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Goals for today

Understand the structural components of generalized linear mixed models·

Understand the options for fitting GLMMs and their pros and cons·

Understand some of the diagnostics available for evaluating GLMM fits·
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Forms of linear models
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Generalized linear mixed model

GLMMs combine the flexibility of non-normal distributions (GLMs) with the
ability to address correlations among observations and nested data
structures (LMMs)

4/49



Generalized linear mixed model

Good news

Bad news

these extensions follow similar methods to GLMs and LMMs·

these models are on the frontier of statistical research

existing documentation is rather technical

multiple approaches for fitting models; some with different results

·

·

·
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Generalized linear mixed model

Just like GLMs, GLMMs have three components:

1. Distribution of the data 

2. Link function 

3. Linear predictor 

f (y; θ)

g(η)

η
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Linear predictor for a GLM

We can write the linear predictor for GLMs as

where the  are fixed effects of the covariates 

η = + +. . . +β0 β1x1 βkxk

⇓

η = Xβ

βi xi
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Linear predictor for a GLMM

For GLMMs, our linear predictor also includes random effects

where the  are fixed effects of the covariates 

η = + + ⋯ + + + + ⋯ +β0 β1x1 βkxk α0 α1z1 αlzl

⇓

η = Xβ + Zα

βi xi
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Generalized linear mixed model

Survival of fish  as a function of length  in some location si,j xi,j j

data distribution:

link function:

linear model:

    ∼ Binomial( , )yi,j Ni,j si,j

   logit( ) = log( ) =si,j

si,j

1 − si,j

μi,j

    = ( + ) +μi,j β0 αj β1xi,j

    ∼ N(0, )αj σ2
δ
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Generalized linear mixed model

Best practices suggest we try to keep things simple

Why? Because GLMMs involve solving an integral with no analytical solution
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Likelihood for GLMMs

Recall that we think of likelihoods in terms of the observed data

But the random effects in our model are unobserved random variables, so we
need to integrate them out of the likelihood
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Likelihood for GLMMs

The likelihood for a GLMM involves integrating over all possible random
effects

If  is not Gaussian, we cannot remove it from the likelihood,
which makes it very difficult to compute

(y; β, ϕ, ν) = ∫   dα∏
i

(y; β, ϕ, α)fd
  

distn for data

(α; ν)fr
⏟distn for RE

f (y; β, ϕ, α)

12/49



Approaches to fitting GLMMs

To avoid the integral, we will consider 3 methods that approximate the
likelihood

They all have pros and cons so it’s not possible to pick the “best”
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Penalized quasi-likelihood

Penalized quasi-likelihood (PQL) uses a Taylor series expansion to
approximate the linear predictor as an LMM

g(μ)

g(y)

= η

= Xβ + Zα

⇓

≈ g(μ) + (μ)(y − μ)g′

≈ Xβ + Zα + (μ)ϵg′
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Penalized quasi-likelihood

The conditional variance of the data in a GLMM is then

g(y)

g(y) − Xβ

Var (g(y) − Xβ)

≈ Xβ + Zα + (μ)ϵg′

⇓

≈ Zα + ϵ (μ)g′

⇓

≈ Var (Zα) + Var (ϵ (μ))g′
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Penalized quasi-likelihood

The conditional variance of the data in a GLMM is then

which is similar to that for an LMM

g(y)

g(y) − Xβ

Var (g(y) − Xβ)

≈ Xβ + Zα + (μ)ϵg′

⇓

≈ Zα + ϵ (μ)g′

⇓

≈ Var (Zα) + Var (ϵ (μ))g′

Var (y − Xβ) = Var (Zα) + Var (ϵ)
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Penalized quasi-likelihood

Pros

Cons

fast, flexible, and widely implemented·

only asymptotically correct

biased for Binomial and Poisson with small samples

inference confounded by approximate likelihood

·

·

·
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Laplace approximation

Laplace approximation is a long standing (1774) method for computing
integrals of the form

This integrand is quite similar to the likelihood of a GLMM based on
exponential distributions

