribution
of Koalas in a Fragmented Landscape

21.1 Introduction

Predicting the spatial distribution of wildlife populations is an important component
of the development of management strategies for their conservation. Landscape
structure and composition are important determinants of where species occur and
the viability of their populations. In particular, the amount of suitable habitat
and its level of fragmentation (i.e. how broken apart it is) in a landscape can be
important determinants of the distribution and abundance of biological populations
(Hanski, 1998; Fahrig, 2003). In addition to the role of habitat, anthropogenic
impacts, such as wildlife mortality on roads or direct wildlife-human conflict, can
also have large impacts on the distribution and abundance of a species (Fahrig et al.,
1995; Woodroffe and Ginsberg, 1998; Naves et al., 2003). Therefore, if we are to
manage landscapes to successfully conserve wildlife, it is important that we under-
stand the role of these landscape processes in determining their distributions.

In this chapter, we will model the impact of landscape pattern on the distribution
of koalas (Phascolarctos cinereus, Fig. 21.1) in a landscape in eastern Australia.
Koalas are folivorous arboreal marsupials restricted to the eucalypt forests of east-
ern and southeastern Australia. Across their geographic range, they feed on a wide
range of tree species from the genus Eucalyptus, but mostly prefer only a few species
in any particular area (Hindell and Lee, 1987; Phillips and Callaghan, 2000; Phillips
et al., 2000). Koala habitat generally consists of forest associations containing their
preferred tree species, although other factors, such as tree size, water availability,
and nutrient status, can also be important determinants of habitat quality (Moore
et al., 2004; Matthews et al., 2007). Since European settlement, koalas have suf-
fered declines in their abundance and distribution due to clearing and degradation
of eucalypt forests, together with historical hunting, disease, bushfire, drought, and
urbanisation (ANZECC, 1998; Melzer et al., 2000; Phillips, 2000).
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Fig. 21.1 Young koala
(photo by Dick Marks,
Australian Koala Foundation.
www.savethekoala.com)

Fig. 21.2 Map of the study
area (Noosa Local
Government Area) showing
the distribution of koala
habitat and the location of
roads (Australian Koala
Foundation unpublished
data)
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The study area we consider for this chapter is the Noosa Local Government
Area (LGA) in southeast Queensland, Australia (Fig. 21.2). Noosa has a subtrop-
ical coastal climate with native vegetation ranging from coastal heath to wet and
dry eucalypt forests and subtropical rainforests. Over 50% of the original euca-
lypt forests have been cleared for farming and urban development (Seabrook et al.,
2003). Koalas are, therefore, threatened by the loss and fragmentation of their habi-
tat and by threats associated with urbanisation, such as cars and domestic dogs. To
allow successful management strategies to be developed, it is important for conser-
vation planners to be able to quantify the impact of these threats on koala distribu-
tions in the area.

We will use generalised linear mixed effects models (GLMM) to model the
distribution of koalas using data on their presence and absence at sites located
across the study area. We also take a multi-scale approach in the sense that our
explanatory variables will be landscape characteristics measured at different land-
scape extents. The different landscape extents will be chosen to represent those
scales thought to be most relevant for koala population dynamics, and hence their
distributions. The chapter concentrates on dealing with collinearity and spatial
auto-correlation for these types of landscape models. In addition, we present an
information-theoretic approach to model selection, which allows us to assess both
model and parameter uncertainty. We finish with a discussion on the implications
of the results for koala conservation and what should be included in a scientific
paper.

21.2 The Data

The data presented are based on surveys that were conducted to determine koala
presence or absence at 300 locations in Noosa. This formed part of a larger study
investigating the role of landscape change on koala distributions across eastern
Australia (McAlpine et al., 2006; Rhodes et al., 2006). Using a form of stratified
random sampling (McKay et al., 1979; Thompson, 1992) 100 sites were first located
across the Noosa LGA. Then, within each site, three subsites were located 100 m
apart. At each subsite, the presence or absence of koalas was then determined using
standardised searches for koala faecal pellets around the bases of trees (as in Phillips
and Callaghan, 2000). Previous work has identified the koala’s preferred tree species
in Noosa and these have been classified into primary, secondary, and supplementary
species (Australian Koala Foundation (AKF) unpublished data). At each subsite, the
percentage of trees that were primary and secondary species was recorded. Finally,
the distribution of koala habitat (classified into highly suitable, suitable, marginal,
and unsuitable habitat) and the location of paved roads were mapped in a geograph-
ical information system (AKF unpublished data, Fig. 21.2). The data on the pres-
ence/absence of koalas will be the response variable for our analysis, while the data
on preferred tree species, habitat and roads will form the basis of the explanatory
variables.
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The data set can be accessed in R using the following code:

> library (AED); data (Koalas)

The resulting data frame contains a row for each subsite. The first two columns
are the site and subsite ID numbers, the next two columns are the eastings and
northings of the location of each subsite (in AMG ADG 1966 coordinates), the
fifth column indicates whether koala pellets were found at the subsite (= 1) or not
found at the subsite (= 0), and the remaining columns are the explanatory variables
associated with each subsite (Table 21.1).

The explanatory variables were chosen to represent characteristics of the land-
scape considered likely to be important determinants of the distribution of koalas.
The variables can be split into those characterising habitat at the site-scale, and
those characterising habitat and human impacts at broader landscape-scales (i.e.,
within 1, 2.5, or 5 km buffers around each subsite). The site-scale habitat variables
(pprim ssite and psec ssite) measure the percentage of primary and sec-
ondary tree species at each subsite and reflect resource availability at this scale. Two
of the landscape-scale variables (pss and pm) measure the percentage of the land-
scape, within each buffer, that is highly suitable plus suitable habitat and marginal

Table 21.1 Description of the explanatory variables

Variable name Description Detail description

pprim ssite Resources available at
site-scale

Percentage of trees in each subsite that are
primary tree species

psec ssite Resources available at
site-scale

Percentage of trees in each subsite that are
secondary tree species

phss 1km
phss 2.5km
phss 5km

Habitat available at
landscape-scale

Percentage of the landscape within 1, 2.5,
and 5km, respectively, of each subsite
that is highly suitable plus suitable
habitat

pm 1km
pm 2.5km
pm 5km

Habitat available at
landscape-scale

Percentage of the landscape within 1, 2.5,
and 5 km, respectively, of each subsite
that is marginal habitat

pdens 1km
pdens 2.5km
pdens 5km

Landscape fragmentation Density (patches/100 ha) of habitat
patches, consisting of highly suitable
plus suitable plus marginal habitat, in
the landscape within 1, 2.5, and 5 km,
respectively, of each subsite

edens 1km
edens 2.5km
edens 5km

Landscape fragmentation Density (m/ha) of habitat patch edges,
consisting of highly suitable plus
suitable plus marginal habitat, in the
landscape within 1, 2.5, and 5 km,
respectively, of each subsite

rdens 1km
rdens 2.5km
rdens 5km

Human impact at
landscape-scale

Density (m/ha) of paved roads within 1,
2.5, and 5 km, respectively, of each
subsite
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habitat, respectively. These variables represent the amount of habitat resources
available at the landscape-scale. Two of the landscape-scale variables (pdens and
edens) measure the density of habitat patches and the density of habitat edges
within each buffer, respectively. These variables represent the level of landscape
fragmentation; patch density and edge density both tend to increase as habitat
becomes more fragmented. Finally, one of the landscape-scale variables (rdens)
measures the density of roads in each buffer and represents the level of human
impact due to koala mortality of roads and general urbanisation.

21.3 Data Exploration and Preliminary Analysis

Two important issues to consider before building regression models of species’ dis-
tributions are whether there is high collinearity between the explanatory variables
and whether spatial auto-correlation between data points is likely to be an impor-
tant factor. High collinearity can result in coefficient estimates that are difficult to
interpret as independent effects and/or have high standard errors (Neter et al., 1990;
Graham, 2003). Positive spatial auto-correlation violates the usual assumption of
independence between data points and leads to the underestimation of standard
errors, and elevated type I errors, if not accounted for (Legendre, 1993). Collinearity
between explanatory variables and spatial auto-correlation are commonly encoun-
tered when using observational data to construct regression models of species’ dis-
tributions. For both these issues, we examine whether they are likely to be a problem
for the analysis of our dataset and then discuss how they can be addressed.

21.3.1 Collinearity

A simple first step for identifying collinearity is to look at the pairwise correlations
between explanatory variables. We can generate a matrix of pairwise correlations
between the explanatory variables in our dataset using the following code:

> cor(Koalas[, 6:22], method = "spearman")

This outputs a matrix of the Spearman rank correlations (results are not given
here as it is too large). We have used the Spearman rank correlation coefficient,
rather than the Pearson correlation coefficient because the Spearman rank corre-
lation makes no assumptions about linearity in the relationship between the two
variables (Zar, 1996). One could also use the pairs command to view pairwise
plots of the variables. Booth et al. (1994) suggest that correlations between pairs of
variables with magnitudes greater than ±0.5 indicate high collinearity, and we use
this rough rule-of-thumb here.

The first thing you notice from the correlation matrix is that the landscape
variables measuring the same characteristic at different landscape extents tend
to be highly positively correlated. For example, phss 5km, phss 2.5km, and
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Fig. 21.3 Pairplot of the phss 5km, phss 2.5km, and phss 1km explanatory variables

phss 1km show high correlations with each other (Fig. 21.3). These variables mea-
sure the amount of highly suitable plus suitable habitat within distances of 5, 2.5,
and 1 km of each subsite, respectively, and so they are spatially nested within each
other (Fig. 21.4). The collinearity therefore arises because the variables calculated
at the smaller landscape extents partly measure the same landscape characteristics
as the variables calculated at the larger landscape extents.

You will also notice that the two landscape variables measuring habitat fragmen-
tation (pdens and edens) are also highly positively correlated with each other.
Areas with high patch densities tend to contain habitat patches that are smaller
than those found in areas with low patch densities. Since small patches have more
edge than large patches, this means that areas with high patch densities also tend to
have high edge densities and vice versa, hence the high positive correlation. Finally,
some of the patch density (pdens) and edge density (edens) variables tend to be
somewhat negatively correlated with some of the habitat amount variables (phss
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Fig. 21.4 Illustration of the
nested landscape extents
within which the landscape
variables were calculated.
The point in the centre
represents a hypothetical
subsite and the shaded areas
represent hypothetical koala
habitat

and pm). This occurs because the same processes that lead to habitat loss also tend to
lead to a breaking apart of that habitat (i.e. fragmentation), resulting in greater num-
bers of patches with more edges. Therefore, landscape variables that measure frag-
mentation are often found to be correlated with those that measure habitat amount
(Fahrig, 2003). However, in our data set, these correlations are only marginally more
negative than –0.5 and are not considered a major concern at this stage.

There are several strategies that we could use to deal with the high collinearity
found between the explanatory variables. These include (i) simply removing one or
more variables so that the remaining variables are not highly correlated (Neter et al.,
1990; Booth et al., 1994), (ii) using linear combinations of the variables rather than
the variables directly in the model (Chatterjee and Price, 1991; Trzcinski et al.,
1999; Villard et al., 1999), or (iii) using biased estimation procedures such as prin-
cipal components regression or ridge regression (Neter et al., 1990; Chatterjee and
Price, 1991). Here, we use the first two of these approaches to deal with collinearity
because they are relatively straightforward to implement and appear adequate for
our purposes.

We calculated the landscape variables at different landscape extents, because
we were interested in the impact of landscape characteristics measured at differ-
ent scales on koala presence at a site. We, therefore, ideally want to retain the nested
structure, but reduce collinearity between the variables so that the coefficients in
the model can be estimated precisely. To do this we recast each variable as linear
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combination of the other variables. Suppose X5, X2.5, and X1 are landscape vari-
ables measured at the 5, 2.5, and 1 km landscape extents respectively. We can then
create a new set of variables Z5, Z2.5, and Z1 such that:

Z5 = X5

Z2.5 = X2.5 − X5.

Z1 = X1 − X2.5

(21.1)

Here the variable measured at the 5 km extent has remained the same, while
the variables measured at the 2.5 and 1 km extents have been recalculated as the
difference between the original variable and the one that it is nested within. We
would expect the variables Z5, Z2.5, and Z1 to be less correlated with each other
than X5, X2.5, and X1. This is because the new variables represent the value of the
original variables relative to those they are nested within, rather than their absolute
values. Now, if we use the variables Z5, Z2.5, and Z1, instead of X5, X2.5, and X1, in
our regression model, the collinearity problem should be reduced and our coefficient
estimates will be more precise.

To demonstrate the reduction in collinearity, consider the percentage of highly
suitable plus suitable habitat variable (phss). First we need to create the new vari-
ables:

> Koalas$phss 2.5km new <- Koalas[, "phss 2.5km"] -

Koalas[, "phss 5km"]

> Koalas$phss 1km new <- Koalas[, "phss 1km"] -

Koalas[, "phss 2.5km"]

Note that we do not need to create a new variable for phss 5km; this
variable always remains the same. We will also need to create new variables,
called pm 2.5km new, pm 1km new, pdens 2.5km new, pdens 1km new,
edens 2.5km new, edens 1km new, rdens 2.5km new, and rdens 1km
new for each of the other landscape variables in a similar way (the code is on the
book website). The reduction in collinearity for the percentage of highly suitable
plus suitable habitat variables can be seen by looking at the correlation matrix for
the new variables using the code:

> cor(Koalas[, c("phss 5km", "phss 2.5km new",

"phss 1km new")], method = "spearman")

which shows substantially lower correlation between the variables (results are not
given here). This reduced collinearity can also be seen by looking at pair plots for
the new variables (Fig. 21.5) compared to the pair plots for the original variables
(Fig. 21.3). The same reduction in collinearity is also seen in the other landscape
variables.

In using this approach, it is important to note that the regression coefficients
for the new variables will have different interpretations to those for the original
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Fig. 21.5 Pairplot of the variables phss 5km, phss 2.5km new, and phss 1km new

variables. Fortunately, the coefficients for our new variables have a useful interpre-
tation in terms of understanding the impact of landscape characteristics on koala
presence. The interpretation of the coefficients for variables measured at the largest
landscape extents remains the same. These coefficients quantify the broad-scale
landscape effects on koala presence. However, the coefficients for variables mea-
sured at smaller landscape extents now represent landscape effects relative to the
broader scale landscape context. This is a useful interpretation because it incor-
porates the dependence between fine-scale and broad-scale landscape effects on
species distributions (O’Neil, 1989). Here, careful choice of the linear combina-
tions of variables has resulted in new variables that are not highly correlated and
have a useful interpretation. However new variables constructed from linear combi-
nations of variables are not always so easily interpreted. Chatterjee and Price (1991)
provide a good discussion on how to choose appropriate combinations of variables.
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To deal with the collinearity between patch density (pdens) and edge density
(edens) we could construct new variables based on linear combinations of the orig-
inal variables. However, in this case, there are no obvious linear combinations that
would result in easily interpreted coefficients. Many applications of species’ distri-
bution models require explanation to planners and the general public. Therefore, the
ease of interpretation of the model is an important model building consideration,
and rather than developing composite measures of patch density and edge density,
we will simply retain only one of the variables as a measure of habitat fragmenta-
tion. The variable we retain is patch density because this is a straightforward and
easily interpreted measure of fragmentation.

