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Goals for today

Understand the characteristics of binary data and the Bernoulli
distribution

·

Understand how to model binary data with logistic regression·

Understand approaches to inference in logistic regression·

Understand diagnostic measures for logistic regression·

2/57



Bernoulli distribution

The Bernoulli distribution describes the probability of a single “event” 
occurring

yi

present (1/1) or absent (0/1)

alive (1/1) or dead (0/1)

mature (1/1) or immature (0/1)

·

·

·
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Binomial distribution

The binomial distribution is closely related to the Bernoulli

It describes the number of  “successes” in a sequence of  independent
Bernoulli “trials”

For example, the number of heads in 4 coin tosses

k n
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Binomial distribution

For a population, these could be

 survivors out of  tagged individuals

 infected individuals out of  susceptible individuals

 counts of allele A in  total chromosomes

· k n

· k n

· k n
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Binomial distribution

The probability mass function

Pr(k; n, p) = ( ) (1 − p
n

k
pk )n−k

 

( ) =
n

k

n!

k!(n − k)!
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Bernoulli distribution

Special case of binomial with n = 1

Pr(k; n, p) = ( ) (1 − p
n

k
pk )n−k

⇓

Pr(k; p) = (1 − ppk )(1−k)

⇓

k = {
1 if success (T, Y) with probability p

0 if failure (F, N) with probability (1 − p)
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Bernoulli distribution

where

Pr(k; p) = (1 − ppk )(1−k)

⇓

k = {
1 if success (T, Y) with probability p

0 if failure (F, N) with probability (1 − p)

Mean(k) = p     Var(k) = p(1 − p)
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Bernoulli distribution
Likelihood

(k; p) = (1 − p∏
i=1

n

pki )(1− )ki

⇓

log (k; p) = log p + log(1 − p) (1 − )∑
i=1

n

ki ∑
i=1

n

ki
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Bernoulli distribution

Canonical link is the logit

log( ) = Xβ
μ

1 − μ

⇓

μ =
exp(Xβ)

1 + exp(Xβ)
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Logit link
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Logistic regression

Similar to other regression in that we assume

the predictors are linear

the observations are independent of one another

no(ish) multicollinearity among predictors

·

·

·
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Logistic regression

Different from other regression in that

the response is binary

the relationship between response and predictors is often non-linear

the errors can be non-normal

the errors can be heteroscedastic

·

·

·

·
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Logistic regression is a GLM

We need 3 things to specify our GLM

1. Distribution of the data: 

2. Link function: 

3. Linear predictor: 

y ∼ Bernoulli(p)

logit(p) = log( ) = η
p

1−p

η = Xβ
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Logistic regression

The probability of a success is given by

p

 

=
exp(Xβ)

1 + exp(Xβ)

=
1

1 + exp(-Xβ)
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Logistic regression
Example

Sockeye salmon are born in freshwater and rear there for some time before
migrating to the ocean as smolts

The age at which sockeye smolt can vary from 1 to 2 years, which is thought
to depend on their body size

Let’s examine the relationship between fish length and its probability of
smolting at age-2 instead of age-1
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Smolt age versus length
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Smolt age versus length

In R we use glm() to fit logistic regression models (and other GLMs)

## fit model with glm 
fit_mod <- glm(age ~ length, data = df, 
               family = binomial(link = "logit")) 
faraway::sumary(fit_mod)

##               Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) -13.982707   3.308236 -4.2266 2.372e-05 
## length        0.170646   0.039786  4.2891 1.794e-05 
##  
## n = 80 p = 2 
## Deviance = 42.05294 Null Deviance = 110.90355 (Difference = 68.85061)
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Smolt age versus length

The probability of smolting at age-2 is given by

pi =
1

1 + exp(- β)Xi

≈

1

1 + exp(14 − 0.17 )Li
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Smolt age versus length

We can get the fitted values with predict()

## get fitted values 
newdata <- data.frame(length = seq(40, 120)) 
p_hat <- 1 / (1 + exp(-predict(fit_mod, newdata)))
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Smolt age versus length
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Smolt age versus length

What is the length at which the probability of smolting at age-2 is 0.5?

=pi

1

1 + exp(- β)Xi

⇓

0.5 =
1

1 + exp(14 − 0.17 )L0.5

⇓

≈ 82 mmL0.5
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Logistic regression and odds

We have talked a bit about odds with respect to evidence ratios

Odds  are an unbounded alternative to probability 

If we represent the -to-1 odds against something as , then the following
holds

For example, if  = 0.8, then 

o p

k 1/k

o =   ⇒  p =
1

1 − p

o

1 + o

p o = = 51
1−0.8
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Logistic regression and odds

logit(p) = Xβ

⇓

log( ) = Xβ
p

1 − p

⇓

log(odds) = Xβ

⇓

odds = exp(Xβ)
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Smolt age versus length

## our fitted model 
faraway::sumary(fit_mod)

##               Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) -13.982707   3.308236 -4.2266 2.372e-05 
## length        0.170646   0.039786  4.2891 1.794e-05 
##  
## n = 80 p = 2 
## Deviance = 42.05294 Null Deviance = 110.90355 (Difference = 68.85061)
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Smolt age versus length

A unit increase in  increases the log-odds by 0.17

log( ) = -14 + 0.17L
p

1 − p

⇓

log(odds) = -14 + 0.17L

L
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Smolt age versus length

A unit increase in  increases odds by exp(0.17)  1.19 = 19%

log( ) = -14 + 0.17L
p

1 − p

⇓

log(odds) = -14 + 0.17L

⇓

odds = exp(-14 + 0.17L)

L ≈
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QUESTIONS?



