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Goals for today

Understand how to evaluate goodness-of-fit for binomial data·

Understand the notion of overdispersion in binomial data·

Understand the options for modeling overdispersed binomial data·

Understand the pros & cons of the modeling options·
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Goodness-of-fit

How well does our model fit the data?

A simple check is a  test for the standardized residualsχ2
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Smolt age versus length
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Smolt age versus length

The -value is large so we detect no lack of fit

## residuals 
ee <- residuals(fit_mod, type = "response")
## fitted values 
y_hat <- fitted(fit_mod)
## standardized residuals 
rr <- ee / (y_hat * (1 - y_hat))
## test stat 
x2 <- sum(rr)
## chi^2 test 
pchisq(x2, nn - length(coef(fit_mod)) - 1, lower.tail = FALSE)

## [1] 1

p
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Binned predictions

It’s hard to compare our predictions on the interval [0,1] to discrete binary
outcomes {0,1}

To help, we can compute  for bins of dataŷ 

6/52



Binned predictions
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Binned predictions
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Binned predictions
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Hosmer-Lemeshow test

We can formalize this binned comparison with the Hosmer-Lemeshow test

where  is the number of groups and 
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Hosmer-Lemeshow test

We can perform the H-L test with generalhoslem::logitgof()

The -value is large so we conclude an adequate fit

## H-L test with 8 groups 
generalhoslem::logitgof(obs = df$age, exp = fitted(fit_mod), g = 8)

##  
##  Hosmer and Lemeshow test (binary model) 
##  
## data:  df$age, fitted(fit_mod) 
## X-squared = 1.7874, df = 6, p-value = 0.9382

p
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Classification scoring

Another means for evaluating goodness-of-fit is classification scoring

We can use our model to predict the outcome for each individual, such that

if  then 

if  then 

· < 0.5pi = 0ŷ i

· ≥ 0.5pi = 1ŷ i
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Classification scoring

## predicted ages 
pred_age <- ifelse(fitted(fit_mod) < 0.5, 1, 2)
## observed ages 
obs_age = df$age + 1
## contingency table
(ct <- xtabs(~ obs_age + pred_age))

##        pred_age 
## obs_age  1  2 
##       1 35  6 
##       2  5 34

## correct classification 
sum(diag(ct)) / nn

## [1] 0.8625
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Classification scoring
Specificity

Ability to predict age-1 when fish do smolt at age-1

35 / (35 + 6) = 85.4%

##        pred_age 
## obs_age  1  2 
##       1 35  6 
##       2  5 34
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Classification scoring
Sensitivity

Ability to predict age-2 when fish do smolt at age-2

34 / (5 + 34) = 87.1%

##        pred_age 
## obs_age  1  2 
##       1 35  6 
##       2  5 34
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Proportion of variance explained

Calculating  for logistic models is not the same as linear models

Given the deviance  for our model and a null model ,

R2

DM D0

=R2 1 − exp([ − ]/n)DM D0

1 − exp(- /n)D0
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Proportion of variance explained

Here is the  for our smolt-at-age modelR2

## deviances 
DM <- fit_mod$deviance 
D0 <- fit_mod$null.deviance 
# R^2 
R2 <- (1 - exp((DM - D0) / nn)) / (1 - exp(-D0 / nn)) 
round(R2, 2)

## [1] 0.77
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QUESTIONS?



Lack of fit

If our model fits the data well, we expect the deviance  to be  distributed

Sometimes, however, the deviance is larger than expected

D χ2
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Lack of fit

What leads to a lack of fit?

model mis-specification

outliers

non-linear relationship between  and 

non-independence in the observed data

·

·

· x η

·

20/52



Overdispersion

Recall that the variance for a binomial of size  is given by

If  this is called overdispersion

n

Var(y) = np(1 − p)

Var(y) > np(1 − p)
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Overdispersion