Having taken the steps described above, we now look at the variance inflation
factors (VIFs) of the variables to assess the extent of any remaining collinearity. To
do this, we first fit a generalised linear model with binomial response and logit link
function (i.e. a logistic regression model), containing all explanatory variables, to
the presence/absence data (McCullagh and Nelder, 1989; Hosmer and Lemeshow,
2000) and then calculate the VIFs for each variable from the resulting model. We
use the vif function in the package Design to calculate the VIFs. The code to do
this is as follows:

> Glm 5km <- glm(presence ∼ pprim ssite + psec ssite +

phss 5km + phss 2.5km new + phss 1km new +

pm 5km + pm 2.5km new + pm 1km new + pdens 5km +

pdens 2.5km new + pdens 1km new + rdens 5km +

rdens 2.5km new + rdens 1km new,

data = Koalas, family = binomial)

> library(Design)

> vif(Glm 5km)

and the output is:

Variable VIF Variable VIF

pprim ssite 1.121 psec ssite 1.099
phss 5km 3.196 phss 2.5km new 1.584
phss 1km new 1.495 pm 5km 1.931
pm 2.5km new 1.575 pm 1km new 1.973
pdens 5km 2.474 pdens 2.5km new 1.600
pdens 1km new 1.273 rdens 5km 2.130
rdens 2.5km new 1.368 rdens 1km new 1.095

You can see that all the VIFs are well below 10, suggesting that collinearity is
no longer a major issue (Neter et al., 1990; Chatterjee and Price, 1991). However,
some authors do suggest a more stringent cut-off than this. For example, Booth et al.
(1994) suggest that VIFs should ideally be less than 1.5. Later in this chapter, we
consider alternative regression models where the largest landscape extent is only
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2.5 or 1 km, rather than 5 km. In these cases, the variables measured at the largest
landscape extent remain as the original variables, and new variables are only con-
structed for those variables nested within the largest landscape extent. Therefore,
we also need to check the VIFs for the variables included in these models because
the variable set is slightly different. This can done using the code

> Glm 2.5km <- glm(presence ∼ pprim ssite +

psec ssite + phss 2.5km + phss 1km new +

pm 2.5km + pm 1km new + pdens 2.5km +

pdens 1km new + rdens 2.5rdens 1km new,

data = Koalas, family = binomial)

> vif(Glm 2.5km)

for the 2.5 km maximum extent and the code

> Glm 1km <- glm(presence ∼ pprim ssite + psec ssite +

phss 1km + pm 1km + pdens 1km + rdens 1km,

data = Koalas, family = binomial)

> vif(Glm 1km)

for the 1 km maximum extent. Note that for the 1 km maximum landscape extent,
there are no new variables because there is no nesting within the 1 km extent. The
VIFs for all variables are considerably less than 10 in both these cases. There-
fore, the measures we have taken seem to have successfully reduced collinearity
to acceptable levels.

21.3.2 Spatial Auto-correlation

There are two reasons for expecting spatial auto-correlation in the presence/absence
data. First, spatial auto-correlation at the site-scale may occur because the distances
between the subsites within individual sites are small relative to the size of koala
home ranges. Average koala home range sizes in similar east coast habitats have
been estimated at between 10–25 ha for females and 20–90 ha for males (AKF
unpublished data, J. R. Rhodes unpublished data). Therefore, the occurrences of
koalas at subsites within an individual site will tend to be correlated because they
would often have been located within the same koala’s home range. Second, spatial
auto-correlation at broader scales may occur due to spatially constrained dispersal
of koalas from their natal home ranges. Koala dispersal distances in nearby regions
have been recorded to be around 3–4 km, but can be as high as 10 km (Dique et al.,
2003). So, dispersal distances are substantially smaller than the spatial extent of
the study area, and this could also lead to spatial auto-correlation between sites. We
could also see spatial auto-correlation in the presence/absence data if the underlying
spatial pattern of habitat is spatially auto-correlated. However, we would expect our
explanatory variables to account for most of the spatial auto-correlation from this
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source once the regression model is fitted to the data and is therefore considered to
be of less concern.

One way to assess the extent of spatial auto-correlation is to look at correl-
ograms of the data (Cliff and Ord, 1981; Bjørnstad and Falck, 2001). Correlo-
grams are graphical representations of the spatial correlation between locations
at a range of lag distances. Positive spatial correlation indicates that spatial auto-
correlation between data points may be a problem. Negative spatial correlation
may also indicate a problem, but this is fairly unusual in this kind of data; so we
are mainly concerned with positive correlations. We use a spline correlogram to
investigate auto-correlation in the presence/absence data. The spline correlogram
that we use is essentially a correlogram that is smoothed using a spline function
(Bjørnstad and Falck, 2001). To produce the correlograms, we need the ncf pack-
age (http://asi23.ent.psu.edu/onb1/software.html). A spline correlogram of the pres-
ence/absence data can be plotted using the code

> library(ncf)

> Correlog <- spline.correlog(x = Koalas[, "easting"],

y = Koalas[, "northing"],

z = Koalas[, "presence"], xmax = 10000)

> plot.spline.correlog(Correlog)

which produces Fig. 21.6A; a spline correlogram with 95% pointwise bootstrap
confidence intervals and maximum lag distance of 10 km (note that it may take
several minutes for this to run). You can see from the correlogram that significant
positive spatial auto-correlation is present, but only at short lag distances of less than
around 1 km. This suggests that spatial auto-correlation may be an issue for subsites
located close to each other.
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presence/absence data and (B) the Pearson residuals from a logistic regression model, including all
the explanatory variables, fitted to the data
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However, although spatial auto-correlation in the raw data is of interest, we are
predominantly interested in whether there is any spatial auto-correlation in model
residuals once any spatial auto-correlation explained by the explanatory variables
has been accounted for. Therefore, we also look at the spatial auto-correlation in the
Pearson residuals of the logistic regression model, containing all explanatory vari-
ables, that we fitted to the presence/absence data earlier in this chapter (Glm 5km).
The following code will plot a spline correlogram of the Pearson residuals of this
model:

> Correlog Glm 5km <-

spline.correlog(x = Koalas[, "easting"],

y = Koalas[, "northing"], xmax = 10000,

z = residuals(Glm 5km, type = "pearson"))

> plot.spline.correlog(Correlog Glm 5km)

and it produces Fig. 21.6B. Although there seems to be some overall reduction
in spatial auto-correlation, compared to the raw data, significant positive spatial
auto-correlation at short lag distances still remains. As significant positive auto-
correlation only exists at short lag distances, it is probably the result of correla-
tion between subsites within sites, rather than correlation between sites. Since the
data are nested and the spatial scale of nesting coincides with the spatial scale of
auto-correlation, one reasonably straightforward way to deal with this problem is to
use GLMM (McCulloch and Searle, 2001). This approach would take account of
dependencies within sites and we discuss the approach in more detail in the next
section. However, if the data were not nested or the spatial scale of auto-correlation
and the spatial scale of nesting did not coincide (e.g. if the dependencies occurred
between sites, rather than within sites), then mixed effects models are likely to be
less useful and alternative approaches are likely to be required. Alternatives include
a broad range of autoregressive and auto-correlation models that explicitly incorpo-
rate the spatial dependence between locations (Keitt et al., 2002; Lichstein et al.,
2002; Miller et al., 2007). A full discussion of these methods is beyond the scope of
the chapter, but they are worth being aware of as alternatives for dealing with spatial
auto-correlation.

21.4 Generalised Linear Mixed Effects Modelling

GLMMs are useful when data are hierarchically structured in some way. They
account for dependencies within hierarchical groups through the introduction of
random-effects (Pinheiro and Bates, 2000; McCulloch and Searle, 2001). In this
study, the data are hierarchically structured in the sense that subsites are nested
within sites, and we want to use mixed effects models to account for the spatial
dependencies within sites. A suitable mixed effects model for these purposes can be
constructed by introducing a random-effect for site into the standard logistic regres-
sion model. The resulting mixed effects model looks like this:
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ln

(
pij

1 − pij

)
= β′ × Xi j + bi , (21.2)

where pij is the probability of koala presence at subsite j in site i; β is a vector of
model coefficients; Xij is a vector of explanatory variables for subsite j in site i; and
bi is the random-effect for site i. Here, the bi are drawn from a random variable B,
that we will assume is normally distributed with a mean of zero and variance of σ 2,
i.e., B ∼ Normal(0, σ 2). However, other random distributions can be assumed.

This provides an appropriate framework for modelling the distribution of koalas
in our study area, but before progressing, we should first check that it will ade-
quately account for the spatial auto-correlation that is present. To do this, we fit a
logistic GLMM, including all the explanatory variables, to the data and once again
look at a spline correlogram of the Pearson residuals. To fit the model, we will use
the glmmML function in the package glmmML. Later in this chapter we compare
alternative models using Akaike’s information criteria (AIC) that require the calcu-
lation of the maximum log-likelihood of each model (Akaike, 1973; Burnham and
Anderson, 2002). We use the glmmML function here because it estimates the model
parameters by maximum likelihood and allows AICs to be calculated. An alterna-
tive would be to use the lmer function in the package lme4 with the Lapacian
or adaptive Gauss-Hermite methods. However, reliable AIC values cannot
be calculated using some other mixed effects model functions such as glmmPQL in
the package MASS because it maximises a penalised quasi-likelihood, rather than
the full likelihood. The code to fit the mixed effects model is as follows:

> library(glmmML)

> Glmm 5km <- glmmML(presence ∼ pprim ssite +

psec ssite + phss 5km + phss 2.5km new +

phss 1km new + pm 5km + pm 2.5km new +

pm 1km new + pdens 5km + pdens 2.5km new +

pdens 1km new + rdens 5km + rdens 2.5km new +

rdens 1km new, cluster = site, data = Koalas,

family = binomial)

The cluster argument indicates the grouping level for the random-effect. A
spline correlogram of the Pearson residuals can then be generated using the code:

> Correlog.Glmm 5km <- spline.correlog(

x = Koalas[, "easting"],

y = Koalas[, "northing"],

z = pres.glmmML(model = Glmm 5km,

data = Koalas), xmax = 10000)

> plot.spline.correlog(Correlog.Glmm 5km)

which produces Fig. 21.7. Here the call to the function pres.glmmML (which can
be found at the book website) calculates the Pearson residuals for the model. You
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can now see that there is no longer any obvious increase in spatial correlation at
short lag distances. This suggests that the mixed effects model successfully accom-
modates the spatial auto-correlation within sites. This also helps to confirm that the
main source of spatial auto-correlation at short lag distances is indeed the depen-
dency between subsites within sites. In the following sections, we therefore use
mixed effects logistic regression to model koala distributions in Noosa.

21.4.1 Model Selection

We have now identified a suitable set of explanatory variables and an appropri-
ate modelling framework. The next step is to identify which of the variables are
important determinants of koala distributions and to identify a suitable and parsi-
monious approximating model that we can use to make predictions. Rather than
using traditional null-hypothesis testing procedures for variable selection to achieve
these aims, we will use an information-theoretic approach (Burnham and Anderson,
2002). Information-theoretic approaches provide a framework that allows multiple
model comparisons to be made and the most parsimonious of these models to be
identified. The process of identifying a parsimonious model involves trading off
model bias against model precision and information-theoretic approaches achieve
this by using appropriately constructed criteria to compare models (Burnham and
Anderson, 2002). The criteria we use here is AIC, which is defined as

AIC = −2L + 2K , (21.3)

where L is the maximum log-likelihood of the model and K is the number of para-
meters in the model (Akaike, 1973). A model with a low AIC is more parsimonious
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than a model with a high AIC. Note, however, that it is only the relative differ-
ences in AIC values between models that are important and that the absolute value
of a model’s AIC is meaningless (Burnham and Anderson, 2002). Information-
theoretic approaches have certain advantages over traditional null-hypothesis testing
approaches (Johnson, 1999; Anderson et al., 2000; Burnham and Anderson, 2001;
Lukacs et al., 2007). These advantages include the ability to (i) evaluate multiple
non-nested models relative to each other, (ii) quantify the relative support for multi-
ple models simultaneously, and (iii) derive predictions that account for model uncer-
tainty using model averaging; but see critiques by Guthery et al. (2005) and Stephens
et al. (2005).

To implement this approach, we first develop a series of alternative mixed effects
models that include different combinations of the explanatory variables. These alter-
native models can be thought of as different ‘hypotheses’ about the relationships
between koala presence/absence and the explanatory variables. We then examine
the support from the data for each of these models using AIC (sensu Hilborn and
Mangel, 1997). This will be achieved by fitting each model to the data and ranking
them by their AIC values. We will also calculate the relative probability of each
model being the best model by calculating their Akaike weights, wi. The Akaike
weight for model i is defined as

wi =
exp

(
−1

2
Δi

)

R∑
j=1

exp

(
−1

2
Δ j

) , (21.4)

where Δi is the difference between the AIC for model i and the model with the low-
est AIC and the sum is over all the alternative models in the set j = 1, . . ., R. Akaike
weights are useful because they can be used to identify a 95% confidence set of mod-
els, and ratios of Akaike weights (evidence ratios) provide quantitative information
about the support for one model relative to another (Burnham and Anderson, 2002).
A 95% confidence set of models can be constructed by starting with the model with
the highest Akaike weight and repeatedly adding the model with the next highest
weight to the set until the cumulative Akaike weight exceeds 0.95. Akaike weights
can also be used to calculate the relative importance of a variable by summing the
Akaike weights of all the models that include that variable (Burnham and Anderson,
2002). We will therefore also calculate the 95% confidence set of models and the
relative importance of the landscape-scale habitat amount, fragmentation, and road
density variables.

In constructing the alternative models, we group the explanatory variables into
four functional groups (1) site-scale habitat (pprim ssite and psec ssite);
(2) landscape-scale habitat amount (phss and pm); (3) landscape-scale habitat
fragmentation (pdens); and (4) landscape-scale road density (rdens). There is
good evidence from other studies that site-scale habitat characteristics are a key
determinant of the use of a site by koalas (Phillips and Callaghan, 2000; Phillips
et al., 2000). Therefore, we include site-scale habitat in all the models and for
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each landscape extent (1, 2.5, and 5 km), construct a model for all combinations
of the landscape-scale habitat amount, landscape-scale habitat fragmentation, and
landscape-scale road density variables. This leads to a total of 22 alternative mod-
els. However, we also construct a ‘null’ model that includes no explanatory variables
as a check of our assumption of the importance of the site-scale variables. Note that
for each landscape extent, the variables spatially nested within that spatial extent are
also included in the model.

Before fitting each of these models to the data, the explanatory variables should
be standardised so that they each have a mean of zero and standard deviation of one.
This helps to improve convergence of the fitting algorithm and puts the estimated
coefficients on the same scale, allowing effect sizes to be more easily compared. We
can standardise the explanatory variables using the code

> Koalas St <- cbind(Koalas[, 1:5],

apply(X = Koalas[, 6:ncol(Koalas)], MARGIN = 2,

FUN = function(x){(x - mean(x)) / sd(x)}))

which creates a new data frame, called Koala St, of the standardised variables. We
use these standardised variables as the explanatory variables in fitting the alternative
models.

