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Goals for today

Understand the application of Poisson regression to count data·

Understand how to fit Poisson regression models in R·

Understand how to evaluate model fits and diagnostics for Poisson
regression

·
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Count data

Counts form the basis for much of our data in environmental sciences

Number of adult salmon returning to spawn in a river

Number of days of rain in a year

Number of bees visiting a flower

·

·

·
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Counts vs proportions

We have seen how to model proportional data with GLMs

 survivors out of  tagged individuals

 infected individuals out of  susceptible individuals

 counts of allele A in  total chromosomes

· k n

· k n

· k n
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Counts vs proportions

With count data, we only know the frequency of occurrence

That is, how often something occurred without knowing how often it did not
occur
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Modeling count data

Standard regression models are inappropriate for count data for 4 reasons:

1. linear model might lead to predictions of negative counts

2. variance of the response variable may increase with the mean

3. errors are not normally distributed

4. zeros are difficult to transform
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Distribution for discrete counts

The Poisson distribution is perhaps the best known

It gives the probability of a given number of events occurring in a fixed
interval of time or space
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Poisson distribution
Examples

the number of Prussian soldiers killed by horse kicks per year from 1868 -
1931

the number of new COVID-19 infections per day in the US

the number of email messages I receive per week from students in QERM
514

·

·

·
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Poisson distribution

It’s unique in that it has one parameter  to describe both the mean and
variance

λ

∼ Poisson(λ)yi

Mean(y) = Var(y) = λ
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Poisson distribution

As  the Poisson  Normalλ → ∞ →
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Poisson distribution

with  and 

f (y; θ, ϕ) = exp( − c(y, ϕ))
yθ − b(θ)

a(ϕ)

⇓

f (y; μ) =
exp(−μ)μy

y!

θ = log(μ) ϕ = 1

a(ϕ) = 1      b(θ) = exp(θ)      c(y, ϕ) = − log(y!)
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Poisson distribution

An interesting property of the Poisson is that

This means we can use aggregated data if we lack individual-level data

∼ Poisson(λ)yi

⇓

∼ Poisson( )∑
i

yi ∑
i

λi
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Poisson and binomial

The Poisson distribution can also approximate a binomial distribution if  is
large and  is small

As , 

Binomial with logit link  Poisson with log link

n

p

p → 0 logit(p) → log(p)

→
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Poisson and binomial

An example with  = 0.05 and  = 1000p n
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Rethinking density

We have been considering (log) density itself as a response

= f ( , )Densityi Counti Areai

⇓

=Densityi

Counti

Areai
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Rethinking density

We have been considering (log) density itself as a response

With GLMs, we can shift our focus to

= f ( , )Densityi Counti Areai

⇓

=Densityi

Counti

Areai

= f ( )Counti Areai
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Example of a Poisson regression

Catches of spot prawns  as a function of bait type  and water
temperature 

yi Ci

Ti

data distribution:

link function:

linear predictor:

   ∼ Poisson( )yi λi

  log( ) =λi μi

   = α + +μi β1Ci β2Ti
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Catches of spot prawns
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Catches of spot prawns

## Poisson regression 
cmod <- glm(catch ~ fish + temp, data = prawns, 
            family = poisson(link = "log")) 
faraway::sumary(cmod)

##              Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) 3.5644284  0.0906850  39.306 < 2.2e-16 
## fish        0.0894061  0.0274085   3.262  0.001106 
## temp        0.0256769  0.0087425   2.937  0.003314 
##  
## n = 113 p = 3 
## Deviance = 135.32140 Null Deviance = 157.85016 (Difference = 22.52876)
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Inference from Poisson regression

We can easily estimate the CI’s on the model parameters with confint()

## CI's for prawn model 
ci_prawns <- confint(cmod) 
ci_tbl <- cbind(ci_prawns[,1], coef(cmod), ci_prawns[,2]) 
colnames(ci_tbl) <- c("Lower", "Estimate", "Upper") 
signif(ci_tbl, 3)

