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Goals for today

-+ Understand how to evaluate goodness-of-fit for binomial data
+Understand the notion of overdispersion in binomial data
- Understand the options for modeling overdispersed binomial data

+ Understand the pros & cons of the modeling options
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Goodness-of-fit

How well does our model fit the data?

A simple check is a)(2 test for the standardized residuals
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Smolt age versus length
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Smolt age versus length

## residuals

ee <- residuals(fit mod, type = "response")

## fitted values

y hat <- fitted(fit mod)

## standardized residuals

rr <- ee / (y hat * (1 - y hat))

## test stat

X2 <- sum(rr)

## chi”2 test

pchisq(x2, nn - length(coef(fit mod)) - 1, lower.tail = FALSE)

## [1] 1

The p-value is large so we detect no lack of fit
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Binned predictions

It's hard to compare our predictions on the interval [0,1] to discrete binary
outcomes {0,1}

To help, we can compute y for bins of data
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Binned predictions
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Binned predictions

Smolt age
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Binned predictions

Observed
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Hosmer-Lemeshow test

We can formalize this binned comparison with the Hosmer-Lemeshow test

where J is the number of groups and y; = D Vi=;j
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Hosmer-Lemeshow test

We can perform the H-L test with generalhoslem: :logitgof ()

## H-L test with 8 groups
generalhoslem: :logitgof (obs = dfSage, exp = fitted(fit mod), g = 8)

##
## Hosmer and Lemeshow test (binary model)

##
## data: dfSage, fitted(fit mod)
## X-squared = 1.7874, df = 6, p-value = 0.9382

The p-value is large so we conclude an adequate fit

11/52



Classification scoring

Another means for evaluating goodness-of-fit is classification scoring

We can use our model to predict the outcome for each individual, such that
- ifpi <0.5theny, =0

©ifp; 2 0.5theny; =1
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Classification scoring

## predicted ages

pred age <- ifelse(fitted(fit mod) < 0.5, 1, 2)
## observed ages

obs age = dfSage + 1

## contingency table

(ct <- xtabs(~ obs age + pred age))

## pred age
## obs age 1 2
## 1 35 6
## 2 5 34

## correct classification
sum(diag(ct)) / nn

## [1] 0.8625
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Classification scoring
Specificity

Ability to predict age-1 when fish do smolt at age-1

## pred age
## obs age 1 2
## 1 35 6
## 2 5 34

35/(35+6)=385.4%

14/52



Classification scoring
Sensitivity

Ability to predict age-2 when fish do smolt at age-2

## pred age
## obs age 1 2
## 1 35 6
## 2 5 34

34/(5+34)=87.1%
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Proportion of variance explained

Calculating R? for logistic models is not the same as linear models

Given the deviance Dy, for our model and a null model Dy,

_ I —exp([Dy — Dol/n)

R2
1 — exp(-Dy/n)
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Proportion of variance explained

Here is the R? for our smolt-at-age model
g

## deviances

DM <- fit mod$deviance

DO <- fit mod$null.deviance

# R"2

R2 <- (1 - exp((DM - DO) / nn)) / (1 - exp(-DO / nn))
round(R2, 2)

## (1] 0.77
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QUESTIONS?



Lack of fit

If our model fits the data well, we expect the deviance D to be)(2 distributed

Sometimes, however, the deviance is larger than expected
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Lack of fit

What leads to a lack of fit?

+ model mis-specification

- outliers

* non-linear relationship between x and 7

+ non-independence in the observed data
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Overdispersion

Recall that the variance for a binomial of size n is given by

Var(y) = np(1 — p)
If Var(y) > np(1 — p) this is called overdispersion
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Overdispersion

Overdispersion generally arises in 2 ways related to IID errors
1. trials occur in groups & p is not constant among groups

2. trials are not independent
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Overdispersion

To address overdispersion, we can include the dispersion parameter ¢, such
that

Var(y) = cnp(l — p)

c is also called the variance inflation factor
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Overdispersion

We can estimate ¢ from the deviance D as

D
n—=k

C =
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Aside: Pearson'’s )(2 statistic

Pearson’s;g2 statistic is similar to the deviance

where O; is the observed count and E; is the expected count
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Aside: Pearson'’s )(2 statistic

For a binomial distribution

S (0; — E;)?
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Overdispersion

We can estimate ¢ as
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Effects on parameter estimates

The estimate of,B is not affected by overdispersion...

but the variance of § is affected, such that

Var(f) = ¢(XTWX) -
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Elk in clear cuts

Elk are known to use clear cuts for browsing

In general, the probability of finding elk decreases with height of underbrush
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Elk in clear cuts

Consider an observational study to estimate the probability of finding elk as a
function of underbrush height

- 29 forest sections were sampled for elk pellets along line transects
+ mean height of underbrush recorded for each section

+ presence/absence of pellets recorded at 9-13 points per transect
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Elk in clear cuts
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Elk in clear cuts

A glimpse of the pellet data

##

##H 1 3
## 2 2
## 3 1
## 4 1
## 5 3
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## 7 2
## 8 2
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## 11 3
## 12 2
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Elk in clear cuts

## fit model with glm

elk mod <- glm(cbind(pellets, plots - pellets) ~ veg height, data = df,
family = binomial(link = "logit"))

faraway: :sumary(elk mod)

# Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.40035 0.46838 5.1248 2.978e-07