Rather than showing the code to fit each of the alternative models, we show the
code to fit one of the models as an example. The code to fit the model including
the site-scale habitat variables and the landscape-scale habitat amount variables at
the 1 km extent is

> glmmML(presence ∼ pprim ssite + psec ssite +

phss 1km + pm 1km, cluster = site,

data = Koalas St, family = binomial)

which gives the following output:

coef se(coef) z Pr(>|z|)

(Intercept) -0.7427 0.2314 -3.210 0.001330

pprim ssite 0.8576 0.2244 3.822 0.000132

psec ssite 0.2319 0.1938 1.196 0.232000

phss 1km 0.2765 0.2479 1.115 0.265000

pm 1km 0.5573 0.2524 2.208 0.027200

Standard deviation in mixing distribution: 1.561

Std. Error: 0.3005

Residual deviance: 354.5 on 294 degrees of freedom

AIC: 366.5

This shows that the probability of koala presence increases with the percentage
of preferred tree species at a subsite and the percentage of habitat in the surrounding
landscape. The standard deviation of the random-effect is 1.56 and the model’s AIC
is 366.5.
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The AICs, Akaike weights, and model rankings for all the models in the 95%
confidence set are shown in Table 21.2. This table also shows the relative impor-
tance of landscape-scale habitat amount, fragmentation, and road density variables.
The first thing to note is the large number of models in the 95% confidence set of
models (14), indicating there is considerable model uncertainty. The Akaike weights
confirm this with no models much more likely to be the best model than the other
models. The best model includes the site-scale habitat and landscape-scale habi-
tat amount variables at the 1 km extent. However, this model is only 1.7 times
more likely to be the best model than the next best model, which also includes
landscape-scale road density (evidence ratio = 0.174/0.101). In general the models
at the 1 km landscape extent performed better than the models at the 2.5 and 5 km
landscape extents. This suggests there is little gain in predictive performance from
adding additional variables representing the landscape at extents broader than 1 km.
The relative variable importances suggests that landscape-scale habitat amount and
landscape-scale road density are more important determinants of koala distributions
than landscape-scale fragmentation. However, due to the high model uncertainty,
the differences in relative importance are not particularly large. Finally, the null

Table 21.2 The 95% confidence set of models

Landscape- Landscape- Landscape-
Site-scale scale habitat scale habitat scale road Landscape

Rank habitat amount fragmentation density extent (km) AIC w

1
√ √

1 366.5 0.174
2

√ √ √
1 367.6 0.101

3
√

– 367.7 0.097
4

√ √
5 367.8 0.092

5
√ √

5 367.9 0.087
6

√ √ √
1 368.1 0.082

7
√ √

1 368.2 0.075
8

√ √ √ √
1 369.1 0.048

9
√ √

2.5 369.3 0.043
10

√ √
1 369.7 0.036

11
√ √

2.5 369.9 0.032
12

√ √ √
1 370.2 0.028

13
√ √

5 370.7 0.021
14

√ √ √
5 370.8 0.021

Relative
importance

– 0.590 0.261 0.431

AIC = Akaike’s information criteria; w = Akaike weights; site-scale habitat = pprim ssite +
psec ssite; landscape-scale habitat amount = phss 1km + pm 1km (1km extent),
phss 2.5km + phss 1km new + pm 2.5km + pm 1km new (2.5km extent), phss 5km
+ phss 2.5km new + phss 1km new + pm 5km + pm 2.5km new + pm 1km new (5km
extent); landscape-scale habitat fragmentation = pdens 1km (1km extent), pdens 2.5km
+ pdens 1km new (2.5km extent), pdens 5km + pdens 2.5km new + pdens 1km new
(5km extent); landscape-scale road density = rdens 1km (1km extent), rdens 2.5km +
rdens 1km new (2.5km extent), rdens 5km + rdens 2.5km new + rdens 1km new
(5km extent).
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model has an AIC of 382.2 and relative to the model only containing the site-scale
habitat variables (AIC = 367.7), has an evidence ratio of almost zero. This indicates
very strong support for our assumption that site-scale habitat variables are important
determinants of koala presence or absence at a site.

Given there is no single model that is clearly the best, a sensible approach is
to acknowledge this model uncertainty and make inferences based on model aver-
aging (Burnham and Anderson, 2002). Model averaging allows coefficients to be
estimated and model predictions to be made that account for the inherent model
uncertainty in addition to parameter uncertainty. In essence, these approaches derive
weighted average predictions, where the weights are the relative model probabili-
ties. When model uncertainty is present, this has considerable advantages over more
traditional step-wise and null-hypothesis approaches to model selection, where you
only end up with a single best model. Model averaged predictions are likely to be
more robust than those derived from a single best model. Burnham and Anderson
(2002) provide useful guidelines for conducting model averaging using AIC, and see
McAlpine et al. (2006) and Rhodes et al. (2006) for examples of model averaging
applied to predicting koala distributions.

21.4.2 Model Adequacy

So far, we have examined the relative support from the data for each model. How-
ever, this tells us little about how well the models fit the data or whether there are any
departures from model assumptions. Traditionally, the fit of logistic regression mod-
els have been assessed using global goodness-of-fit tests based on the deviance or
Pearson χ 2 statistics. However, the distributional properties of these statistics are not
well understood, making the tests somewhat difficult to apply in practice (Hosmer
and Lemeshow, 2000). Further, despite the convenience of global goodness-of-fit
tests, it is unclear to what extent it is sensible to condense model fit into a single
number or test (Landwehr et al., 1984). An alternative to global goodness-of-fit tests
is to use a range of graphical methods to assess how well a model fits the data. Here,
we concentrate on quantile-quantile plots and partial residual plots (Landwehr et al.,
1984). Logistic regression quantile-quantile plots are useful for assessing whether
the error distribution of the data is modelled correctly and to detect more general
departures from model assumptions. Partial residual plots are useful for assessing
systematic departures from model assumptions, such as linearity. We will apply
these diagnostic procedures to the most parsimonious model, although they can
equally be applied to model averages if model averaged predictions are to be made.

A quantile-quantile plot consists of a graph of quantiles of residuals assuming
the fitted model is the true model, against the actual quantiles of the residuals from
the fitted model. If there are no major deviations from the model assumptions, then
these points should lie close to the 1:1 line. Since the distribution of the residuals
in logistic regression is not well understood, Landwehr et al. (1984) propose a sim-
ulation approach for constructing a logistic regression quantile-quantile plot. Their
basic approach is as follows:
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1. From the fitted model, calculate the residuals ri.
2. Order the ri, giving r(i).
3. Simulate M data sets from the fitted model.
4. Fit the model to the M data sets.
5. Compute the residuals ri

∗ for the models fitted to the M data sets and order them
to get r(i)

∗.
6. Calculate the medians of the ordered residuals from the M replicates. (Landwehr

et al. (1984) use a slight modification here where they interpolate within the
distribution of the simulated residuals to avoid plotting negative against positive
residuals.)

7. Plot the median simulated ordered (interpolated) residuals against the ordered
residuals from the original model fit.

8. Calculate confidence intervals for the simulated ordered (interpolated) residuals
from the M replicates.

9. Plot the median simulated ordered (interpolated) residuals against the upper and
lower confidence intervals.

If we apply this approach to the most parsimonious model, with M = 1000, we
get the plot shown in Fig. 21.8. The code for creating this plot and the required
functions res.glmmML and fitted.glmmML can be found at the book website.
You will see that the points lie quite close to the 1:1 line and within the simulated
95% point-wise confidence interval. This suggests there are no major departures
from the model assumptions.

The partial residual plot for a particular covariate consists of a graph of the values
of the covariate against its partial residuals. Partial residuals (rpar) are defined as
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rpar = y − p̂

p̂ × (1 − p̂)
+ X × β̂X (21.5)

where y is the observed data (1 or 0), p̂ is the estimated probability for the fitted
model, X is the covariate value, and β̂X is the estimated coefficient for the covariate
X for the fitted model (Landwehr et al., 1984). If a partial residual plot is linear, then
a linear assumption for this covariate is appropriate. However, if a partial residual
plot is non-linear, this indicates that a linear assumption may not be appropriate,
and in that case, the shape of the curve can suggest an appropriate functional form
for the covariate. Due to the dichotomous nature of binomial data, partial residual
plots for logistic regression show two groups of points; one for the 1 observations
and one for the 0 observations. Therefore, it is necessary to fit a smoothed curve
to the points to assess whether it is linear or non-linear. The partial residual plots
for the four covariates in the most parsimonious model with smoothed curves fitted
using the loess function are shown in Fig. 21.9. The code for creating these plots
and the required functions res.glmmML and fitted.glmmML can be found at
the book website. All of the curves are moderately non-linear, but especially so for
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the psec ssite curve. The shape of the psec ssite curve suggests that the
inclusion of a quadratic term for this covariate might be appropriate.

Re-fitting the most parsimonious linear model with a quadratic term for
psec ssite gives the model

coef se(coef) z Pr(>|z|)

(Intercept) -0.4809 0.2576 -1.866 0.062000

pprim ssite 0.8908 0.2292 3.887 0.000101

psec ssite 0.9161 0.3718 2.464 0.013700

I(psec ssiteˆ2) -0.2820 0.1360 -2.074 0.038100

phss 1km 0.3095 0.2522 1.227 0.220000

pm 1km 0.5972 0.2581 2.314 0.020700

Standard deviation in mixing distribution: 1.581

Std. Error: 0.3065

Residual deviance: 349.3 on 293 degrees of freedom

AIC: 363.3

which confirms the improvement in the model with a reduction in AIC of 3.2 units.
Since this is a more parsimonious model than the linear model, the preference would
be to use this to make predictions, rather than the linear model, or alternatively to
include models with a quadratic term for psec ssite in the model set for making
model-averaged predictions.

In considering the adequacy of our models, we have only compared model pre-
dictions against the data that they were fitted to. However, we often want to use
species’ distribution models to make predictions for a new area or for a new site.
In this case, simply comparing predictions to the data used to fit the models will
tend to overestimate the predictive performance of the models. One way to over-
come this is to fit the models to one data set and then compare model predictions
to an independent data set (Pearce and Ferrier, 2000). This is known as cross-
validation. However, we rarely have the luxury of a completely independent data
set; so simulation-based cross-validation using random samples from the data used
to fit the models is often used instead (Stone, 1974; Efron and Tibshirani, 1997).
We do not consider these approaches in detail here, but they are important aspects
of model validation and it is important to be aware of them. For specific discussion
on the validation of wildlife distribution models, see Pearce and Ferrier (2000) and
Vaughan and Ormerod (2005).

21.5 Discussion

In this chapter, we have demonstrated the use of GLMM for modelling species dis-
tributions. The use of GLMM was an effective way of dealing with spatial auto-
correlation in the data, but this may not always be the case, such as if spatial auto-
correlation existed between sites. However, other approaches, such as autoregres-
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sive models, do exist that could be used to deal with between-site auto-correlation
(e.g., Miller et al., 2007). We also found that constructing simple linear combina-
tions of nested landscape variables was useful for reducing collinearity, while still
maintaining an easily interpreted model. This approach is particularly useful for
landscape-scale studies such as this, where landscape effects are often conceptu-
alised as occurring at a range of nested spatial extents. We also demonstrated an
information-theoretic approach (using AIC) to model selection and the identifica-
tion of the most parsimonious models. The information-theoretic approach allowed
us to quantify the level of model uncertainty and provided the potential to calculate
model-averaged predictions. Model-averaged predictions are useful in contexts such
as the one presented here, where there is reasonably high model uncertainty, because
predictions are not conditional on a single model (Burnham and Anderson, 2002).
The information-theoretic framework was also found to be useful for ranking the
landscape-scale covariates in terms of their importance. Identifying the importance
of each covariate in this way has an important practical application for prioritising
management actions for the conservation of koalas.

One of the primary aims of this chapter was to model koala distributions to help
understand the key landscape- and site-scale factors determining the presence of
koalas. We found strong evidence that the percentage of preferred tree species at the
site-scale was positively related to koala occupancy. This is consistent with other
studies indicating that koalas often select certain preferred tree species (Phillips and
Callaghan, 2000, Phillips et al., 2000) or select habitats containing high proportions
of preferred tree species (Rhodes et al., 2005). We also found that koala occupancy
was positively related to the amount of habitat at the landscape-scale, which was
more important than the density of roads, which in turn was more important than
habitat fragmentation. It is generally accepted that the amount of habitat tends to be
more important than habitat fragmentation for the viability of wildlife populations
(Fahrig, 2003). Our analyses suggest this is the case for the koala in Noosa and that
the conservation priority should be habitat protection, rather than just seeking partic-
ular landscape configurations that minimise fragmentation. However, fragmentation
effects may become more important as habitat is lost (Flather and Bevers, 2002). It
is interesting to note that road density was almost as important as habitat amount.
Increasing road density decreases the chance of finding koalas and this may simply
reflect the general effects of urbanisation and associated threatening processes. It is
generally accepted that areas around habitat patches, known as the habitat matrix,
can have important implications for the viability of species (Ricketts, 2001). This
may be what is happening here with factors associated with urban development,
such as vehicle collision mortality and dog attacks, negatively impacting koala pop-
ulations. Mitigation of these factors would therefore also seem to be an important
conservation priority for koalas in Noosa.

It is interesting to note that the landscape-scale variables measured at the 1 km
scale tended to be the best descriptors of koala presence (Table 21.2). We would
expect the scale at which the landscape affects the presence of koalas to be related
to the scale of koala movements such as natal dispersal and movements within indi-
vidual home ranges. Koalas have average dispersal distances of several kilometres



492 J.R. Rhodes et al.

(Dique et al., 2003), and so the scale of the landscape effects is at the shorter end of
the distribution of koala dispersal distances. This suggests that the spatial dynamics
of koala populations in Noosa are influenced predominantly by koalas dispersing
over short distances and by movements of individuals within their home ranges,
rather than by less common long distance dispersal movements.

21.6 What to Write in a Paper

When writing a scientific paper you need to be selective about what you include,
while still ensuring that the methods are sufficiently detailed to allow readers to
repeat your study and that the research findings are clearly explained. We have pre-
sented a great deal more information in this chapter than would be required for a
scientific paper. Although there is no single recipe for what to include and what not
to include in a paper, based on the analysis presented in this chapter, we give a broad
outline of what we think should be included.

In the introduction section, we would aim to give a clear statement of the biologi-
cal and wildlife management issues addressed by the research. The last paragraph of
this section should explicitly state the specific questions that the research addresses,
and very briefly, outline what was done. In the methods section, we would have a
description of the study site and the data collection methods. Then we would briefly
describe the exploratory analysis we conducted in relation to collinearity and spatial
auto-correlation. Although the description of these steps should be brief, it would be
important to describe the transformations of the explanatory variables and perhaps
include the graphs showing the reduction in collinearity (e.g. Figs. 21.3 and 21.5).
The remainder of the methods section should then describe the alternative models
we fitted to the data, the use of AIC in comparing the models, and the methods used
to assess model adequacy. The results section should include a description of the
key findings of the statistical analyses and the assessment of model adequacy. It is
not necessary to describe every single aspect of these results, but sufficient details
should be included to give the reader a clear picture of the key findings. Other things
to include here would be a table showing the model rankings with AICs, coefficient
estimates, and standard errors for at least the best model(s) and graphical demon-
stration of model adequacy (e.g. Fig. 21.8). A useful additional figure that we do
not show here would be a map of predictions and their associated standard errors
based on the best, or model-averaged, model (see, e.g. Rhodes et al. (2006)). Finally,
the discussion section should indicate the implications of the results in terms of the
issues raised in the introduction and highlight the applied or theoretical advances
the study has made. A key component of the discussion should be identifying any
limitations of the work and suggesting future research directions.
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Chapter 22
A Comparison of GLM, GEE, and GLMM
Applied to Badger Activity Data

22.1 Introduction

In this chapter, we analyse a data set consisting of signs of badger (Meles meles; see
Fig. 22.1) activity around farms. The data are longitudinal and from multiple farms;
so it is likely a temporal correlation structure is required. The response variable is
binary; the presence or absence of badger activity. The dataset comes from a survey
carried out on 36 farms over 8 consecutive seasons running from autumn 2003 to
summer 2005. For analytical convenience, we consider these intervals to be exactly
equal, which is a close enough approximation to the reality. All farms in the survey
were in South-West England, which is a high-density badger country.

Fig. 22.1 Photograph of two badgers on the nightly hunt for food. The photo was taken
by Dr Richard Yarnell, School of Animal, Rural and Environment Sciences, Nottingham Trent
University, UK
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This work was carried out in the wider context of badgers and their possible role
in transmitting bovine tuberculosis to cattle. One avenue for tackling this problem
might be to reduce the rates of badger visits to farms in particular areas where they
may come into contact with resident cattle. The aim of this study was to predict the
occurrence of signs of badger activity on farms.