Thus, we only need to find the maximum of  and its second derivative,
and evaluate them at only one point

∫ f (x) dxeλg(x)

g(x)
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Laplace approximation

Pros

Cons

approximation of true likelihood rather than quasi-likelihood

more accurate than PQL

·

·

slower and less flexible than PQL

may be impossible to compute for complex models

·

·

19/49



Gauss-Hermite quadrature

Gauss-Hermite quadrature is an expansion of Laplace approximation where
the integrand is evaluated at more than one point

Quadrature is a method for numerically approximating an integral as a
weighted sum

This method works by optimizing the placement and number of the  and
the choice of the 

∫ f (u) du ≈ f ( )e−u2

∑
i

wi ui

ui

wi
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Gauss-Hermite quadrature

Pros

Cons

More accurate than Laplace·

Slow and computationally intense

Limited to a few random effects (one in practice)

·

·
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Fitting GLMMs
Example

Let’s consider a long-term study of invasive brown tree snakes in Guam

Introduced to the island shortly after WWII

Voracious predators on native birds and other vertebrates
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Photo by Pavel Kirillov



Brown tree snakes

Our data consist of counts of the number of eggs per female at 23 locations
over 14 years

We are interested in the fixed effect of body size and the random effects of
location and year

We’ll begin with only the effects of body size and location
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Brown tree snakes
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Brown tree snakes
Penalized quasi-likelihood

We fit PQL models with MASS::glmPQL()

## load MASS 
library(MASS)
## fit model 
snakes_pql <- glmmPQL(eggs ~ size, random = ~1 | loc, data = df_eggs, 
                      family = poisson)

summary(snakes_pql)
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Brown tree snakes

## Linear mixed-effects model fit by maximum likelihood 
##  Data: df_eggs  
##   AIC BIC logLik 
##    NA  NA     NA 
##  
## Random effects: 
##  Formula: ~1 | loc 
##         (Intercept) Residual 
## StdDev:   0.5077229 1.183238 
##  
## Variance function: 
##  Structure: fixed weights 
##  Formula: ~invwt  
## Fixed effects: eggs ~ size  
##                 Value  Std.Error  DF  t-value p-value 
## (Intercept) 1.1247363 0.11687536 210 9.623383       0 
## size        0.5079533 0.07916825 210 6.416124       0 
##  Correlation:  
##      (Intr) 
## size -0.069 
##  
## Standardized Within-Group Residuals: 
##        Min         Q1        Med         Q3        Max  
## -1.7744344 -0.7176552 -0.2481373  0.5028263  3.3994803  
##  
## Number of Observations: 234 
## Number of Groups: 23
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Brown tree snakes
Laplace

We can fit Laplace models with lme4::glmer()

## load lme4 
library(lme4)
## fit model 
snakes_lap <- glmer(eggs ~ size + (1 | loc), data = df_eggs, 
                    family = poisson)

summary(snakes_lap)
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Brown tree snakes

## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: poisson  ( log ) 
## Formula: eggs ~ size + (1 | loc) 
##    Data: df_eggs 
##  
##      AIC      BIC   logLik deviance df.resid  
##   1006.7   1017.1   -500.4   1000.7      231  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.1158 -0.8480 -0.2741  0.5931  4.0679  
##  
## Random effects: 
##  Groups Name        Variance Std.Dev. 
##  loc    (Intercept) 0.2753   0.5247   
## Number of obs: 234, groups:  loc, 23 
##  
## Fixed effects: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  1.09929    0.11726   9.374  < 2e-16 *** 
## size         0.50619    0.06644   7.619 2.56e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##      (Intr) 
## size -0.054
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Brown tree snakes
Gauss-Hermite quadrature

We can fit GHQ models with lme4::glmer(..., nAGQ = pts)

Note: this method only works with one random effect

## fit model 
snakes_ghq <- glmer(eggs ~ size + (1 | loc), data = df_eggs, 
                    family = poisson, nAGQ = 20)

summary(snakes_ghq)
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Brown tree snakes