Overdispersion generally arises in 2 ways related to IID errors

1. trials occur in groups &  is not constant among groups

2. trials are not independent

p
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Overdispersion

To address overdispersion, we can include the dispersion parameter , such
that

 is also called the variance inflation factor

c

Var(y) = cnp(1 − p)

c
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Overdispersion

We can estimate  from the deviance  asc D

=ĉ 
D

n − k
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Aside: Pearson’s  statistic

Pearson’s  statistic is similar to the deviance

where  is the observed count and  is the expected count

χ 2
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Aside: Pearson’s  statistic

For a binomial distribution
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Overdispersion

We can estimate  asc

=ĉ 
X2

n − k
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Effects on parameter estimates

The estimate of  is not affected by overdispersion…

but the variance of  is affected, such that
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Elk in clear cuts

Elk are known to use clear cuts for browsing

In general, the probability of finding elk decreases with height of underbrush
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Elk in clear cuts

Consider an observational study to estimate the probability of finding elk as a
function of underbrush height

29 forest sections were sampled for elk pellets along line transects

mean height of underbrush recorded for each section

presence/absence of pellets recorded at 9-13 points per transect

·

·

·
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Elk in clear cuts
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Elk in clear cuts

A glimpse of the pellet data

##    veg_height plots pellets 
## 1        3.30     9       0 
## 2        2.53    11       5 
## 3        1.03    10       5 
## 4        1.12    13       9 
## 5        3.00    11       0 
## 6        2.03    11       9 
## 7        2.93    12       2 
## 8        2.40    10       0 
## 9        3.16    10       2 
## 10       2.45    13       6 
## 11       3.21    10       3 
## 12       2.74    12       8
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Elk in clear cuts

## fit model with glm 
elk_mod <- glm(cbind(pellets, plots - pellets) ~ veg_height, data = df, 
               family = binomial(link = "logit")) 
faraway::sumary(elk_mod)

##             Estimate Std. Error z value  Pr(>|z|) 
## (Intercept)  2.40035    0.46838  5.1248 2.978e-07 
## veg_height  -1.29583    0.19885 -6.5165 7.195e-11 
##  
## n = 29 p = 2 
## Deviance = 60.28535 Null Deviance = 110.19068 (Difference = 49.90534)

34/52



Elk in clear cuts

## original fit 
signif(summary(elk_mod)$coefficients, 3)

##             Estimate Std. Error z value Pr(>|z|) 
## (Intercept)      2.4      0.468    5.12 2.98e-07 
## veg_height      -1.3      0.199   -6.52 7.19e-11

## overdispersion parameter 
c_hat <- deviance(elk_mod) / (nn- 1)
## re-scaled estimates 
signif(summary(elk_mod, dispersion = c_hat)$coefficients, 3)

##             Estimate Std. Error z value Pr(>|z|) 
## (Intercept)      2.4      0.687    3.49 4.78e-04 
## veg_height      -1.3      0.292   -4.44 8.95e-06
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Quasi-AIC

For binomial models with overdispersion, we can modify AIC

to be a quasi-AIC

AIC = 2k − 2 log 

QAIC = 2k − 2
log 

ĉ 
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Elk in clear cuts

Model selection results

##                     k neg-LL   AIC deltaAIC QAIC deltaQAIC 
## intercept + slope   2   61.3 126.6      0.0 60.9       0.0 
## intercept only      1   86.2 174.5     47.9 82.1      21.2
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Quasi-binomial models

When the data are overdispersed, we can relate the mean and variance of
the response to the linear predictor without additional information about the
binomial distribution

However, this creates problems when we want to make inference via
hypothesis tests or CI’s
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Quasi-likelihood

So far we have been using likelihood methods for known distributions

Without a formal distribution for the data, we can use a quasi-likelihood
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Quasi-likelihood

Recall that for many distributions we use a score  as part of the log-
likelihood, which can be thought of as

(U)

U =
(observation − expectation)

scale ⋅ Var
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Quasi-likelihood