There are many different ways of measuring badger activity, but for the purposes
of this chapter, we just consider one of these: ‘signs of activity’. This was used as
a binary variable that took the value 1 when signs of badger activity were recorded
and 0 if no signs were recorded. Signs of activity included badger faeces, indica-
tions of digging, feeding evidence, etc. Several potential explanatory variables were
recorded – these are detailed in Table 22.1.

Consecutive observations on badger activity at a given farm may be tempo-
rally auto-correlated. Because of this and because the data are in binary form, we

Table 22.1 List of variables with a short description. The response variable is Signs in yard

Variable Description

Year Calendar year
Season Spring (Mar–May), Summer (Jun–Aug),

autumn(Sept–Nov) and winter (Dec–Feb)
Farm code numeric Blinded farm identifier
Survey Which of the 8 survey occasions (i.e. the time indicator)
Signs in yard Binary indicator of signs of badger activity
Latrines with farm feed Binary indicator – do (any) observed badger latrines contain

farm feed? (This is a proxy for the fact that badgers must
have been on farm).

No latrines with farm feed The number of the above
No scats with farm feed Number of badger faeces identified as containing farm feed
No latrines Number of badger latrines observed
No setts in fields Number of badger setts (i.e. homes) observed
No active setts in fields Number of actively used setts observed
No buildings Number of buildings on farm
No cattle in buildings yard Number of cattle housed in the building yard
Mode feed store accessibility Quantitative index of how easy it would be for badgers to

access the farm’s feed store
Accessible feed store present Binary indicator – is such a feed store present?
Mode cattle house accessibility Quantitative index of how easy it would be for badgers to

access the cattle house
Accessible cattle house present Binary indicator – is such a feed store present?
Accessible feed present Binary indicator – is accessible feed present
Grass silage Binary indicator of presence of grass silage
Cereal silage Binary indicator of presence cereal silage
HayStraw Binary indicator of presence of Hay/Straw
Cereal grains Binary indicator of presence of cereal grains
Concentrates Binary indicator of presence of concentrates
Proteinblocks Binary indicator of presence of protein blocks
Sugarbeet Binary indicator of presence of sugar beet
Vegetables Binary indicator of presence of vegetables
Molasses Binary indicator of presence of molasses
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used generalised estimating equations (GEE) and generalised linear mixed models
(GLMM). If there would be no temporal auto-correlation, then generalised linear
modelling (GLM) can be applied. The underlying GLM, GEE, and GLMM theory
was discussed in Chapters 9, 12, and 13.

The aim of this chapter is not to find the best possible model for the data, but
merely to contrast GLM, GEE, and GLMM. When writing this chapter, we consid-
ered two ways to do this, namely,

1. Apply a model selection in each of the three models (GLM, GEE, and GLMM). It
is likely that the optimal GLM consists of a different set of explanatory variables
than the GEE and GLMM. The reason for this is the omission of the dependence
structure in the data. We have seen this behaviour already in various other exam-
ples in this book with the Gaussian distribution. Also, recall the California data
set that was used to illustrate GLM and GEE in Chapter 12; the p-values of the
GLM were considerably smaller than those of the GEE! Therefore, in a model
selection, one ends up with different models. Using this approach, the story of
the chapter is then that (erroneously) ignoring a dependence structure gives you
a different set of significant explanatory variables.

2. Apply the GLM, GEE, and GLMM on the same set of explanatory variables and
compare the estimated parameters and p-values. If they are different (especially
if the GLM p-values are much smaller), then the message of the chapter is that
ignoring the dependence structure in a GLM gives inflated p-values.

Both approaches are worthwhile presenting, but due to limited space, we decided
to go for option 2 and leave the first approach as an exercise to the reader. The
question is then: Which GLM model should we select? We decided to adopt the role
of an ignorant scientist and apply the model selection using the GLM and contrast
this with the GEE and GLMM applied on the same selection of covariates. Note
that the resulting GEE and GLMM models are not the optimal models as we are not
following our protocol from Chapters 4 and 5, which stated that we should first look
for the optimal random structure using a model that contained as many covariates
as possible.

22.2 Data Exploration

The first problem we encountered was the spreadsheet (containing data on 282
observations), which was characterised by a lot of missing values. Most R functions
used so far have options to remove missing values automatically. In this section, we
will use the geepack package, and its geeglm function requires the removal of
all missing values.

Rows with missing values in the response variable were first removed. Some of
the explanatory variables had no missing values at all and other explanatory vari-
ables had 71 missing values! Removing every row (observation) that contains a
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Table 22.2 Number of missing values per variable. The data set contains 288 rows (observa-
tions). The notation ‘# NAs’ stands for the number of missing values. The response variable is
Signs in yard and contains 6 missing values

Variable # NAs Variable # NAs

Year 0 Accessible feed store present 6
Season 0 Mode cattle house accessibility 71
Farm code numeric 0 Accessible cattle house present 6
Survey 0 Accessible feed present 6
Signs in yard 6 Grass silage 6
Latrines with farm feed 33 Cereal silage 6
No latrines with farm feed 34 HayStraw 6
No scats with farm feed 59 Cereal grains 6
No latrines 30 Concentrates 6
No setts in fields 10 Proteinblocks 6
No active setts in fields 15 Sugarbeet 6
No buildings 6 Vegetables 6
No cattle in buidlings yard 6 Molasses 6
Mode feed store accessibility 38

missing value reduces the sample size. Therefore, it is perhaps better to remove
entirely explanatory variables with several missing values. This is an arbitrary
process; where do you draw the line when you stop removing explanatory variables?
The answer should be based on biological knowledge and common sense (drop the
variables with lots of missing values and that you also think are the least impor-
tant). Table 22.2 shows the number of missing values per variable. The explanatory
variable Mode cattle house accessibility has 71 missing values. If we
insist on using it, we end up removing 71 observations or 24% of the data! To avoid
such a situation, we decided to omit all explanatory variables with more than 15
missing values from the analysis. From the remaining data, we removed all rows
where there was at least one observation missing, ending up with 273 observations
for analysis.

Table 22.2 was obtained with the following R code.

> library(AED); data(BadgersFarmSurveys.WithNA)

> Badgers.NA <- BadgersFarmSurveys.WithNA #Saves space

> colSums(sapply(Badgers.NA, FUN = is.na)

The sapply function creates a matrix of length 288 by 27 with the elements
FALSE (corresponding element in Badger.NA is not a missing value) and TRUE
(corresponding element is a missing value). The function colSums converts each
FALSE into a 0 and TRUE into a 1 and takes the sum per column: the number of
missing values per variable.

The number of explanatory variables is very large, and using a data explo-
ration, we tried to find collinear explanatory variables. Pairplots (for the continuous
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variables), Pearson correlation coefficients and variance inflation factors indicated
that No setts in fields and No active setts in fields are collinear;
they have a correlation of 0.86.

We decided to drop the variable No active setts in fields. The vari-
ables No buildings and No cattle in buildings yard have a corre-
lation of 0.53. We decided to drop the second one. The explanatory variables
Proteinblocks and Vegetables had only a few values of 1; the majority
of observations had a 0 value. Including them caused numerical problems and we
decided to drop them.

22.3 GLM Results Assuming Independence

The following code accesses the data (we removed the missing values in Excel and
created a new data file), renames some of the longer variable names, and applies
a GLM assuming independence. We could have renamed the variables in the data
file, but the code below shows you the coding misery due to having long variable
names (let it be a warning!). Always try to choose the names as short as possible
when you create the data file. Most of the nominal variables are binary with values
0 (representing no) and 1 (representing yes), and for these, the factor command
can be avoided because this is exactly what it does: making columns with zeros and
ones. However, we decided to use it as it is too easy to make a mistake. The drop1
function applies an analysis of deviance (Chapter 9).

> library(AED); data(BadgersFarmSurveysNoNA)

> Badgers <- BadgersFarmSurveysNoNA

> Badgers$fSeason <- factor(Badgers$Season)

> Badgers$fFeed.store <-

factor(Badgers$Accessible feed store present)

> Badgers$fCattle.house <-

factor(Badgers$Accessible cattle house present)

> Badgers$fFeed.present <-

factor(Badgers$Accessible feed present)

> Badgers$fGrass.silage <- factor(Badgers$Grass silage)

> Badgers$fCereal.silage <- factor(Badgers$Cereal silage)

> Badgers$fHayStraw <- factor(Badgers$HayStraw)

> Badgers$fCereal.grains <- factor(Badgers$Cereal grains)

> Badgers$fConcentrates <- factor(Badgers$Concentrates)

> Badgers$fSugarbeet <- factor(Badgers$Sugarbeet)

> Badgers$fMolasses <- factor(Badgers$Molasses)

> B.glm <- glm(Signs in yard ∼ fSeason+

No setts in fields + No buildings + fFeed.store +

fCattle.house + fFeed.present + fGrass.silage +

fCereal.silage + fHayStraw + fCereal.grains +
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fConcentrates + fSugarbeet + fMolasses,

family = binomial, data = Badgers)

> drop1(B.glm, test = "Chi")

The results are not presented here, but most explanatory variables are not signif-
icant at the 5% level. We decided to drop the least significant explanatory variable,
refit the model, reapply the drop1 command, and continue to drop explanatory
variables until all remaining variables in the model are significant. The final model
contains No setts in fields and fFeed.store. Applying this model in R
and an analysis of deviance with the drop1 function gave

> B2.glm <- glm(Signs in yard ∼ No setts in fields +

fFeed.store, family = binomial, data = Badgers)

> drop1(B2.glm, test = "Chi")

Single term deletions. Model:

Signs in yard ∼ No setts in fields + fFeed.store

Df Deviance AIC LRT Pr(Chi)

<none> 182.509 188.509

No setts in fields 1 234.107 238.107 51.597 6.813e-13

fFeed.store 1 187.307 191.307 4.798 0.02849

The number of setts in the field is highly significant, and the presence of acces-
sible feed store is weakly significant. The parameter estimates are obtained with the
summary (B2.glm) command and are given below.

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.5891 0.4602 -5.626 1.85e-08

No setts in fields 0.2862 0.0457 6.262 3.79e-10

fFeed.store1 -1.0341 0.4587 -2.254 0.0242

Dispersion parameter for binomial family taken to be 1

Null deviance: 237.79 on 272 degrees of freedom

Residual deviance: 182.51 on 270 degrees of freedom

AIC: 188.51

Note the number of setts in the field has a positive effect on the probabil-
ity of finding badger activity. The nominal variable fFeed.store has values 0
and 1; hence, the summary output shows that on the linear predictor scale, for
observations that have accessible feed storage, the intercept is lower by −1.03.
Using the definition of the logit link function, this can be translated into prob-
abilities (Chapter 10). The final GLM model is given by the following three
steps.
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1. Let Yis be the value of the variable Signs in yard for farm i at time s. We assume
that Yis follows a binomial distribution with probability pis; hence, E(Yis) = pis

and var(Yis) = pis × (1 – pis).
2. The systematic component is given by: ηis = –2.58 + 0.28 × No setts in fieldis

– 1.03 × fFeed.storeis.
3. The link between the expected value of Yis and ηis is the logistic link:

logit(pis) = ηis.
4. All observations are independent.

22.4 GEE Results

This time around, we call GEE and fit, in addition to the previous model, an
auto-regressive structure to the within-farm observations. As discussed in the
introduction, we deliberately choose the same set of explanatory variables for opti-
mal comparison between the statistical methods. An alternative option is to start
from scratch with all explanatory variables and apply a new model selection. The
following R code was used.

> B.gee <- geeglm(Signs in yard ∼ No setts in fields +
fFeed.store, family = binomial,
id = farm code numeric, corstr = "ar1",
waves = Survey, data = Badgers)

> summary(B.gee)

Mean Model:
Mean Link: logit
Variance to Mean Relation: binomial

Coefficients:
estimate san.se wald p

(Intercept) -2.97581231 0.53278887 31.196134543 2.332300e-08
No setts in fields 0.21951360 0.06936777 10.013994983 1.553552e-03
fFeed.store1 0.01389024 0.40863960 0.001155416 9.728840e-01

Scale is fixed.
Correlation Model:
Correlation Structure: ar1
Correlation Link: identity

Estimated Correlation Parameters:
estimate san.se wald p

alpha 0.4901059 0.1137123 18.57656 1.632153e-05

Returned Error Value: 0
Number of clusters: 36 Maximum cluster size: 8

Note that the package geepack is not part of the base installation of R, and you
need to download and install it. The summary command shows that the number of
setts in the field is significant.
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For optimal comparison with the GLM, we set the scale parameter φ equal to 1
(for binary data it does not make sense to correct for overdispersion). Note that the
presence of the accessible feed store is no longer significant. Also the number of
setts in the field is less significant (p = 0.0015 for the GEE and p = 6.81 × 10–13

for the GLM). The auto-correlation is moderate with a value of 0.49. Its standard
error is small, indicating that the correlation is significant. However, the literature
is not clear on the use of this standard error, and some packages will not print it.
References were given in Chapter 12 that can be used to compare GEE models with
and without a correlation structure.

Summarising, we can see that in comparison with the GLM approach, the GEE
gives a more conservative result. Both models find the variable ‘no. setts in fields’ to
be significant (although the p-value is lower, i.e. stronger association in the GLM).
However, the GEE finds this to be the only significant variable, the GLM also gives
‘accessible feed store present’ as a significant predictor. This highlights the general
effect to be expected by adjusting for inherent auto-correlation, i.e. more conser-
vative results. This is particularly important in this example because the stepwise
regression has an inherently high risk of including spurious explanatory variables in
the final model. This result is not surprising given the multiple testing involved. (We
could get round this by making some kind of adjustment in terms of significance
thresholds, e.g. Bonferroni correction.)

The estimated correlation parameter indicates the presence of auto-correlation
between within-farm observations, justifying our decision to use GEE. This is fur-
ther evidence that the association between ‘accessible feed store present’ and ‘signs
of badger activity’ as indicated by the original GLM model was statistically spuri-
ous. The final GEE model is given by the following three steps.

1. Let Yis be the value of the variable Signs in yard for farm i at time s. We assume
that E(Yis) = pis and var(Yis) = pis × (1 – pis).

2. The systematic component is given by ηis = −2.97 + 0.21 × No setts in fieldis

+ 0.01 × fFeed.store presentis. The link between the expected value of Yis and
ηis is the logistic link: logit(pis) = ηis.

3. The correlation between Yis and Yik is given by cor(Yis,Yik) = 0.49|s – k|.

22.5 GLMM Results

To compare results obtained with GEE and GLMM, which we also applied, the fol-
lowing R code was used. Again, for optimal comparison of the statistical methods,
we used the same set of explanatory variables.

> library(lme4)

> B.glmm <- lmer(Signs in yard ∼ No setts in fields +

fFeed.store + (1 | farm code numeric),

family = binomial, data = Badgers)
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The results obtained by the summary(B.glmm) command are given below.

Random effects:

Groups Name Variance Std.Dev.

farm code numeric (Intercept) 5.32 2.30

Estimated scale (compare to 1) 0.77

Fixed effects:

Estimate SE z-val p-val
(Intercept) -5.34 0.98 -5.40 <0.001

No setts in fields 0.37 0.10 3.38 0.0007

fFeed.store1 0.28 0.70 0.39 0.69

If we are happy to accept the random effect structure used in this model, then we
again arrive at the same conclusion that number of setts in the fields is an important
predictor of signs of badger activity. The p-value is slightly lower here, suggesting
that in this instance at least, the GEE was the most conservative approach.