## Generalized linear mixed model fit by maximum likelihood (Adaptive 
##   Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod] 
##  Family: poisson  ( log ) 
## Formula: eggs ~ size + (1 | loc) 
##    Data: df_eggs 
##  
##      AIC      BIC   logLik deviance df.resid  
##    397.7    408.1   -195.9    391.7      231  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.1159 -0.8479 -0.2739  0.5929  4.0681  
##  
## Random effects: 
##  Groups Name        Variance Std.Dev. 
##  loc    (Intercept) 0.2761   0.5254   
## Number of obs: 234, groups:  loc, 23 
##  
## Fixed effects: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  1.09919    0.11754   9.352  < 2e-16 *** 
## size         0.50618    0.06681   7.576 3.56e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##      (Intr) 
## size -0.054
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Brown tree snakes

Here is a summary of the results from the 3 methods

##                 PQL    SE     Laplace   SE       GHQ    SE  
## (Intercept)    1.125 0.117      1.099 0.117     1.099 0.118 
## size           0.508 0.079      0.506 0.066     0.506 0.067 
## location SD    0.508    NA      0.525    NA     0.525    NA
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Brown tree snakes

What if we also want to include the random effect of year?

glmmPQL only allows for nested random effects

glmer(..., nAGQ = pts) only allows for one random effect

We can use the Laplace approximation via glmer
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Brown tree snakes
Laplace

## fit model 
snakes_lap_2 <- glmer(eggs ~ size + (1 | loc) + (1 | year), 
                      data = df_eggs, family = poisson)

summary(snakes_lap_2)
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Brown tree snakes

## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: poisson  ( log ) 
## Formula: eggs ~ size + (1 | loc) + (1 | year) 
##    Data: df_eggs 
##  
##      AIC      BIC   logLik deviance df.resid  
##    928.8    942.6   -460.4    920.8      230  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -1.7498 -0.6251 -0.0568  0.5055  3.5431  
##  
## Random effects: 
##  Groups Name        Variance Std.Dev. 
##  loc    (Intercept) 0.2522   0.5022   
##  year   (Intercept) 0.1557   0.3945   
## Number of obs: 234, groups:  loc, 23; year, 14 
##  
## Fixed effects: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  1.03612    0.15518   6.677 2.44e-11 *** 
## size         0.51380    0.07063   7.274 3.48e-13 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##      (Intr) 
## size -0.048
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Diagnostics

Diagnostics for GLMMs are similar to those for GLMs, but we are limited in
our choices
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Goodness of fit

Recall our goodness of fit test based on the Pearson’s 

where  is the observed count and  is the expected count

χ2

= ∼X2

∑
i=1

n
( −Oi Ei)

2

Ei

χ2
(n−1)

Oi Ei
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Pearson’s  statistic

For a binomial distribution

For a Poisson distribution

χ 2

=X2

∑
i=1

n
( −yi ni p̂ i)

2

ni p̂ i

=X2

∑
i=1

n
( −yi λi)

2

λi
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Goodness of fit

: Our model is correctly specified

The -value is large so we cannot reject 

H0

## Pearson's X^2 statistic 
X2 <- sum((eggs - fitted(snakes_lap_2))^2 / fitted(snakes_lap_2))
## likelihood ratio test 
pchisq(X2, df = nn - length(coef(snakes_lap_2)), 
       lower.tail = FALSE)

## [1] 0.9986993

p H0
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Model diagnostics
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Leverage

For other models, we can calculate the leverages to evaluate potentially
extreme values in predictor space

For GLMMs, however, the leverages depend on the estimated variance-
covariance matrices of the random effects
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Cook’s Distance

For other models, we can calculate Cook’s distances to identify potentially
influential data points

For GLMMs, however, the Cook’s distances involve derivatives of the
likelihood with respect to the random effects (this is an active area of
research)
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Inference for fixed effects

We can test the significance of the fixed effects via a  test by comparing models
with and without the effect(s)