##               Lower Estimate  Upper 
## (Intercept) 3.39000   3.5600 3.7400 
## fish        0.03570   0.0894 0.1430 
## temp        0.00856   0.0257 0.0428
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Profile likelihood

Due to possible bias in , we can compute CI’s based on the profile likelihoodSE(β)

## number of points to profile 
nb <- 200
## possible beta's 
beta_bait <- seq(0, 0.2, length = nb)
## calculate neg-LL of possible beta_bait
## fix beta_temp at its MLE 
plb <- rep(NA, nb)
for(i in 1:nb) { 
  mm <- glm(catch ~ 1 + offset(beta_bait[i] * fish  
                               + offset(coef(cmod)[3] * temp)), 
            data = prawns, 
            family = poisson(link = "log")) 
  plb[i] <- -logLik(mm)
}
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Confidence interval for βi
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Goodness of fit

It’s natural to ask how well a model fits the data

As with binomial models, we can check the deviance  against a 
distribution

D χ2
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Deviance for Poisson

Recall that the deviance for any model is

where  is the model of interest and  is an intercept-only model

= -2 [log ( ) − log ( )]Di Mi M0

Mi M0
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Deviance for Poisson

The log-likelihood for a Poisson is

The deviance for a Poisson is

log (y; λ) = [ log(λ) − λ − log( !)]∑
i=1

n

yi yi

log (y; λ) = [ log( / ) − ( − )]∑
i=1

n

yi yi λ̂  yi λ̂ 
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Goodness of fit for prawn model

: Our model is correctly specified

We cannot reject the 

H0

## deviance of prawn model 
D_full <- summary(cmod)$deviance 
## LRT with df = 1
(p_value <- pchisq(D_full, nn - length(coef(cmod)), 
                   lower.tail = FALSE))

## [1] 0.05096932

H0
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Goodness of fit for prawn model

It turns out that the assumption of  can be violated with Poisson

models unless  is large

Another option is Pearson’s  statistic we saw for binomial models

D ∼ χ2
n−k

λ

X2

28/39



Pearson’s goodness of fit

Recall that Pearson’s  is

So for our Poisson model

X2

= ∼X2

∑
i=1

n
( −Oi Ei)

2

Ei

χ2
(n−k)

= ∼X2

∑
i=1

n
( −yi λ̂ 

i)
2

λ̂ 
i

χ2
n−k
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Pearson’s goodness of fit

: Our model is correctly specified

We cannot reject the 

H0

## numerator 
nm <- (prawns$catch - fitted(cmod))^2
## denominator 
dm <- fitted(cmod)
## Pearson's 
X2 <- sum(nm / dm)
## test
(p_value <- pchisq(X2, nn - length(coef(cmod)), lower.tail = FALSE))

## [1] 0.07074179

H0
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Fitted values & CI’s
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Model diagnostics

As with other models, it’s important to examine diagnostic checks for our
fitted models
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Residual plots
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Leverage

We can calculate the leverages  to look for unusual observation in predictor
space

Recall we are potentially concerned about 

We can use faraway::halfnorm()

h

h > 2 k
n
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Leverage
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Cook’s Distance

Recall that we can use Cook’s  to identify potentially influential points

In general we are concerned about 

D

= ( )Di e2
i

1

k

hi

1 − hi

> ≈ 1Di F
(0.5)
n,n−k
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Cook’s Distance
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Model selection for prawn model

We can use a likelihood ratio test to compare our model to an intercept-only
model

We reject  (that the data come from the null model)

## deviance of full model 
D_full <- summary(cmod)$deviance 
## deviance of null model 
D_null <- summary(cmod)$null.deviance 
## test statistic 
lambda <- D_null - D_full 
## LRT with df = 2
(p_value <- pchisq(lambda, 2, lower.tail = FALSE))

## [1] 1.282157e-05

H0
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Summary

Lots of ecological data consists of counts·

We can use Poisson regression for count data instead of a log-
transformation

·

We can use many of the same goodness-of-fit measures and diagnostics
as for other GLMs and LMs

·
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