In both these models (GEE and GLMM), the coefficient for the relationship
between number of setts and probability of observing signs of badger activity is
positive, but note that the GLMM result was stronger (+0.21 for the GEE and +0.37
for the GLMM).

Note that the GLMM does estimate an overdispersion parameter φ, and the
software does not allow you to set it to 1 (as would be normal for binary data).
The final GLMM model is given by the following three steps.

1. Let Yis be the value of the variable Signs in yard for farm i at time s. We assume
that Yis is binomial distributed with E(Yis) = pis and var(Yis) = pis × (1 – pis).

2. The systematic component is given by: ηis = –5.34 + 0.37 × No setts in fieldis

+ 0.28 × fFeed.storeis + ς i, where ς i is a random intercept with mean 0 and
variance σς

2
,which is estimated as 5.32.

3. The link between the expected value of Yis and ηis is the logistic link:
logit(pis) = ηis.

22.6 Discussion

This simple example highlights how three different approaches can give three sim-
ilar, but different results – and different in important respects. As stated earlier, by
ignoring the inherent within-farm auto-correlation, we increase the risk of type I
error. This is probably why ‘accessible feed store present’ was significant only in
the first under-specified model.

In terms of inference, if we are happy to choose the GEE from the approaches
tried here, we can say first of all that there is auto-correlation between within-
farm observations with respect to observing signs of badger activity. This is not
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surprising. On average, we are talking about a 3-month separation in time. So, if
signs of badger activity are observed at one visit – it is easy to imagine that there
will be a good chance of making the same observation 3 months later (and vice
versa for non-observations). But the probability of making the same finding dimin-
ishes with time; so if we go back to the same farm, maybe 18 months later, then
the chance of observing the same result is less compelling. Hence, the choice of the
1st-order autoregressive structure.

Having chosen what we hope is a suitable auto-correlation structure, we find
that ‘number of setts in fields’ is a significant predictor and in a positive direction
(β = 0.21, s.e. = 0.06). This is of course an intuitive result, i.e. the more badger
setts observed close to the farm, the more likely that badger signs will be observed
on the farm. This may seem at first glance an obvious conclusion. However, it offers
support to our choice of model, and of equal importance, it gives insight into the
variables not important in predicting badger activity on farms.

We should not forget that the correlation structure may be due to a missing covari-
ate or interaction. The problem is that it is rather difficult to decide which interaction
term to include as there are so many options. Good biological knowledge is required
when considering which interactions to fit.

As stated in the introduction, the GEE and GLMM were applied on a selection of
covariates that was determined by the GLM model selection. This is against our pro-
tocol presented in Chapters 4 and 5. Our motivation for this approach was explained
in Section 22.1: to show that GLM gives a model with inflated p-values. If you want
to find the optimal GEE (or GLMM) model, you should apply the model selection
using these models! Because we were curious ourselves, we applied a model selec-
tion using GEE and GLMM. With the GEE, we ended up with a model that only
contains the covariates ‘number of sets in a field’ and ‘presence/absence of sugar
beets’. The GLMM picked only ‘number of sets in a field’. Hence, adding a depen-
dence structure on the data gives a different set of covariates in the model selec-
tion, and the type of dependency (auto-regressive correlation from the GEE versus
the symmetrical compound correlation from GLMM) also plays a role. Thus, it is
important to give careful consideration to choice of correlation structure in advance
of any analysis.

22.7 What to Write in a Paper

This depends of course on the journal and the audience. In general, most readers of
ecological journals will not be interested in the more technical details of procedures
such as GEE. A line or two on the reason for using a GEE (auto-correlation, non-
standard data, e.g. binary or count) needs to be included, even when submitting to
the most non-technical of journals.

All relevant parameters are given, by convention, along with the standard errors.
This includes the auto-correlation parameter.



Chapter 23
Incorporating Temporal Correlation in Seal
Abundance Data with MCMC

A.A. Saveliev, M. Cronin, A.F. Zuur, E.N. Ieno, N.J. Walker, and G.M. Smith

23.1 Introduction

Common or harbour seals (Phoca vitulina L.) are semi-aquatic mammals that spend
time onshore at terrestrial sites where they haul-out to rest, breed, moult, engage in
social activity, and escape predation (Fig. 23.1).

Over one-third of harbour seals in Ireland use haul-out sites in the southwest
region (Cronin et al., 2007). Most of the haul-out sites in this region are located
within Bantry Bay and the Kenmare River. Special Areas of Conservation (SACs)
have been designated at each of these sites in accordance with the EU Habitats
Directive. Assessing the year round changes in harbour seal abundance within SACs
contributes to the monitoring obligations under the Habitats Directive and to the
understanding of national population trends.

Between April 2003 and November 2005, regular standardised haul-out count
surveys of both bays were carried out by boat. Counts of seals at each haul-out
site were carried out independently and simultaneously by two observers, initially
from a distance of approximately 200 m from the haul-out site and at progressively
closer ranges whilst minimising disturbance to the seals. Surveys were carried out
at least monthly all year-round and weekly during the summer and autumn, weather
permitting. Surveys were scheduled to occur within two hours either side of low tide
and during daylight hours.

In the original analysis of these data, Cronin (2007) used additive mixed mod-
elling techniques. Residual auto-correlation structures and residual heterogeneity
structures were included, albeit in the context of a Gaussian distribution. In this
chapter, we do a similar statistical analysis, but replace the Gaussian distribution
with a Poisson distribution because the response variable is a count (the number
of seals). However, current software for generalised linear mixed modelling do
not easily allow incorporating temporal correlation, and therefore, we use Markov
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Fig. 23.1 Mother and pup
hauling out. The photo was
taken by Michelle Cronin

Chain Monte Carlo (MCMC) techniques to fit a model that contains a temporal
correlation structure.

MCMC is based on Bayesian statistics: Something not every reader will be
familiar with. Providing an introduction to Bayesian statistics is challenging and
including one in a 20-page case study is near impossible. We could have simply
dropped this chapter, but considered it important to include a final chapter showing
there is life beyond the mixed modelling techniques discussed in earlier chapters.
So, although we cannot give a detailed introduction to Bayesian statistics or MCMC,
we can discuss salient points and recommend you spend some time digging a bit
deeper into this approach. A good starting point for ecologists is McCarthy (2007).
More technical references are given later in this chapter.

So, the aim of this chapter is to show how you can include an auto-regressive
correlation structure in a generalised linear model (GLM) for count data (e.g. using
the Poisson or negative binomial distribution). Our choice of a GLM instead of a
generalised additive model (GAM) is that we already have various GAM case study
chapters and we wanted a better balance between parametric and non-parametric
case studies. Also, using the R functions from Chapter 3, a smoothing spline can
easily be programmed inside a GLM; so you could program the GAM equivalent
of our MCMC approach (relatively) easily yourself. Further details and references
on MCMC and GAM can be found in Keele (2008). Furthermore, we only focus on
the correlation aspects of the model, not on the selection of the optimal model in
terms of the explanatory variables. We therefore take the explanatory variables of
the optimal model presented in Cronin (2007), and use these in the GLM.

23.2 Preliminary Results

As indicated in the introduction of this chapter, the same data were analysed in
Cronin (2007) using an additive mixed modelling with a Gaussian distribution. The
optimal model was of the form
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Fig. 23.2 Graph showing the observed abundances versus time (expressed as year + (week –1)/52,
for both sites). To aid visual interpretation, a LOESS smoother was added. The haul-out sites are
Bantry Bay (site 1) and Kenmare River (site 2). Note the seasonal pattern at both sites

Ai = f (Monthi , TDayi ) + WindDiri + Sitei + εi where εi ∼ N (0, σ 2
season)

(23.1)

Ai is the abundance of seals for observation number i. The explanatory variables
month and time of day (expressed as TDay in the formula above) were fitted using
a two-dimensional smoother f(Monthi, TDayi), allowing the day effect to change
over the year. The model also contains two nominal variables: wind direction and
site. Wind direction was categorised into 1 = North/Northeast, 2 = East/Southeast,
3 = South/Southwest, 4 = West/Northwest, and the haul-out sites are Bantry Bay
(site 1) and Kenmare River (site 2). The residuals showed heterogeneity per sea-
son; so different residual variances per season (using the varIdent function from
Chapter 4) were used.

Cronin (2007) also applied models with residual auto-regressive correlations of
order 1 (using corAR1, see Chapter 6), but these were less optimal as judged by
the AIC. The following R code reads the data and draws the time series plot shown
in Fig. 23.2.

> library(AED); data(Seals)

> Seals$fSite <- factor(Seals$Site)

> Seals$Time <- Seals$Year + (Seals$Week - 1) / 52

> library(lattice)

> xyplot(Abun ∼ Time | fSite, data = Seals,

ylab = "Abundance", xlab = "Time (years)",
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panel = function(x, y){
panel.loess(x, y, span = 0.3, col = 1)

panel.xyplot(x, y, col = 1)})

We defined the variable Time as the year plus the week number (minus 1)
divided by 52. Minus 1 ensures that an observation made in week 52 is still in the
same year as an observation from week 1 or 51. The xyplot from the lattice pack-
age was used to make the figure, and it contains specific functions to add a LOESS
smoother with a span of 0.3; higher values for the span resulted in smoothers that
did not capture the seasonal pattern in the data.

Following Cronin (2007), we applied the GAM formulated in Equation (23.1),
and the R code is given next. Instead of the long name Timeofday, we used a
shorter notation, namely TDay. The dataset does not contain a variable Season; we
created this variable using the following code:

> Seals$fSeason<-Seals$Month
> I1<-Seals$Month==1 | Seals$Month==2 | Seals$Month==12
> I2<-Seals$Month==3 | Seals$Month==4 | Seals$Month==5
> I3<-Seals$Month==6 | Seals$Month==7 | Seals$Month==8
> I4<-Seals$Month==9 | Seals$Month==10 | Seals$Month==11
> Seals$fSeason[I1] <- "a"
> Seals$fSeason[I2] <- "b"
> Seals$fSeason[I3] <- "c"
> Seals$fSeason[I4] <- "d"
> Seals$fSeason <- as.factor(fSeason)

The same was done for the wind direction:

> Seals$fWind2 <- Seals$Winddir

> Seals$fWind2[Seals$fWinddir==1|Seals$fWinddir==2]<-1

> Seals$fWind2[Seals$fWinddir==3|Seals$fWinddir==4]<-2

> Seals$fWind2[Seals$fWinddir==5|Seals$fWinddir==6]<-3

> Seals$fWind2[Seals$fWinddir==7|Seals$fWinddir==8]<-4

> Seals$fWind2 <- factor(Seals$fWind2)

Once we have this variable, the additive mixed model is run with the code below
and also produces Fig. 23.3 and the numerical output.

> library(mgcv)
> Seals$TDay <- Seals$Timeofday
> fSeason2 <- Seals$fSeason #Avoids an error message

#from varIdent
> M1 <- gamm(Abun ∼ s(Month,TDay) + fWind2 + fSite,

weights = varIdent(form =∼ 1 | fSeason2),
data = Seals)

> plot(M1$gam, pers = TRUE)
> anova(M1$gam)
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Fig. 23.3 Two-dimensional smoother for month and time of the day. The shape of the two-
dimensional smoother indicates that an interaction is needed. A tunnel-type shape indicates that
two additive main terms suffice

The output from the anova command is give below. There was a significant
effect of month and time of day (p < 0.001), site effect (p = 0.001), and wind
direction (p = 0.005) on the abundance of seals at haul-out sites in Bantry Bay and
Kenmare River.

The summary command can be used to obtain the estimated parameters for each
wind direction and site.

Parametric Terms:

df F p-value

Wind2 3 4.526 0.00573

fSite 1 10.537 0.00176

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Month,TDay) 19.21 29.00 17.08 <2e-16

23.3 GLM

There are a few things that we would like to improve in Equation (23.1). First, we
want to work with a distribution for count data, and the most obvious ones are the
Poisson and negative binomial distributions. Recall from Chapter 9 that a GAM with
a Poisson distribution is specified by the following three steps.
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1. Ai is Poisson distributed with mean μi. In mathematical notation: Ai ∼ P(μi). As
a result, we have E(Yi) = μi = var(Yi).

2. The systematic component is given by

ηi = f (Monthi , TDayi ) + WindDiri + Sitei

3. The relationship between the mean μi and systematic component is specified by
the logarithmic link function: log(μi) = ηi, which can also be written as μi =
exp(ηi).

In order to switch from a GAM to a GLM, we need to replace the f(Monthi,
TDayi) by something parametric. One option is to use

ηi = Monthi + Month2
i + TDayi + TDay2

i + Monthi × TDayi + WindDiri + Sitei

This predictor function uses quadratic functions for month and time of the day
and an interaction between these main terms. Later, in the discussion for this chapter,
alternativesarementioned.Thefollowingcodeapplies theGLM.Thescale function
applies a standardisation (subtract the means and divide by the standard deviation) and
avoids collinearity between Month and Month2 and also between TDay and TDay2.

> Seals$Month1 <- as.double(scale(Seals$Month))

> Seals$Month2 <- Seals$Month1ˆ2

> Seals$TDay1 <- as.double(scale(Seals$TDay))

> Seals$TDay2 <- Seals$TDay1ˆ2

> M2 <- glm(Abun ∼ Month1 + Month2 + TDay1 + TDay2 +

Month1:TDay1 + fWind2 + fSite,

data = Seals, family = poisson)

> summary(M2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.567644 0.021865 254.640 < 2e-16

Month1 -0.016750 0.009541 -1.756 0.07916

Month2 -0.208159 0.008039 -25.894 < 2e-16

TDay1 0.012404 0.007811 1.588 0.11229

TDay2 -0.054142 0.007000 -7.734 1.04e-14

fWind22 -0.228104 0.027422 -8.318 < 2e-16

fWind23 -0.053383 0.023327 -2.288 0.02211

fWind24 -0.059348 0.021829 -2.719 0.00655

fSite2 -0.133858 0.015293 -8.753 < 2e-16

Month1:TDay1 0.108726 0.011211 9.698 < 2e-16

Dispersion parameter for poisson family taken to be 1

Null deviance: 2502.7 on 97 degrees of freedom

Residual deviance: 1198.1 on 88 degrees of freedom

AIC: 1900.3
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Note that there is overdispersion because the ratio of the residual deviance
(1198.1) and residual degrees of freedom (88) is larger than 1! Instead of presenting
a quasi-Poisson model, we will add an auto-correlation structure later in this chapter.

23.3.1 Validation

The hypothesis testing approach for the GLM also assumes independence of the
residuals. Figure 23.4 shows a graph of the Pearson residuals plotted against time
for both sites. Independence implies that we should not see any patterns in these
panels, but we can, especially at site 1. Panel 2 also shows a general increasing trend:
more negative residuals in the first year and more positive residuals in 2005. Instead
of a subjective LOESS smoother, we can also use semi-variograms (or an auto-
correlation function for regular spaced data) to test whether there is a significant
temporal correlation, but we leave this as an exercise for the reader (see Chapters 6
and 7 for the R code). The following R code was used to create Fig. 23.4.

> Seals$E2 <- resid(M2, type = "pearson")

> xyplot(E2 ∼ Time | fSite, data = Seals,

ylab = "Pearson residuals", xlab = "Time (years)",

panel = function(x, y){
panel.loess(x, y, span = 0.5, col = 1)

panel.xyplot(x, y, col = 1)})
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Fig. 23.4 Pearson residuals of the Poisson GLM plotted versus time for each site. The LOESS
smoother indicates violation of independence over time
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The first line extracts the Pearson residuals from the GLM object, and the rest is
the familiar xyplot command with its options.

