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Goals for today

Sit back and reflect on how much you’ve learned
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Learning objectives for the course

Identify an appropriate statistical model based on the data and specific
question

Understand the assumptions behind a chosen statistical model

Use R to fit a variety of linear models to data

Evaluate data support for various models and select the most
parsimonious model among them

Use R Markdown to combine text, equations, code, tables, and figures into
reports

·

·

·

·

·
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Simple linear models
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Partitioning total deviations

The total deviations in the data equal the sum of those for the model and
errors

= +−yi ȳ

⏟Total

−ŷ i ȳ

⏟Model

−yi ŷ i
⏟Error
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Partitioning total deviations
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Partitioning sums-of-squares

The sums-of-squares have the same additive property as the deviations

= +∑( −yi ȳ)2

  

SSTO

∑( −ŷ i ȳ)2

  

SSR

∑( −yi ŷ i)
2

  

SSE
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Linear models in matrix form
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y = Xβ + e
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Ordinary least squares

Rewriting our model, we have

so the sum of squared errors is

y = X + eβ̂ 

⇓

e = y − Xβ̂ 

e = (y − X (y − X )e⊤ β̂ )⊤ β̂ 
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Ordinary least squares

Minimizing the sum of squared errors leads to

= ( X yβ̂  X⊤ )−1X⊤

⇓

= Xŷ  β̂ 
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Variance estimates
Parameters

The variance of  is given by

This suggests that our confidence in our estimate increases with the spread
in 

β̂ 

Var( ) = ( Xβ̂  σ2 X⊤ )−1

X
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Effect of  on parameter precision

Consider these two scenarios where the slope of the relationship is identical

X
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CI for the mean response

A CI for the mean response is given by

±   σŷ ∗ t
(α/2)
df ( XX∗ ⊤

X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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CI for a specific response

A CI on a new prediction is given by

This is typically referred to as the prediction interval

±   σŷ ∗ t
(α/2)
df 1 + ( XX∗ ⊤

X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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Diagnostics
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Unusual observations
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Bias versus variance
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Bias-variance trade-off
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Model selection
In-sample

Null hypothesis testing

Regularization

 test, likelihood ratio test,  test· F χ2

AIC, QAIC, BIC·
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Model selection
Out-of-sample

Cross validation

leave- -out· k
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Linear mixed models
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Fixed vs random effects

Fixed effects describe specific levels of factors that are not part of a larger
group

Random effects describe varying levels of factors drawn from a larger group
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Model for means
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Linear mixed model

We can extend the general linear model to include both of fixed and random
effects

y = Xβ + Zα + e

 

e ∼ MVN(0, I)σ2

 

α ∼ MVN(0, D)σ2
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Restricted maximum likelihood

Estimating the parameters in a mixed effects model requires restricted
maximum likelihood (REML)

REML works by

1. estimating the fixed effects  via ML

2. using the  to estimate the 

( )β̂ 

β̂  α̂ 
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Model selection

To use AIC, we can follow these steps

1. Fit a model with all of the possible fixed-effects included

2. Keep the fixed effects constant and search for random effects

3. Keep random effects as is and fit different fixed effects
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Generalized linear models
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Generalized linear models (GLMs)

Three important components

1. Distribution of the data 

2. Link function 

3. Linear predictor 

y ∼ (y)fθ

g(η)

η = Xβ
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Common link functions

Distribution Link function Mean function

Identity

Log

Logit

1(μ) = Xβ μ = Xβ

log(μ) = Xβ μ = exp(Xβ)

log( ) = Xβ
μ

1−μ
μ =

exp(Xβ)

1+exp(Xβ)
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Logistic regression for binary response

We need 3 things to specify our GLM

1. Distribution of the data: 

2. Link function: 

3. Linear predictor: 

y ∼ Bernoulli(p)

logit(p) = log( ) = η
p

1−p

η = Xβ
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Logistic regression for proportions

We need 3 things to specify our GLM

1. Distribution of the data: 

2. Link function: 

3. Linear predictor: 

y ∼ Binomial(N, p)

logit(p) = log( ) = η
p

1−p

η = Xβ
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Overdispersion

The variance is larger than expected

Overdispersion generally arises in 2 ways related to IID errors

1. trials occur in groups &  is not constant among groups

2. trials are not independent

p
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Overdispersion

We can estimate the dispersion  from the deviance  as

or from Pearson’s  as

c D

=ĉ 
D

n − k

χ2

=ĉ 
X2

n − k
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Effects on parameter estimates

The estimate of  is not affected by overdispersion…

but the variance of  is affected, such that

β̂ 

β̂ 

Var( ) =β̂  ĉ ( X)X⊤Ŵ  −1
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Options for overdispersed proportions

Model Pros Cons

binomial Easy Underestimates variance

binomial with VIF Easy; estimate of variance Ad hoc

quasi-binomial Easy; estimate of variance No distribution for inference

beta-binomial Strong foundation Somewhat hard to implement
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Counts vs proportions

With count data, we only know the frequency of occurrence

That is, how often something occurred without knowing how often it did not
occur
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Poisson regression

Counts  as a function of covariates( )yi

data distribution:

link function:

linear predictor:

   ∼ Poisson( )yi λi

  log( ) =λi μi

   = Xβμi
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General variance for count data

We can consider the possibility that the variance scales linearly with the
mean

If  = 1 then 

If  > 1 the data are overdispersed

Var(y) = cλ

c y ∼ Poisson(λ)

c
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Overdispersed regression

Counts  as a function of covariates( )yi

data distribution:

link function:

linear predictor:

   ∼ negBin(r, )yi μi

  log( ) =μi ηi

   = Xβηi
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Zero-truncated data

Zero-truncated data cannot take a value of 0

Although somewhat rare in ecological studies, examples include

time a whale is at the surface before diving

herd size in elk

number of fin rays on a fish

·

·

·
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Poisson for zero-truncated data

The probability that  and = 0yi ≠ 0yi

f ( = 0; ) = exp(- )yi λi λi

⇓

f ( ≠ 0; ) = 1 − exp(- )yi λi λi
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Poisson for zero-truncated data

We can exclude the probability that  by dividing the pmf by the
probability that 

= 0yi

≠ 0yi

f ( ; ) =yi λi

exp(- )λi λ
yi

i

!yi

⇓

f ( ; | > 0) = ⋅yi λi yi

exp(- )λi λ
yi

i

!yi

1

1 − exp(- )λi

⇓

log  = ( log − ) − (1 − exp(- ))yi λi λi λi
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Neg binomial for zero-truncated data

We can exclude the probability that  by dividing the pmf by the
probability that 

= 0yi

≠ 0yi

f (y; r, μ) =
(y + r − 1)!

(r − 1)!y! ( )
r

μ + r

r

( )
μ

μ + r

y

⇓

f ( ; | > 0) =yi λi yi

(y+r−1)!

(r−1)!y! ( )r
μ+r

r( )μ

μ+r

y

1 − ( )r
μ+r

r

⇓

log  = log (NB) − log(1 − )( )
r

μ + r

r
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Zeros in ecological data

Lots of count data are zero-inflated

The data contain more zeros than would be expected under a Poisson or
negative binomial distribution
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Sources of zeros

In general, there are 4 different types of errors that cause zeros

1. Structural (animal absent because the habitat is unsuitable)

2. Design (sampling is limited temporally or spatially)

3. Observer error (inexperience or difficult circumstances)

4. Process error (habitat is suitable but unused)

45/60



Approaches to zero-inflated data

There are 2 general approaches for dealing with zero-inflated data

1. Zero-altered (“hurdle”) models

2. Zero-inflated (“mixture”) models
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Hurdle models

Hurdle models do not discriminate among the 4 types of zeros

The data are treated as 2 distinct groups:

1. Zeros

2. Non-zero counts

47/60



Hurdle models

Hurdle models consist of 2 parts

1. Use a binomial model to determine the probability of a zero

2. If non-zero (“over the hurdle”), use a truncated Poisson or negative
binomial to model the positive counts
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Zero-inflated (mixture) models

Zero-inflated (mixture) models treat the zeros as coming from 2 sources

1. observation errors (missed detections)

2. ecological (function of environment)
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Mixture models

Zero-inflated (mixture) models consist of 2 parts

1. Use a binomial model to determine the probability of a zero

2. Use a Poisson or negative binomial to model counts, which can include
zeros
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Sources of zeros and approaches

Source Reason Over-dispersion Zero inflation Approach

Random Sampling variability No No Poisson

Yes No Neg binomial

Structural Outside count process No Yes ZAP or ZIP

Yes Yes ZANB or ZINB
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Generalized linear mixed models
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Generalized linear mixed model

GLMMs combine the flexibility of non-normal distributions (GLMs) with the
ability to address correlations among observations and nested data
structures (LMMs)
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Generalized linear mixed model

Good news

Bad news

these extensions follow similar methods to GLMs and LMMs·

these models are on the frontier of statistical research

existing documentation is rather technical

multiple approaches for fitting models; some with different results

·

·

·

54/60



Generalized linear mixed model

Just like GLMs, GLMMs have three components:

1. Distribution of the data 

2. Link function 

3. Linear predictor 

f (y; θ)

g(η)

η
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Linear predictor for a GLMM

For GLMMs, our linear predictor also includes random effects

where the  are fixed effects of the covariates 

η = + + ⋯ + + + + ⋯ +β0 β1x1 βkxk α0 α1z1 αlzl

⇓

η = Xβ + Zα

βi xi

56/60



Generalized linear mixed model

data distribution:

link function:

linear model:

    ∼ Binomial( , )yi,j Ni,j si,j

   logit( ) = log( ) =si,j

si,j

1 − si,j

μi,j

    = ( + ) + ( + )μi,j β0 αj β1 δj xi,j

    ∼ N(0, )αj σ2
α

    ∼ N(0, )δj σ2
δ
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Summary of GLMM methods

Method Advantages Disadvantages R functions

Penalized
quasi-
likelihood

Flexible, widely
implemented

inference may be inappropriate;
potentially biased MASS::glmmPQL

Laplace
approximation More accurate than PQL

Slower and less flexible than
PQL

lme4::glmer
glmmsr::glmm

glmmML::glmmML

Gauss-Hermite
quadrature

More accurate than
Laplace

Slower than Laplace; limited
random effects

lme4::glmer
glmmsr::glmm

glmmML::glmmML
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THE FUTURE



Some things we didn’t cover

Generalized additive models (QERM 514 in a different year)

Occupancy models (SEFS 590)

Capture-Mark-Recapture models (SEFS 590)

Multivariate response models (FISH 560)

Time series models (FISH 507)

Spatio-temporal models (FISH 556)

Bayesian methods (FISH 558, FISH 559)
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