## veg height -1.29583 0.19885 -6.5165 7.195e-11

##

# n=29p =2

## Deviance = 60.28535 Null Deviance = 110.19068 (Difference = 49.90534)
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Elk in clear cuts

## original fit

signif (summary(elk mod)sScoefficients, 3)

## Estimate Std. Error
## (Intercept) 2.4 0.468
## veg height -1.3 0.199

## overdispersion parameter

V4

c_hat <- deviance(elk mod) / (nn- 1)

## re-scaled estimates
signif (summary(elk mod, dispersion

## Estimate Std. Error
## (Intercept) 2.4 0.687
## veg height -1.3 0.292

z

value Pr(>|z|)
5.12 2.98e-07
-6.52 7.19%e-11

c_hat)S$coefficients, 3)

value Pr(>|z])
3.49 4.78e-04
-4.44 8.95e-06
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Quasi-AlC

For binomial models with overdispersion, we can modify AIC
AIC =2k —2log L
to be a quasi-AlC

log £
QAIC = 2k — 25

A

C
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Elk in clear cuts

Model selection results

## k neg-LL  AIC deltaAIC QAIC deltaQAIC
## intercept + slope 2 61.3 126.6 0.0 60.9 0.0
## intercept only 1 86.2 174.5 47.9 82.1 21.2
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Quasi-binomial models

When the data are overdispersed, we can relate the mean and variance of

the response to the linear predictor without additional information about the
binomial distribution

However, this creates problems when we want to make inference via
hypothesis tests or Cl's
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Quasi-likelihood

So far we have been using likelihood methods for known distributions

Without a formal distribution for the data, we can use a quasi-likelihood
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Quasi-likelihood

Recall that for many distributions we use a score (U) as part of the log-
likelihood, which can be thought of as

_ (observation — expectation)

scale - Var
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Quasi-likelihood

Let's define the following score
(Vi — Hi)°
o2 V(u;)

2
mean(U) = 0

U, =

Var(U) = V)

where V(u) is a function of the covariates
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Quasi-likelihood

We now define Q; to be integral over all possible y; and u;

[N (i —2)?
Qi = /y 2 V(2) 4

1

which behaves like a log-likelihood function, such that the quasi-likelihood for
all nis

Q= ZQi
i—1
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Quasi-likelihood

For example, a normal distribution has a score of

U=y_’u

and a quasi-likelihood of
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Quasi-likelihood

A binomial has a score of
_ Yy—H
u(l — pyo?

U

and a quasi-likelihood of

0 = ylog( £ ) +1og(1 -

44/52



Quasi-likelihood

We can estimate f# by maximizing Q as with other distributions

2

But we need to estimate ¢“ separately as

2 X?
n—k

where X? are the Pearson residuals as defined on slide #26
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Elk in clear cuts

Fitting a quasi-binomial model

## quasi-binomial
elk quasi <- glm(cbind(pellets, plots - pellets) ~ veg height
data = df, family = quasibinomial)

faraway: :sumary(elk quasi)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.40035 0.65694 3.6538 0.001097

## veg height -1.29583 0.27891 -4.6461 7.884e-05

##

## Dispersion parameter = 1.96723

# n=29p=2

## Deviance = 60.28535 Null Deviance = 110.19068 (Difference

4

49.90534)
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Elk in clear cuts

## quasi-binomial
signif (summary(elk quasi)Scoefficients, 3)

# Estimate Std. Error t value Pr(>|t])
## (Intercept) 2.4 0.657 3.65 1.10e-03
## veg height -1.3 0.279 -4.65 7.88e-05

## variance inflation
signif (summary(elk quasi, dispersion = c_hat)S$coefficients, 3)

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.4 0.687 3.49 4.78e-04
## veg height -1.3 0.292 -4.44 8.95e-06
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Beta-binomial models

Another option for binomial data is the beta distribution

['(¢) 1
I(u)l'(1 — p))

fO3 ) = (1 = y)tt=et

with

mean(y) = p
pu(l — p)

Var(y) = [+ 4
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Beta-binomial models

Density
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Beta-binomial models

We can use gam() from the mgcv package to fit beta-binomial models

## load mgcv

library(mgcv)

## ~gam()  needs proportions for the response

dfSprop <- dfSpellets / dfS$Splots

## welght by num of plots per section

wts <- dfS$plots / mean(dfSplots)

## fit model

elk betabin <- gam(prop ~ veg height, weights = wts, data = df,
family = betar(link = "logit"))
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Beta-binomial models

## inspect beta-binomial fit
summary(elk betabin)

##

## Family: Beta regression(1.466)
## Link function: logit

##

## Formula:

## prop ~ veg height

##

## Parametric coefficients:

# Estimate Std. Error z value Pr(>|z]|)

## (Intercept) 2.9214 0.7678 3.805 0.000142 #*=*=*
## veg _height -1.8090 0.3028 =-5.974 2.32e-09 ***
## ——-

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

##

## R-sq.(adj) = 0.455 Deviance explained = -135%

## -REML = -106.52 Scale est. =1 n = 29
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Summary

There are several ways to model overdispersed binomial data, each with its
own pros and cons

binomial Easy Underestimates variance
binomial with VIF Easy; estimate of variance Ad hoc

quasi-binomial Easy; estimate of variance No distribution for inference
beta-binomial Strong foundation Somewhat hard to implement
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