23.4 What Is Bayesian Statistics?

The methods discussed in previous chapters cannot easily be used to include a tem-
poral correlation in a Poisson GLM, except perhaps for the gamm function, but it
can cope with models that contain correlation structures and no random effects (e.g.
random intercepts or slopes). However, as we said before, we want to do the anal-
ysis in a parametric context, and therefore, we now introduce techniques based on
the Bayesian approach.

Before introducing Bayesian statistics, we will give a brief summary of the
main characteristics of frequentist statistics, which is the approach used so far for
analysing data. By this we mean that we have adopted a philosophy where we for-
mulate a hypothesis for the regression parameters, apply the model in Equation
(23.1) or its parametric equivalent, and estimate parameters, standard errors, 95%
confidence intervals, and p-values. We can then say that if we were to repeat this
experiment a large number of times, in 95% of cases, the real population regres-
sion parameters would lie inside the estimated confidence intervals. Furthermore,
the p-values tell us how often (hence: frequency) we find an identical or larger test
statistic. Key elements of frequentist statistics are as follows:

• The parameters (such as mean, variance, and regression parameters) that deter-
mine the behaviour of the population are fixed, but unknown.

• Based on observed data, these unknown parameters are then estimated in such a
way that the observed data agree well with our statistical model; in other words,
the parameter estimates are chosen such that the likelihood of the data is opti-
mised (this is maximum likelihood estimation).

• Frequentist approaches are objective in that only the information contained in the
current data set is used to estimate the parameters.

Bayesian statistics is based on a different philosophy. The main difference is
assuming that the parameters driving the behaviour of the population are no longer
fixed. Instead, it is assumed the parameters themselves follow some statistical dis-
tribution. To better explain this, we need to look at some theory.

23.4.1 Theory Behind Bayesian Statistics

The main components of Bayesian statistics are as follows.
Data. Suppose we have a stochastic variable Y with density function f(Y | θ),

and let y = (y1, . . . , yn) denote n observations of Y. Now θ is a vector containing
unknown parameters which are to be estimated from the observed data y. In the case
of the Poisson model described in Chapter 9, y would be the abundance observations
and θ the regression coefficient and overdispersion parameter.
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Likelihood: The density f(y | θ) = ∏
i f(yi | θ) is the likelihood. When max-

imum likelihood estimation is carried out, θ is chosen to maximise f(y | θ).
For example, in Chapter 9, we showed that for data following a Poisson dis-
tribution, the maximum likelihood estimates of the parameters are obtained
from calculating the derivatives, setting those to zero, and solving the resulting
equations.

Prior distribution: The major difference in Bayesian statistics is that instead of
assuming that θ is an unknown, but fixed, parameter vector, we now assume that
θ is stochastic. The distribution of θ before the data are obtained, is called the
prior distribution, and we denote it by π (θ). It reflects knowledge about θ, perhaps
obtained from previous experiments, but it is also possible to choose π (θ) such that
it reflects very little knowledge about θ so that the posterior distribution is mostly
influenced by the data. If the latter is the case, we say that the prior distribution is
vague. (The term non-informative is also commonly used in reference to vague prior
distributions.)

Posterior distribution: This forms the final component of a Bayesian analysis
setting. Using some simple statistical theory (namely, Bayes’ Theorem), the prior
information is combined with information from the data to give us the posterior
distribution π (θ | y). It represents the information about θ after observing the data y:

π (θ | y) = f (y | θ) × π (θ) / π (y) ∝ f (y | θ) π (θ)

The latter follows because π (y), which is the marginal density of the data, is con-
stant. In contrast to maximum likelihood, where a point estimate for θ is obtained,
with Bayesian statistics a density of θ is the final result. This density averages the
prior information with information from the data. Gelman et al. (2003) provide an
accessible book covering the basics of Bayesian analysis.

We have now discussed the three main components of Bayesian statistics: The
prior distribution of θ, our observed data y, and finally, how these two pieces
of information are combined to obtain the posterior distribution of θ. In only
a limited number of cases is the posterior distribution of a known form. More
often than not, this distribution is complex, making it difficult to obtain sum-
maries easily. For many years, this was the main reason why Bayesian statis-
tics was not widely used. However, with the advent of computers, simulation
tools such as Markov Chain Monte Carlo (MCMC) have become widely available
and Bayesian analysis is more accessible. The development of freeware software
implementing such simulation tools has also helped greatly to popularise Bayesian
approaches.

23.4.2 Markov Chain Monte Carlo Techniques

The aim is to generate a sample from the posterior distribution. This is the Monte
Carlo bit. Often, the exact form of the posterior distribution is unknown, but
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fortunately another stochastic device, the Markov chain, can be used to deal with
this. Assume we start with an initial value for θ, denoted by θ0. Then the next state
of the chain θ1 is generated from P(θ1 | θ0) , where P(. | .) is the so-called transition
kernel of the chain. Then, θ2 is generated from P(θ2 | θ1), . . . and θt is generated
from P(θt | θt–1). Under certain regularity conditions, the distribution of P(θt | θ0)
will converge to a unique stationary distribution π (.). One important property of a
Markov chain is that once it has reached its stationary distribution, it would have
‘forgotten’ about its initial starting value; so it no longer matters how inappropriate
our initial value θ0 was.

Assuming we can define an appropriate Markov chain (that is, an appropriate
distribution P(θt | θt–1) can be constructed), we can then generate dependent draws
(or realisations) from the posterior distribution. The samples are not independent as
the distribution of θt depends on the value of θt–1. In turn, the distribution of θt–1

depends on the value of θt–2 and so on. This has the following consequences:

• The initial part of the chain should be discarded (this initial part is commonly
referred to as ‘burn-in’) so that the influence of an arbitrary initial value θ0 is
eliminated.

• The MCMC samples are less variable compared to independent samples, and
therefore, the variance of estimated summary statistics, such as the sample mean,
is larger than would be the case if the samples had been independent.

• When stationarity has been reached (that is, the realisations no longer depend
on the initial value θ0), a large number of samples is needed to cover the entire
region of the posterior distribution as small portions of consecutive samples tend
to be concentrated in small regions of the posterior distribution.

When we generate many samples after the burn-in samples have been discarded,
these will then be distributed appropriately from the entire posterior distribution.
This distribution can be summarised by summary statistics such as the sample mean
and sample quantiles. A useful property of MCMC is that statistics calculated from
the MCMC sample will converge to the corresponding posterior distribution quanti-
ties; for example, the sample mean converges to the posterior mean and the sample
quantiles converge to the posterior quantiles.

It may seem complicated to generate samples from the posterior distribution, but
fortunately there are algorithms available that make this task easy. The Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler
(Geman and Geman, 1984; Gelfand and Smith, 1990), which is a special case of
the former, are two commonly used algorithms for creating appropriate Markov
chains. Gilks et al. (1996) provide an accessible introduction to the various MCMC
techniques illustrated with many examples. Although these algorithms are easily
programmed in R, there are many technical complexities, and it is better to use
specialised software, such as the freeware package WinBUGS (Lunn et al., 2000;
www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml). The R package BRugs is an inter-
face to WinBUGS, and this is what we used for our seal abundance example.
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23.5 Fitting the Poisson Model in BRugs

First, we have to recast the GLM model specification, given in Section 23.3, into a
Bayesian framework. The abundance data are modelled as

Ai ∼ Poisson(μi )

ηi = α + β1 × Monthi + β2 × Month2
i + β3 × TDayi

+ β4 × TDay2
i + β5 × Monthi × TDayi + Winddiri + Sitei

log(μi ) = ηi

(23.2)

This is the same as before. To make the model Bayesian, the unknown parameters
are assigned prior distributions, as follows:

α ∼ N (0, 106)

β1, . . . , β5 ∼ N (0, 106)

Winddir, Site ∼ N (0, 106)

(23.3)

The notation Windir, Site ∼ N(0, 106) means that we assume all the regression
parameters for the individual levels of these nominal variables are normally dis-
tributed. A priori, we assume that the unknown parameters are zero on average, but
with a large variance so that the parameters can take on values anywhere between
−2000 and +2000. This reflects that we are rather ‘vague’ about what we believe
about the parameters before seeing the data and is often referred to as a vague or non-
informative prior distribution. To complete the Bayesian approach, we now have to
obtain the posterior distribution and we will use MCMC to do this.

23.5.1 Code in R

Applying MCMC in R is relatively easy, although it takes more programming effort
than the frequentist approach via the glm function, and it is also more time consum-
ing in terms of computing.

First you have to install the packages coda and BRugs from the R website. To
implement the Bayesian Poisson model, you need to create a couple of ASCII text
files containing the model, data, and initial parameter estimates. Then the following
code is run in R:

> library(coda)

> library(BRugs)

> modelCheck("Modelglm1.txt")

> modelData("Sealmatrix.txt")

> modelCompile(numChains = 3)

> modelInits("InitializeParam1.txt")
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> modelInits("InitializeParam2.txt")

> modelInits("InitializeParam3.txt")

> #Burn in

> samplesStats("alpha")

> modelUpdate(200, thin = 50)

> plotHistory("alpha", colour = c(1, 1, 1))

> #Monitor model parameters

> dicSet()

> samplesSet("alpha")

> samplesSet("b")

> samplesSet("W")

> samplesSet("S")

> modelUpdate(10000, thin = 10)

> dicSet()

> samplesStats("alpha")

> samplesStats("b")

> samplesStats("W")

> samplesStats("S")

As you can see, this requires more code than the glm command in Chapter 9!
And it also takes longer to run. Let us go over these commands in more detail. First
of all, the file Sealmatrix.txt contains the data and is given on our website. The
website also contains a small macro to prepare the data in the required format. The
remaining components of the code are described in detail in the following sections.

23.5.2 Model Code

The file Modelglm1.txt forms the heart of the MCMC code, and contains the
following lines.

model{
for(i in 1:98) {
Abun[i] ∼ dpois(mu[i])

log(mu[i]) <- alpha +

Month1[i] * b[1] + Month2[i] * b[2] +

TDay1[i] * b[3] +

TDay2[i] * b[4] +

Month1[i] * TDay1[i] * b[5] +

W[Wind2[i]] + S[Site[i]]

}
alpha ∼ dnorm(0, 1.0E-6)

for(j in 1:5) {
b[j] ∼ dnorm(0.0, 1.0E-6)

}
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for (i in 2:4){
W[i] ∼ dnorm(0.0, 1.0E-6)

}
W[1] <- 0

S[1] <- 0

S[2] ∼ dnorm(0.0, 1.0E-6)

}

Assuming you have read all previous 22 chapters, this code should not appear
too alien. The first block of code specifies that the abundance at site i is Poisson dis-
tributed with mean μi. The log link is used and the right hand side of the equation,
following ‘alpha +’, is simply the model in terms of the explanatory variables. The
rest of the code, from alpha ∼ dnorm(0, 1.0E-6) onwards specifies uninfor-
mative prior distributions for all parameters. The code including W[1] and S[1]
ensures that the baseline levels of W (wind direction) and S (site) are nominal vari-
ables. It is important to note that the dnorm notation used in BUGS is different
from the one used in R! The most important difference is that the variance is handed
down to the dnorm function in terms of 1/variance. This is a Bayesian conven-
tion with 1/variance being the so-called precision of the distribution and is usually
denoted by τ . So a variance of 106 is entered in the model framework as a precision
of 10–6. The reason for working with precision is that the posterior distribution of
our parameters of interest will be a weighted combination of the prior distribution
and the distribution of the data, with weights given by their respective precisions
(i.e. 1/prior variance and 1/data variance). So, a large prior variance means that its
precision is close to zero, and as a consequence, the prior distribution will receive
almost no weight in deriving the posterior distribution of the parameters. This again
reflects that our prior distribution is non-informative as it barely contributes to the
posterior outcome. As a consequence, our posterior distribution should be similar to
the one obtained from maximum likelihood estimation.

23.5.3 Initialising the Chains

Having formulated the model, we can now generate a sample from the posterior
distribution using MCMC techniques. As described earlier, from a given starting
value θ0, the MCMC routine will generate values θ1, θ2, etc. When the chain is
run for a sufficiently long period of time, it will have forgotten its initial starting
value and from that point onward, the values drawn will represent samples from our
posterior distribution of interest.

We used three chains, each of which is initialised with the modelInits com-
mand. The file InitializeParam1.txt contains the following text:

list(

alpha=5.567643,
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b=c(-0.016750,-0.208159,0.012404,-0.054141,0.108725),
S=c(NA, -0.133857),

W=c(NA,-0.228104,-0.053383,-0.059347)
)

These are the estimated values from the ordinary GLM. The content of the file
InitializeParam2.txt is not presented here, but it contains similar information; we
took estimated values plus twice their standard errors from the ordinary GLM.
Finally, the file InitializeParam3.txt contains the estimated values minus twice their
standard errors (also from the GLM). It is also possible to add some random varia-
tion around these estimated values. Hence, the initial values are based on the max-
imum likelihood estimates ± 2 × standard errors. The NAs are needed for the
baseline level of the factor.

The first modelUpdate statement in the main R code starts up the chains, and
it states that every 50th realisation should be stored until 200 realisations have been
kept in total per chain. The reason for not keeping all iterations is that the iterations
will be auto-correlated, and therefore, do not provide much extra information on
the posterior distribution. The command plotHistory provides a trace plot of
these samples and is shown in Fig. 23.5 for one of the parameters: The intercept α.
Note how the three chains start from different values and then gradually converge.
The initial part, where the chains do not overlap, is the so-called burn-in period and
reflects that the chains have not converged to the same stationary distribution yet.
These samples will have to be discarded. Looking at Fig. 23.5 by eye, it seems that
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a burn-in period of 150 samples (that is, 150 × 50 = 7,500 iterations) is enough, but
we ran it for 10,000 samples to be sure.

More formal tests to assess the chain convergence are also available and are
provided in the R package CODA (Plummer et al., 2008). One such test is the
Gelman-Rubin statistic, which compares the variation between chains to the vari-
ation within a chain. Initially, the value of the Gelman-Rubin statistic will be large,
but when convergence has been reached, it will have decreased to a value close to 1.
Gelman (1996) suggests a value less than 1.1 or 1.2 is acceptable. This test should
be applied to each of the model parameters. For our data, the Gelman-Rubin statistic
was less than 1.2 for all parameters after 10,000 iterations, implying that from iter-
ation 10,000 onwards, the draws come from the posterior distribution. Other tests
(not shown here; full codes can be found at the book web site) reached similar con-
clusions.

23.5.4 Summarising the Posterior Distributions

Having decided on a burn-in of 10,000 iterations, we now want to formally keep the
realised samples from iteration 10,000 onwards. This is achieved with the command
samplesSet. The command dicSet allows for monitoring of the so-called
Deviance Information Criterion, which can be used for model selection. Using the
modelUpdate command, the chains are run for another 100,000 iterations. The R
command samplesStats provides the following output.