χ 2

## fit reduced model 
snakes_lap_null <- glmer(eggs ~ (1 | loc) + (1 | year), 
                         data = df_eggs, family = poisson) 
anova(snakes_lap_2, snakes_lap_null)

## Data: df_eggs 
## Models: 
## snakes_lap_null: eggs ~ (1 | loc) + (1 | year) 
## snakes_lap_2: eggs ~ size + (1 | loc) + (1 | year) 
##                 Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq) 
## snakes_lap_null  3 979.77 990.14 -486.88   973.77                          
## snakes_lap_2     4 928.81 942.63 -460.40   920.81 52.961      1  3.402e-13 
##                     
## snakes_lap_null     
## snakes_lap_2    *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Inference for random effects

We can test the significance of the random effects via a  test by comparing
models with and without the effect(s)

χ 2

## fit reduced model with only fixed effects 
snakes_lap_null <- glm(eggs ~ size, data = df_eggs, 
                       family = poisson(link = "log"))
## compare m0 and m1 
anova(snakes_lap_2, snakes_lap_null)

## Data: df_eggs 
## Models: 
## snakes_lap_null: eggs ~ size 
## snakes_lap_2: eggs ~ size + (1 | loc) + (1 | year) 
##                 Df     AIC     BIC  logLik deviance  Chisq Chi Df 
## snakes_lap_null  2 1173.92 1180.83 -584.96  1169.92               
## snakes_lap_2     4  928.81  942.63 -460.40   920.81 249.11      2 
##                 Pr(>Chisq)     
## snakes_lap_null                
## snakes_lap_2     < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Overdispersion

As with GLMs, we can check GLMMs for evidence of overdispersion, which we
estimate as

Let’s do so for our snake model applied to another data set

=ĉ 
X2

n − k
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Overdispersion

## Pearson's X^2 statistic 
X2 <- sum((eggs - fitted(snakes_lap))^2 / fitted(snakes_lap))
## number of parameters 
k <- length(coef(snakes_lap)) + length(ranef(snakes_lap))
## overdispersion parameter
(c_hat <- X2 / (nn - k))

## [1] 2.767328

pchisq(deviance(snakes_lap), k, lower.tail = FALSE)

## [1] 5.191758e-216
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Brown tree snakes
Negative binomial

We can fit neg binomial models using Laplace approximation with
lme4::glmer.nb()

## fit model 
snakes_lap_nb <- glmer.nb(eggs ~ size + (1 | loc) + (1 | year), 
                          data = df_eggs)

summary(snakes_lap_nb)
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Brown tree snakes

## Generalized linear mixed model fit by maximum likelihood (Laplace 
##   Approximation) [glmerMod] 
##  Family: Negative Binomial(148955.1)  ( log ) 
## Formula: eggs ~ size + (1 | loc) + (1 | year) 
##    Data: df_eggs 
##  
##      AIC      BIC   logLik deviance df.resid  
##    930.8    948.1   -460.4    920.8      229  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -1.7498 -0.6251 -0.0568  0.5055  3.5431  
##  
## Random effects: 
##  Groups Name        Variance Std.Dev. 
##  loc    (Intercept) 0.2522   0.5022   
##  year   (Intercept) 0.1557   0.3946   
## Number of obs: 234, groups:  loc, 23; year, 14 
##  
## Fixed effects: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  1.03607    0.15537   6.668 2.59e-11 *** 
## size         0.51382    0.07122   7.215 5.41e-13 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Correlation of Fixed Effects: 
##      (Intr) 
## size -0.048
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Summary of GLMM methods

Method Advantages Disadvantages R functions

Penalized
quasi-
likelihood

Flexible, widely
implemented

inference may be inappropriate;
potentially biased MASS::glmmPQL

Laplace
approximation More accurate than PQL

Slower and less flexible than
PQL

lme4::glmer
glmmsr::glmm

glmmML::glmmML

Gauss-Hermite
quadrature

More accurate than
Laplace

Slower than Laplace; limited
random effects

lme4::glmer
glmmsr::glmm

glmmML::glmmML

Adapted from Bolker et al (2009)
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