Modeling count data

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 15 May 2020

Goals for today

- Understand the application of Poisson regression to count data
- Understand how to fit Poisson regression models in **R**
- Understand how to evaluate model fits and diagnostics for Poisson regression

Count data

Counts form the basis for much of our data in environmental sciences

- Number of adult salmon returning to spawn in a river
- Number of days of rain in a year
- \cdot Number of bees visiting a flower

Counts vs proportions

We have seen how to model proportional data with GLMs

- *k* survivors out of *n* tagged individuals
- k infected individuals out of n susceptible individuals
- k counts of allele A in n total chromosomes

Counts vs proportions

With count data, we only know the *frequency of occurrence*

That is, how often something occurred without knowing how often it *did not* occur

Modeling count data

Standard regression models are inappropriate for count data for 4 reasons:

- 1. linear model might lead to predictions of negative counts
- 2. variance of the response variable may increase with the mean
- 3. errors are not normally distributed
- 4. zeros are difficult to transform

Distribution for discrete counts

The Poisson distribution is perhaps the best known

It gives the probability of a given number of events occurring in a fixed interval of time or space

Examples

- the number of Prussian soldiers killed by horse kicks per year from 1868 -1931
- the number of new COVID-19 infections per day in the US
- the number of email messages I receive per week from students in QERM 514

It's unique in that it has one parameter λ to describe both the mean *and* variance

 $y_i \sim \text{Poisson}(\lambda)$

 $Mean(y) = Var(y) = \lambda$

As $\lambda \to \infty$ the Poisson \to Normal

with $\theta = \log(\mu)$ and $\phi = 1$ $a(\phi) = 1$ $b(\theta) = \exp(\theta)$ $c(y, \phi) = -\log(y!)$

An interesting property of the Poisson is that

This means we can use aggregated data if we lack individual-level data

Poisson and binomial

The Poisson distribution can also approximate a binomial distribution if n is large and p is small

As $p \to 0$, $logit(p) \to log(p)$

Binomial with logit link \rightarrow Poisson with log link

Poisson and binomial

An example with p = 0.05 and n = 1000

Rethinking density

We have been considering (log) density itself as a response

Density_i =
$$f(\text{Count}_i, \text{Area}_i)$$

 \Downarrow
Density_i = $\frac{\text{Count}_i}{\text{Area}_i}$

Rethinking density

We have been considering (log) density itself as a response

Density_i =
$$f(\text{Count}_i, \text{Area}_i)$$

 \Downarrow
Density_i = $\frac{\text{Count}_i}{\text{Area}_i}$

With GLMs, we can shift our focus to

 $\operatorname{Count}_i = f(\operatorname{Area}_i)$

Example of a Poisson regression

Catches of spot prawns y_i as a function of bait type C_i and water temperature T_i

```
data distribution: y_i \sim \text{Poisson}(\lambda_i)
```

link function: $\log(\lambda_i) = \mu_i$

linear predictor: $\mu_i = \alpha + \beta_1 C_i + \beta_2 T_i$

Catches of spot prawns

Catches of spot prawns

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.5644284 0.0906850 39.306 < 2.2e-16
fish 0.0894061 0.0274085 3.262 0.001106
temp 0.0256769 0.0087425 2.937 0.003314
##
n = 113 p = 3
Deviance = 135.32140 Null Deviance = 157.85016 (Difference = 22.52876)</pre>

Inference from Poisson regression

We can easily estimate the Cl's on the model parameters with confint()

```
## CI's for prawn model
ci_prawns <- confint(cmod)
ci_tbl <- cbind(ci_prawns[,1], coef(cmod), ci_prawns[,2])
colnames(ci_tbl) <- c("Lower", "Estimate", "Upper")
signif(ci_tbl, 3)</pre>
```

##		Lower	Estimate	Upper
##	(Intercept)	3.39000	3.5600	3.7400
##	fish	0.03570	0.0894	0.1430
##	temp	0.00856	0.0257	0.0428

Profile likelihood

Due to possible bias in $SE(\beta)$, we can compute CI's based on the *profile likelihood*

Confidence interval for β_i

Goodness of fit

It's natural to ask how well a model fits the data

As with binomial models, we can check the deviance D against a χ^2 distribution

Deviance for Poisson

Recall that the deviance for any model is

$$D_i = -2 \left[\log \mathcal{L}(M_i) - \log \mathcal{L}(M_0) \right]$$

where M_i is the model of interest and M_0 is an intercept-only model

Deviance for Poisson

The log-likelihood for a Poisson is

$$\log \mathcal{L}(y; \lambda) = \sum_{i=1}^{n} \left[y_i \log(\lambda) - \lambda - \log(y_i!) \right]$$

The deviance for a Poisson is

$$\log \mathcal{L}(y; \lambda) = \sum_{i=1}^{n} \left[y_i \log(y_i/\hat{\lambda}) - (y_i - \hat{\lambda}) \right]$$

Goodness of fit for prawn model

 H_0 : Our model is correctly specified

[1] 0.05096932

We cannot reject the H_0

Goodness of fit for prawn model

It turns out that the assumption of $D \sim \chi^2_{n-k}$ can be violated with Poisson models unless λ is large

Another option is Pearson's X^2 statistic we saw for binomial models

Pearson's goodness of fit

Recall that Pearson's X^2 is

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}_{(n-k)}$$

So for our Poisson model

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{\lambda}_{i})^{2}}{\hat{\lambda}_{i}} \sim \chi_{n-k}^{2}$$

Pearson's goodness of fit

H_0 : Our model is correctly specified

```
## numerator
nm <- (prawns$catch - fitted(cmod))^2
## denominator
dm <- fitted(cmod)
## Pearson's
X2 <- sum(nm / dm)
## test
(p_value <- pchisq(X2, nn - length(coef(cmod)), lower.tail = FALSE))</pre>
```

```
## [1] 0.07074179
```

We cannot reject the H_0

Fitted values & Cl's

Model diagnostics

As with other models, it's important to examine diagnostic checks for our fitted models

Residual plots

We can calculate the leverages h to look for unusual observation in *predictor* space

Recall we are potentially concerned about $h > 2\frac{k}{n}$

We can use faraway::halfnorm()

Leverage

Cook's Distance

Recall that we can use Cook's D to identify potentially influential points

$$D_i = e_i^2 \frac{1}{k} \left(\frac{h_i}{1 - h_i} \right)$$

In general we are concerned about $D_i > F_{n,n-k}^{(0.5)} \approx 1$

Cook's Distance

Model selection for prawn model

We can use a likelihood ratio test to compare our model to an intercept-only model

```
## deviance of full model
D_full <- summary(cmod)$deviance
## deviance of null model
D_null <- summary(cmod)$null.deviance
## test statistic
lambda <- D_null - D_full
## LRT with df = 2
(p_value <- pchisq(lambda, 2, lower.tail = FALSE))</pre>
```

```
## [1] 1.282157e-05
```

We reject H_0 (that the data come from the null model)

Summary

- Lots of ecological data consists of counts
- We can use Poisson regression for count data instead of a logtransformation
- We can use many of the same goodness-of-fit measures and diagnostics as for other GLMs and LMs