> samplesStats("alpha")

mean sd MC error val2.5pc median val97.5pc start sample
alpha 5.568 0.02176 0.0001381 5.526 5.568 5.61 201 30000

The last two columns indicate when monitoring started (from the 201st sam-
ple onwards – recall that the first 200 stored samples were discarded as burn-
in) and how many samples have been stored since monitoring started (10,000
samples for each of three chains). As a consequence, the summary statistics are
based on 30,000 samples. To save the space, the last two columns have not been
printed (start and number of samples) in the following text as they are the same as
above

> samplesStats("b")

mean sd MC error val2.5pc median val97.5pc

b[1] -0.01670 0.009474 5.184e-05 -0.035220 -0.01668 0.001873

b[2] -0.20830 0.007988 4.446e-05 -0.224100 -0.20830 -0.192700

b[3] 0.01235 0.007782 4.579e-05 -0.002963 0.01238 0.027670

b[4] -0.05423 0.006975 3.980e-05 -0.067870 -0.05421 -0.040630

b[5] 0.10880 0.011200 6.361e-05 0.086900 0.10880 0.130800

> samplesStats("W")
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mean sd MC error val2.5pc median val97.5pc

W[2] -0.22850 0.02725 0.0001631 -0.28210 -0.22860 -0.175000

W[3] -0.05374 0.02324 0.0001417 -0.09905 -0.05379 -0.008206

W[4] -0.05954 0.02170 0.0001434 -0.10190 -0.05969 -0.016920

> samplesStats("S")

mean sd MC error val2.5pc median val97.5pc

S[2] -0.1339 0.01535 9.53e-05 -0.164 -0.1339 -0.1036

We also list the DIC statistics as an overall model fit indicator (this is similar to
AIC and discussed in details at the end of chapter):

> dicStats()

Dbar Dhat DIC pD

Abun 1890 1880 1900 9.948

total 1890 1880 1900 9.948

The samples from the posterior distribution are summarised by the mean, median
and 2.5 and 97.5 percentiles. Note that the mean values are similar to those obtained
by the glm command. The standard deviation of the posterior distribution, given
under the header sd, is the Bayesian equivalent of the standard error of the mean
(recall that the standard error of the mean is defined as the standard deviation of
the mean values if the study were to repeated many times). Again, in this case, the
values are similar to those obtained from glm.

23.5.5 Inference

The MCMC output contains thousands of realisations of all the model parameters,
and these can be used to calculate various quantities of interest. For example, the
correlation between the parameters can be obtained, and is shown in Table 23.1.
High correlation is commonly expected for the constant and factor effects only. If

Table 23.1 Correlation between model parameters for the Poisson model

alpha b1 b2 b3 b4 b5 S2 W2 W3 W4

alpha 1 –0.01 –0.48 0.03 –0.32 0.03 –0.31 –0.50 –0.67 –0.71
b1 1 0.24 –0.03 0.00 0.12 0.02 –0.01 –0.17 –0.08
b2 1 0.00 0.14 0.13 –0.01 0.11 0.21 0.23
b3 1 –0.13 –0.15 –0.09 0.06 0.06 0.01
b4 1 0.03 0.07 –0.07 0.01 –0.10
b5 1 0.01 –0.10 –0.14 –0.06
S2 1 –0.08 –0.06 0.03
W2 1 0.50 0.52
W3 1 0.65
W4 1



23 Incorporating Temporal Correlation in Seal Abundance Data with MCMC 519

regression coefficients associated with continuous variables (such as b[1], b[2], . . . ,
b[5]) show a high correlation, it is best to standardise these variables. This will
reduce the correlation and will improve mixing of the MCMC chains so that con-
secutive realisations will be less dependent, shortening the burn-in period and the
total number of iterations to be run (as instead of storing only every 20th iteration,
for example, we can now keep every 5th iteration, for example).

We can also obtain Pearson residuals. The simplest way is to take the mean values
from the MCMC samples and use these to calculate the Pearson residuals, but it
is more informative to calculate the Pearson residuals for each MCMC realisation
individually. In addition, we can also generate ‘predicted’ residuals for each MCMC
realisation obtained from simulating abundance data from a Poisson distribution
(Congdon, 2005). The latter will be properly Poisson distributed so will not display
any overdispersion.

The BRugs model code (this is added to the code in the modelglm1.txt file
presented earlier) is given below:

for(i in 1:N) {
Aprd[i] ∼ dpois(mu[i])

e.obs[i] <- (Abun[i] - mu[i]) / sqrt(mu[i])

p2.obs[i] <- e.obs[i] * e.obs[i]

e.prd[i] <- (Aprd[i] - mu[i]) / sqrt(mu[i])

p2.prd[i] <- e.prd[i] * e.prd[i]

}
SS <-sum(p2.obs[1:N])

SS.prd <- sum(p2.prd[1:N])

In the absence of overdispersion, the sum of squares will follow a χ2(N) distri-
bution. The summary statistics of SS and SS.prd are

mean sd MC error val2.5pc median val97.5pc

SS 1177 12.02 0.06561 1157 1176 1203

SS.prd 97.97 14.08 0.08001 72.47 97.23 127.7

For comparison, the true 2.5 and 97.5% percentiles of the χ2(N) distribution are

> qchisq(c(0.025, 0.975), 98)

[1] 72.50094 127.28207

Note that the percentiles of the simulated SS.prd values correspond well with
the theoretical percentiles. There are two ways of assessing overdispersion. The first
one is to compare the distribution of SS to the distribution of the predicted SS in the
absence of overdispersion (SS.prd). Clearly, the two distributions do not match,
indicating substantial overdispersion. The second approach is to compare the SS
distribution to the χ2(98) distribution, which gives exactly the same information.
The average SS, 1177, is similar to what was observed from the glm fit.

Another quantity of interest is the auto-correlation in the abundance data.
For each realisation of the MCMC chain, we can estimate this in R as follows
(Box-Pierce auto-correlation test with Ljung-Box modification, Congdon, 2005):
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> for(k in 1:3) {
for (t in k+1 : N) {
p1[k,t] <- e.obs[t] * e.obs[t - k]

}
auto [1, k] <- sum(p1[k, (N11 + k) : N12]) /

sum(p2.obs[N11: N12])

auto2[1, k] <- auto[1,k] * auto[1,k]

auto [2, k] <- sum(p1[k, (N21 + k) : N22]) /

sum(p2.obs[N21 : N22])

auto2[2, k] <- auto[2, k] * auto[2, k]

}

This code calculates the auto-correlation up to lag 3 based on the observed residu-
als for each of the two sites. The calculation is somewhat simplistic in that it assumes
that the time series are regular, where in practice the data were collected at irregular
one to two week intervals, but at this stage we are only exploring the possibility of
auto-correlation. If the auto-correlation is zero, the value BP.s1 and BP.s1 below
are distributed approximately as χ2(k), where k = 3 is number of terms in sum

> BP.s1 <- (N12 - N11 - 1) * sum(auto2[1, ])

> BP.s2 <- (N22 - N21 - 1) * sum(auto2[2, ])

The summary statistics are as follows:

mean sd MC error val2.5pc median val97.5pc

BP.s1 9.574 0.6612 0.004345 8.377 9.54 10.96

BP.s2 3.687 0.5958 0.003407 2.616 3.653 4.94

> qchisq(c(0.025, 0.975), 3)

[1] 0.2157953 9.3484036

In the absence of auto-correlation, the BP statistic follows a χ2(3) distribution.
Clearly, the mean and 2.5 and 97.5 percentiles of BP.s1 are well in excess of those
of the χ2(3) distribution, providing strong evidence of auto-correlation at this site.
For site 2, the auto-correlation is not significant, as the 2.5–97.5 percentile range
of BP.s2 is covered by the corresponding range of the χ2(3) statistic. It should be
mentioned that this criterion is approximate.

23.6 Poisson Model with Random Effects

The Poisson model can be extended into a GLMM by adding a random term εi to
the linear predictor:

Ai ∼ Poisson(μi )

log(μi ) = ηi + εi
(23.4)
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where ηi is defined as before, see Equation (23.2), and it is assumed that

εi ∼ N (0, 1/τε)

The BRugs model code for the abundance data now becomes

for(i in 1:98) {
Abun[i] ∼ dpois(mu[i])

log(mu[i]) <- alpha +

Month1[i] * b[1] + Month2[i] * b[2] +

TDday1[i] * b[3] + TDay2[i] * b[4] +

Month1[i] * TDay1[i] * b[5] +

W[Wind2[i]] + S[Site[i]] + eps[i]

eps[i] ∼ dnorm(0.0, eps.tau)

}

Furthermore, in addition to the prior distributions on alpha, b, wind effect W,
and site effect S, we now also need a prior distribution on τ ε. A common choice is
to assume that τ ε ∼ Gamma(0.001,0.001), which reflects vague prior information
on τ ε:

eps.tau ∼ dgamma(0.001, 0.001)

The complete BRugs code can be downloaded from the book website. To inves-
tigate overdispersion, the sum of squares SS was monitored:

mean sd MC error val2.5pc median val97.5pc

SS 100.5 14.2 0.07761 74.68 99.85 130.4

The observed range of SS values corresponds to the 2.5 and 97.5 percentiles (72.5
and 128.3, respectively) of the χ2(98) statistic, indicating that overdispersion is no
longer present. The DIC statistics have also improved:

Dbar Dhat DIC pD

Abun 783 691 875 92.02

total 783 691 875 92.02

The MCMC output contains realisations for εi, i = 1 . . . 98, so that we can look at
summary statistics of these for each observation i. To illustrate, for each i the mean
and standard deviation of the realisations for εi was calculated, and then summarised
in a histogram (Fig. 23.6).

Furthermore, the pooled variance of the εi was also calculated; it was 0.085. This
agrees well with the sampled values for eps.sigma = 1 / eps.tau:

mean sd MC error val2.5pc median val97.5pc

eps.sigma 0.08707 0.01491 9.457e-05 0.06213 0.08555 0.1205
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Fig. 23.6 Poisson model with random effects. For each observation i, the MCMC realisations
of the residuals at the linear predictor level (εi, i = 1 . . . 98) are summarised by their mean and
standard deviation. The 98 mean values and standard deviations are then plotted as a histogram

The auto-correlation summary statistics (at abundance level) are

mean sd MC error val2.5pc median val97.5pc

BP.s1 2.724 2.28 0.01276 0.2018 2.147 8.616

BP.s2 2.635 2.185 0.01328 0.1985 2.073 8.233

and correspond to the χ2(3) distribution (2.5 and 97.5 percentiles given by 0.22 and
9.35, respectively). This suggests there is no evidence of significant auto-correlation
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Fig. 23.7 Correlation in the random effects εi at the linear predictor level, calculated from MCMC
results of the Poisson model with random effect, versus the lag (in weeks) between time points.
The left graph shows the results for site 1 and the right graph for site 2
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in the abundance data. Despite this, the correlation between the random effects,
shown in Fig. 23.7, does exhibit strong pattern in time and therefore, in the next sec-
tion, we investigate this further by extending the random effects model by including
auto-correlation in the random effect.

23.7 Poisson Model with Random Effects and Auto-correlation

We now introduce auto-correlation into the model that allows the auto-correlation
to differ between the two sites. First, we introduce a slightly different notation using
subscript s for site s:

Asi ∼ Poisson(μsi )

ηsi = α + β1 × Monthsi + β2 × Month2
si + β3 × TDaysi

+ β4 × TDay2
si + β5 × Monthsi × TDaysi + Winddirsi + Sitesi

log(μsi ) = ηsi + εsi

(23.5)

and εsi is a random effect. So far, this is the same model formulation as in Section
23.6. In addition, it is now assumed that εsi follows an auto-regressive structure:

εsi = ρ|Wdist|
s × εs,i−1 + usi

where Wdist is the time lag in weeks between data points i− 1 and i. It is assumed
that the usi are independently and normally distributed:

usi ∼ N(0, 1/τu)

The last part of Equation (23.5) can be rewritten into

log(μsi ) = ηsi + ρ|Wdist|
s × εs,i−1 + usi

= ηsi + ρ|Wdist|
s × log(μs,i−1) − ρ|Wdist|

s × ηs,i−1 + usi

The full model then becomes

Asi ∼ Poisson(μsi )

log(μsi ) = ηsi + ρ|Wdist|
s × log(μs,i−1) − ρ|Wdist|

s × ηs,i−1 + usi

usi ∼ N (0, 1/τu)

(23.6)

where ηsi is given by Equation (23.5). Assigning prior distributions to the unknown
parameters completes the Bayesian model formulation:

• α ∼ N(0, 106)
• β j ∼ N(0, 106), for j = 1, . . . , 5
• τ u ∼ Gamma(0.001, 0.001)
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• ρ1 ∼ Uniform[–1, 1]
• ρ2 ∼ Uniform[–1, 1]

The full model code can be downloaded from our website. The summary statis-
tics for the posterior distributions of the model parameters are as follows.

Parameter mean sd 2.5% 97.5%

Alpha 5.554 0.1145 5.338 5.786
b[1] –0.07878 0.04421 –0.1661 0.006503
b[2] –0.2238 0.0347 –0.2933 –0.1561
b[3] 0.01604 0.02676 –0.03674 0.06891
b[4] –0.07792 0.02602 –0.1287 –0.02693
b[5] 0.1102 0.03435 0.04245 0.1776
S[2] –0.0702 0.1018 –0.2838 0.1186
W[2] –0.3426 0.0914 –0.5226 –0.163
W[3] –0.0949 0.088 –0.2682 0.08002
W[4] –0.05306 0.07948 –0.2089 0.1023
rho1 0.6395 0.1746 0.2318 0.9199
rho2 0.3545 0.3181 –0.3075 0.8311
u.sigma 0.07798 0.01372 0.05509 0.1087

The DIC statistic is similar to the previous

Dbar Dhat DIC pD

Abun 784.5 693.3 875.6 91.13

total 784.5 693.3 875.6 91.13

There is no indication of auto-correlation at the abundance level:

mean sd MC error val2.5pc median val97.5pc

BP.s1 2.732 2.24 0.01306 0.2005 2.16 8.526

BP.s2 2.662 2.198 0.01146 0.1916 2.096 8.332

The random effects auto-correlation at site 1 is significant (zero is not contained
in the 2.5–97.5 percentile interval for rho1), but is not significant for site 2:

mean sd MC error val2.5pc median val97.5pc

rho1 0.6395 0.1746 0.002414 0.2318 0.6616 0.9199

rho2 0.3545 0.3181 0.003398 -0.3075 0.4126 0.8311

Furthermore, there is no sign of overdispersion as the SS and SSpred intervals
are similar.

mean sd MC error val2.5pc median val97.5pc

SS 101.8 14.37 0.08356 75.45 101.3 131.9

SS.prd 97.96 14.07 0.07975 72.43 97.34 127.6



23 Incorporating Temporal Correlation in Seal Abundance Data with MCMC 525

0.0 0.5 1.0 1.5 2.0 2.5

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

0.
6

Correlation against WeekTime
difference

Week Time difference

C
or

re
la

tio
n

0.0 0.5 1.0 1.5 2.0 2.5

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

0.
6

Correlation against WeekTime
difference

WeekTime difference
C

or
re

la
tio

n
Fig. 23.8 Auto-correlation in the residuals usi based on Poisson model with auto-correlated ran-
dom effects (all auto-correlations over all time lags combined). The left graph shows the results
for site 1, and the right graph for site 2

Finally, the auto-correlation in the residuals usi was calculated and is shown
in Fig. 23.8. Although the model assumes that the usi are independent, the figure
reveals that some auto-correlation pattern is still present (peaks at zero and multi-
ples of year), but less severe compared to the previous model.