Let’s define the following score

where  is a function of the covariates

=Ui

( −yi μi)
2

V( )σ2 μi

⇓

mean(U) = 0

Var(U) =
1

V( )σ2 μi

V(μ)
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Quasi-likelihood

We now define  to be integral over all possible  and 

which behaves like a log-likelihood function, such that the quasi-likelihood for
all  is

Qi yi μi

= dzQi ∫
μi

yi

( − zyi )2

V(z)σ2

n

Q = ∑
i=1

n

Qi
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Quasi-likelihood

For example, a normal distribution has a score of

and a quasi-likelihood of

U =
y − μ

σ2

Q = −
(y − μ)2

2
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Quasi-likelihood

A binomial has a score of

and a quasi-likelihood of

U =
y − μ

μ(1 − μ)σ2

Q = y log( ) + log(1 − μ)
μ

1 − μ
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Quasi-likelihood

We can estimate  by maximizing  as with other distributions

But we need to estimate  separately as

where  are the Pearson residuals as defined on slide #26

β Q

σ2

=σ2 X2

n − k

X2
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Elk in clear cuts

Fitting a quasi-binomial model

## quasi-binomial 
elk_quasi <- glm(cbind(pellets, plots - pellets) ~ veg_height, 
                 data = df, family = quasibinomial) 
faraway::sumary(elk_quasi)

##             Estimate Std. Error t value  Pr(>|t|) 
## (Intercept)  2.40035    0.65694  3.6538  0.001097 
## veg_height  -1.29583    0.27891 -4.6461 7.884e-05 
##  
## Dispersion parameter = 1.96723 
## n = 29 p = 2 
## Deviance = 60.28535 Null Deviance = 110.19068 (Difference = 49.90534)
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Elk in clear cuts

## quasi-binomial 
signif(summary(elk_quasi)$coefficients, 3)

##             Estimate Std. Error t value Pr(>|t|) 
## (Intercept)      2.4      0.657    3.65 1.10e-03 
## veg_height      -1.3      0.279   -4.65 7.88e-05

## variance inflation 
signif(summary(elk_quasi, dispersion = c_hat)$coefficients, 3)

##             Estimate Std. Error z value Pr(>|z|) 
## (Intercept)      2.4      0.687    3.49 4.78e-04 
## veg_height      -1.3      0.292   -4.44 8.95e-06
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Beta-binomial models

Another option for binomial data is the beta distribution

with

f (y; μ, ϕ) = (1 − y
Γ(ϕ)

Γ(μϕ)Γ((1 − μ)ϕ)
yμϕ−1 )(1−μ)ϕ−1

mean(y) = μ

Var(y) =
μ(1 − μ)

1 + ϕ

48/52



Beta-binomial models
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Beta-binomial models

We can use gam() from the mgcv package to fit beta-binomial models

## load mgcv 
library(mgcv)
## `gam()` needs proportions for the response 
df$prop <- df$pellets / df$plots 
## weight by num of plots per section 
wts <- df$plots / mean(df$plots)
## fit model 
elk_betabin <- gam(prop ~ veg_height, weights = wts, data = df, 
                   family = betar(link = "logit"))

50/52



Beta-binomial models

## inspect beta-binomial fit 
summary(elk_betabin)

##  
## Family: Beta regression(1.466)  
## Link function: logit  
##  
## Formula: 
## prop ~ veg_height 
##  
## Parametric coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)   2.9214     0.7678   3.805 0.000142 *** 
## veg_height   -1.8090     0.3028  -5.974 2.32e-09 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##  
## R-sq.(adj) =  0.455   Deviance explained = -135% 
## -REML = -106.52  Scale est. = 1         n = 29
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Summary

There are several ways to model overdispersed binomial data, each with its
own pros and cons

Model Pros Cons

binomial Easy Underestimates variance

binomial with VIF Easy; estimate of variance Ad hoc

quasi-binomial Easy; estimate of variance No distribution for inference

beta-binomial Strong foundation Somewhat hard to implement
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