23.8 Negative Binomial Distribution with Auto-correlated
Random Effects

Coming back to the overdispersion issue, we now use the negative binomial dis-
tribution (Chapter 9) instead of the Poisson distribution to model the overdisper-
sion with the size parameter size. The variance of the abundances is given by μ +
μ2/size. To incorporate this into the Bayesian model structure, all we need to do
is to change the Poisson distribution in Equation (23.6) to the negative binomial
distribution:

Ai ∼ NB(μi , size) (23.7)

As we have now introduced a new parameter, size, a distribution needs to be
defined:

size ∼ Gamma(0.001, 0.001)

This is a common choice reflecting vague prior information. The full model
code can be found on our website. The posterior distributions are summarised as
follows:
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Parameter mean Sd 2.5% 97.5%

alpha 5.589 0.1055 5.39 5.81
b[1] –0.05093 0.04148 –0.1373 0.02789
b[2] –0.2188 0.03242 –0.2814 –0.1551
b[3] 0.02245 0.03231 –0.03867 0.08694
b[4] –0.06466 0.03021 –0.1247 –0.005743
b[5] 0.1105 0.03911 0.03573 0.1878
S[2] –0.1162 0.09203 –0.3104 0.04696
W[2] –0.2827 0.1084 –0.4936 –0.06992
W[3] –0.06669 0.0963 –0.2521 0.1244
W[4] –0.05785 0.09231 –0.2347 0.1284
rho1 0.4544 0.4433 –0.5042 0.9796
rho2 0.2152 0.539 –0.8189 0.9669
u.sigma 0.01062 0.01133 0.0006066 0.04199
size 13.77 5.533 9.405 28.53

and the DIC statistic for the model is much larger:

Dbar Dhat DIC pD

Abun 1032 1009 1055 22.78

total 1032 1009 1055 22.78

The variance parameter 1/size, which allows for modelling of overdispersion,
is significantly different from zero (average size = 13.77 against the μ of order
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Fig. 23.9 Comparison of variance in abundance for Poisson model (dashed line) and negative
binomial model (solid line)
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100). The variance of the abundances is given by μ + μ2/size, compared to μ for
the Poisson model. Figure 23.9 compares the two variances and clearly shows the
overdispersion for high abundance values.

As before, some evidence of auto-correlation in abundance levels is still
expressed at both sites, even though the mean values almost certainly lie in the
posterior confidence interval.

mean sd MC error val2.5pc median val97.5pc

BP.s1 5.941 3.414 0.1355 0.6958 5.599 13.90

BP.s2 3.822 3.185 0.1080 0.2517 2.989 12.16

Residual test shows rather some signs of underdispersion:

mean sd MC error val2.5pc median val97.5pc

SS 84.73 13.37 0.5135 64 82.77 116.2

SS.prd 97.96 14.07 0.07975 72.43 97.34 127.6

The auto-correlation in the residuals usi is shown in Fig. 23.10. The increased
auto-correlation at lag 0 and at lag multiples of year, as observed previously, has
now disappeared. It is worth mentioning the significant decrease in the usi variance
against the previous model.

For both sites, the error auto-correlation parameters are now no longer significant:

mean sd MC error val2.5pc median val97.5pc

rho1 0.4544 0.443 0.02364 -0.5042 0.5832 0.9796

rho2 0.2152 0.539 0.01594 -0.8189 0.2956 0.9669
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Fig. 23.10 Auto-correlation in usi for negative binomial model with auto-correlated random
effects. The left graph shows the results for site 1 and the right graph for site 2
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and the negative binomial model without auto-correlation can also be tried. We leave
it for the reader as an exercise.

23.8.1 Comparison of Models

With frequentist statistics, we have tools such as comparison of deviances (for
nested models) or AIC at our disposal for comparing models. With Bayesian statis-
tics, one such tool is the Deviance Information Criterion (DIC, Spiegelhalter et
al., 2002). It is an extension of AIC and works as follows. Let D(θ) be defined as
–2 log(f(y|θ)), where θ contains the model parameters, and f(y|θ) is the likelihood.
D(θ) is calculated for each realisation of the MCMC chain. Let D̄ be the average of
D(θ). The effective number of parameters, pD, is calculated as the posterior mean
deviance minus the deviance evaluated at the posterior mean:

pD = D̄ − D(θ̄)

where θ̄ is the average of all realisations of θ. Then, analogous to AIC, the DIC is
defined as

DIC = D(θ̄) + 2 × pD = D̄ + pD

As with AIC, models with a small DIC are preferred. In R, the command
dicSet allows for monitoring of the DIC, and the results for the various models
fitted in this chapter are given below:

Model Dbar Dhat DIC pD

Poisson 1890.0 1880.0 1900.0 10.0
Poisson + random effects 783.0 691.0 875.0 92.0
Poisson + auto-correlated random effects 784.5 693.3 875.6 91.1
Negative binomial + auto-correlated random

effects
1032.0 1009.0 1055.0 22.8

Note that in the output above, Dhat refers to D(θ̄). Comparing the DIC criteria for
all four models, it can be concluded that both Poisson models with random effects
are similar in fit and are much better than the Poisson and Negative Binomial models
despite them showing some random effect correlation pattern. Formally, the Poisson
model with the random effects will be selected as the final model.

23.9 Conclusions

Fitting the Poisson model to the seal abundance data results in overdispersion and
auto-correlation. To some extent, these can be addressed by fitting a quasi-Poisson
model or generalised linear mixed model. In this chapter, however, we wanted
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to introduce the alternative approach of Bayesian models. These form a flexible
framework allowing for random effects, auto-correlation, various types of distribu-
tion, various (non-canonical) link functions, incorporation of missing values etc.
This flexibility comes at a cost though, in that time-consuming simulation methods
such as MCMC need to be employed to obtain summaries of the model parameters
(although all the models used take no more than half an hour to get 300,000 iter-
ations on a 1.5 GHz PC). Fortunately, freeware software such as WinBugs and its
port to R, BRugs, is available to make the MCMC implementation comparatively
simple.

It is important to keep in mind that Bayesian statistics is based on a different
approach to statistics. It assumes that prior information is available for the param-
eters, which is then combined with information contained in the data to yield the
posterior distribution. This is intrinsically different from frequentist statistics, where
the data are analysed in a stand-alone manner, independent from any other sources
of information. Although the use of prior information may seem a drawback (as
we no longer perform an independent analysis), it can also be used to our advan-
tage. For example, if we are collecting data on an annual basis, then the models
can be updated annually where the results from previous years can form the prior
distribution, which is then combined with the data from the current year. Further-
more, if an ‘independent’ Bayesian analysis is required, then this can be achieved
by choosing non-informative prior distributions, which should give results similar to
those obtained from maximum likelihood estimation. There are several introductory
books on Bayesian Statistics, see, for example, Gelman et al. (2003) for a general
introduction.

When working with small data sets, the prior distribution can become influential
in the posterior result, especially with respect to the spread of the posterior distri-
butions, even if non-informative settings are chosen. This can especially be an issue
with prior distributions on the variance components. It may be worthwhile perform-
ing a sensitivity analysis where the parameters on the prior distribution are changed
and the resulting output compared to the original output.

The aim of this chapter was to give a flavour of Bayesian statistics and by no
means covers all aspects of Bayesian analysis. Therefore, no section ‘What to write
in a paper’ is given. However, we hope that it has shown that there is life beyond
‘ordinary’ generalised linear mixed modelling.
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Index

A
Additive modelling, 36

GAM in gam
and GAM in mgcv, 37
with LOESS, 38–42

and GAM in mgcv
cubic regression splines, 42–44

LOESS smoother and observed data, 37
with multiple explanatory variables, 53

Adelie penguin time series, R code, 356–357
AED package, 10
Agarwal, D. K., 262
Agresti, A., 200, 204, 209, 234, 246
Akaike, H., 2, 41, 61, 120, 274, 482–484, 486,

543, 553
Akaike information criteria (AIC), 61, 170
American Foulbrood (AFB), 447–448
Amphibian roadkills, 383

data exploration, 385–389
R code, for sampling positions,

385–386
VIF values, calculation of, 386–387

explanatory variables, identification and
list of, 384–385

GAM, use of, 389
forward selection approach, 391
negative binomial, 390
R code for, 390
residuals vs. explanatory variables and

spatial coordinates, plotting of,
392–393

shrinkage smoothers, use of, 390
Variogram function, use of, 396–397

Analysing Ecological Data, 11
ANCOVA model, 25
Anderson, D. R., 482–484, 487, 491, 550,

552, 553
Annual rainfall and bird abundances

heterogeneity and, 157

linear regression model and AR-1, 152
numerical output for smoothing model, 154
smoother for, 156
time series for, 153

Antarctic birds and impact of climatic changes
on, 343–344

data exploration, 345–350
explanatory variables, 344–345

sea ice extent as, 352–354
SOI and arrival and laying dates

difference, 354–359
results obtained, 360–361
trends and auto-correlation, 350–352

Apis mellifera, see Honeybees, and AFB
disease

Aptenodytes forsteri, see Penguin
AR-1 Correlation structure, 150–152
Austin, M. P., 270
Auto-regressive moving average (ARMA)

model
error structure, 351–352
R code, 355–356
for residuals, 150

error structure, 151
parameters of, 152

structure, 351, 355
Azzalini, A., 36

B
Badger activity, data on, 495–497

data exploration, 495–497
number of missing values per

variable, 496
explanatory variables, 496
GEE approach, 499–500
GLM, application of, 497–499
GLMM results, 500–501

Bagley, P., 30, 420, 421
Bagley, P. M., 401, 421

563



564 Index

Balguerı̀as, E., 73
Barbraud, C., 343, 344
Barralb, M., 246, 254, 300, 324
Barry, S. C., 262, 264
Bartlett, M., 25, 400, 421
Bartlett test for homogeneity, 20
Bates, D., 1, 7, 8, 71, 80–82, 104, 107, 125,

145, 148, 151, 171, 308, 355, 384,
402, 431, 481

Bathyphotometers, 400
Bayesian statistics, 510–511
Benthic biodiversity experiment data

GLS applied on, 89–90
linear regression for, 86–89
protocol, 90–91

application of, 92–100
Bernoulli and binomial distributions, 202, 204

density curves, 203
Bernstein, S. A., 400
Bersier, L. F., 129–131, 139, 333
Bett, B. J., 401
Bevers, M., 491
Bird data analysis, 531, 551–552

additive modelling, 548–552
anova command, output of, 550
cross-validation, use of, 549–550
GAM with Gaussian distribution, use

of, 548
model validation process, 551–552
R code, for GAM, 548
smoothing function of, 551

data exploration, 532
collinearity, of explanatory variables,

533–536
outliers, in response and explanatory

variables, 532–533
relationships, between response

variable and explanatory
variables, 536

linear regression, 536–540
drop1 function in, 540–541
F-statistic and p-value, calculation of,

541–542
model interpretation, 545–548
model selection, 542–544
model validation, 544–545
summary command, for numerical

output, 540
variables, description of, 531

Bissonette, D., 383
Bivariate linear regression model, 17–19
Bjørnstad, O. N., 480
Blackinton, G., 400, 421

Bodie, J. R., 348, 384
Book outline

case studies, 4
GLM and GAM, 3–4
for instructor guidelines, 6
R

and associated packages, citation
of, 7–8

getting data into, 9–10
programming style, 8–9

software packages, 5–6
Booth, G. D., 473, 475, 478
Bosker, R., 72, 101, 114, 324
Boveng, P. L., 292
Bowman, A., 36
Boxplot, 15
Bradner, H., 400, 421
Braun, J., 11
Brødsgaard, C. J., 447
Broström, G., 8
BRugs Packages, 8, 513–520
Bryk, A. S., 72, 101, 324
Burnham, K. P., 482–484, 487, 491, 552, 553

C
California bird data

GEE for, 314–316
GLM, 295, 297–298
R code, 297
xyplot of, 296

Callaghan, J., 471, 484, 491
Cameron, A. C., 206, 263, 276, 277, 288
Cape Petrel time series

R code, 357–358
car Package, 255
Carrivick, P. J. W., 262
Carroll, R. J., 11, 36, 71, 209
Case, J. F., 400
Cetaceans, age determination techniques for

data analysis
explanatory variables, as fixed part of

model, 462
intraclass correlations, calculation of,

466–467
likelihood ratio test, use of, 464–465
model with two random effects, 463
multiple variance structure, use of, 464
summary command, for numerical

output of model, 465–466
data exploration

age conditional of species/animals, plot
of, 460–461

R code used, 461–462



Index 565

nested structure, of data, 459–460
staining methods, use of, 459, 465–466
step-down approach, use of, 460

Chambers, J. M., 11, 36, 219
Chatfield, C., 145
Chatterjee, S, 475, 477, 478
Chi-square distribution, 222
Clarke, K. R., 423
Clem, J., 400, 421
Cleveland dotplot for Nereis concentration,

12–13
Cleveland, W. S., 39
Clevenger, J., 383
Cliff, A. D., 480
Climate change and phenology, relationships

between, 343–344
Cloern, J. E., 425
Clog–log link, 248, 251
Collet, D., 209
Collins, M. A., 30, 401, 420, 421
Coluber hippocrepis, see Snakes, N days

response variable
Commands

abline, 28
abline(0, 0), 131
AIC, 61
attach, 10
cbind, 269
center = TRUE and scale

= FALSE, 139
coef, 268
colnames, 269
dotchart function, 12–13
factor, 139
gam.check, 58, 60
header = TRUE, 10
library (VGAM), 268
na.action option, 145, 150
negative.binomial(1), 390
par, 58
1-pchisq, 222
plot, 57
predict, 39, 219
predict.gls function, 99
print.trellis, 369
rowSums, 297
split option in print, 370
stats::resid, 268
step or stepAIC, 235
strip and strip.default

options, 389
summary and anova, 57

upper.panel and lower.panel in
pairs Command, 348

varFixed, 75
varIdent, 77
varwidth = TRUE, 15
WinBUGS, 512

Constant plus power of variance covariate
function, 80

Cook, A. J. C., 159
Cook distance, 27
Coplot of wedge clam data, 22
corAR1 Correlation argument, 150
Coronella girondica, see Snakes
Correlograms, 482
corvif Function, 255
Crawley, M. J., 11
Cronin, M., 9, 503–506
Cruikshanks, R., 177
Cunningham, R. B., 262, 264
Cutshall, A., 383

D
Dale, C. V., 383
Dalgaard, P., 7, 8, 11, 77, 243, 253, 540
Daption capense, see Penguin
Data exploration

boxplot, 15
Cleveland dotplots, 12–14
pairplots, 14–15
xyplot from lattice package, 15–17

Davis, I. M., 198, 239, 242, 243
Davison, A. C., 67, 177
Deep-sea pelagic bioluminescent organisms,

400
additive mixed modelling and smoothing

curve
data collection, procedure of

ISIT free-fall profiler, use of, 401
station, location of, 401

model selection, 419–420
multi-panel graphs for grouped data,

construction of, 401
clustering on correlation matrix, use of,

408–409
Euclidean distances between 16

stations, calculation of, 407–408
use of, one smoother, 406
varPower method, 405–406
xyplot, for multi-panel figure, 404

Deer data, 300
binary data, 313
GEE for, 319–320
GLMM predicted probabilities of parasitic

infection along, 329



566 Index

Deer data (cont.)
GLM on, 327–328
probabilities of parasitic infection, 326

Demetrio, C. G. B., 262
Design Package, 8
Deviance information criterion (DIC), 528
Diggle, P. J., 8, 71, 121, 145, 147, 171,

307, 430
Dique, D. S., 479, 492
Dobson, A. J., 204, 209, 209
Donnelly, C. F., 262, 264
Draper, N., 11, 49, 66
drop1 Command, 29, 221, 253, 256
The Dumont d’Urville research station, 343

E
Effective degrees of freedom (edf), 52–53
Efron, B., 177, 490
Eilers, P. H. C., 48
Elaphe scalaris, see Snakes
Elaphostrongylus cervi parasite, 254

in deer, 255
count data into presence and absence,

301
R code, 257

Elith, J., 292
Ellis-Iversen, J., 159
Elphick, C. S., 143, 152, 295, 297
Emmerson, M. C., 86

F
Fahrig, L., 383, 469, 475, 491
Falck, W., 480
family Commands

family = binomial, 251
family = poissonff, 268
family = posnegbinomial

argument, 268
family = quasibinomial, 256

Faraway, J. J., 11, 21, 25, 36, 201
Fernández-de-Mera, I. G., 246, 254,

300, 324
Fernández-Nùñez, M. M., 73
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