Inference

Consider 2 models, A & B, such that B is a subset of A

A = 

B = 

We have seen that we can compare A & B via a likelihood ratio test

f ( , )x1 x2

g( )x1

λ = -2 log ∼

A

B

χ2
df= −kA kB
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Log-likelihood

The log-likelihood using a logit link is

log (k; p) = log p + log(1 − p) (1 − )∑
i=1

n

ki ∑
i=1

n

ki
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Deviance

Deviance  is a goodness-of-fit statistic

It’s a generalization of using the sum-of-squares of residuals in ordinary least
squares to cases where model-fitting is achieved by maximum likelihood

D

D = -2 log 

31/57



Deviance for logistic regression

D = -2[log p + log(1 − p) (1 − )]∑
i=1

n

ki ∑
i=1

n

ki

= -2 [ logit( ) + log(1 − )]∑
i=1

n

pi pi pi
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Likelihood ratio test

λ = -2 log ∼

A

B

χ2
df= −kA kB

⇓

λ = -2(log − log ) ∼A B χ2
df= −kA kB

⇓

λ = D(B) − D(A) ∼ χ2
df= −kA kB
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Smolt age versus length

The output from glm() includes the deviances for the full model and a null
model with no predictors

## our fitted model 
faraway::sumary(fit_mod)

##               Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) -13.982707   3.308236 -4.2266 2.372e-05 
## length        0.170646   0.039786  4.2891 1.794e-05 
##  
## n = 80 p = 2 
## Deviance = 42.05294 Null Deviance = 110.90355 (Difference = 68.85061)
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Smolt age versus length

Likelihood ratio test for : = 0H0 β1

## deviance of full model 
D_full <- summary(fit_mod)$deviance 
## deviance of null model 
D_null <- summary(fit_mod)$null.deviance 
## test statistic 
lambda <- D_null - D_full 
## LRT with df = 1
(p_value <- pchisq(lambda, 1, lower.tail = FALSE))

## [1] 1.062116e-16
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Model selection via AIC

AIC = 2k − 2 log 

= 2k + D

## AIC 
AIC(fit_mod)  
## AIC via likelihood
(2 * 2) - 2 * logLik(fit_mod)
## AIC via deviance
(2 * 2) + summary(fit_mod)$deviance

## [1] 46.05294 
## 'log Lik.' 46.05294 (df=2) 
## [1] 46.05294
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Smolt age versus length

Compare to a null model with no predictors

## fit null model 
fit_null <- glm(age ~ 1, data = df, 
                family = binomial(link = "logit")) 
faraway::sumary(fit_null)

##             Estimate Std. Error z value Pr(>|z|) 
## (Intercept)  0.00000    0.22361       0        1 
##  
## n = 80 p = 1 
## Deviance = 110.90355 Null Deviance = 110.90355 (Difference = 0.00000)
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Model selection via AIC

## difference in AIC 
AIC(fit_null) - AIC(fit_mod)

## [1] 66.85061
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Significance test for 

An alternative to the  test is a  test

βi

χ2 z

z = ∼

βi
^

SE( )βi
^

zα/2
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Significance test for βi

## summary table 
faraway::sumary(fit_mod)

##               Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) -13.982707   3.308236 -4.2266 2.372e-05 
## length        0.170646   0.039786  4.2891 1.794e-05 
##  
## n = 80 p = 2 
## Deviance = 42.05294 Null Deviance = 110.90355 (Difference = 68.85061)
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Confidence interval for 

We can also compute a 100(1 - )% confidence interval

βi

α

± SE( )βi
^

zα/2 βi
^
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Confidence interval for βi

## beta 
beta_1 <- coef(fit_mod)[2]
## SE of beta 
se_beta_1 <- sqrt(diag(vcov(fit_mod)))[2]
## 95% CI 
beta_1 + c(-1,1) * 1.96 * se_beta_1

## [1] 0.09266613 0.24862556
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Confidence interval for 

Due to possible bias in , we can compute CI’s based on the profile
likelihood

βi

SE(β)

## number of points to profile 
nb <- 200
## possible beta's 
beta_hat <- seq(0, 0.4, length = nb)
## calculate neg-LL of possible beta's 
pl <- rep(NA, nb)
for(i in 1:nb) { 
  mm <- glm(age ~ 1 + offset(beta_hat[i] * length), data = df, 
            family = binomial(link = "logit")) 
  pl[i] <- -logLik(mm)
}
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Confidence interval for βi
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Confidence interval for 

We can compute CI’s based on the profile likelihood with confint()

βi

## 95% CI via profile likelihood 
confint(fit_mod)

## Waiting for profiling to be done...

##                   2.5 %     97.5 % 
## (Intercept) -21.8553251 -8.6351047 
## length        0.1062832  0.2653229
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Model diagnostics

As with other models, it’s important to examine diagnostic checks for our
fitted models
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Residuals

We usually think about residuals  as

With logistic regression, the response can take 1 of 2 possible values

e

e = y − ŷ 
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Residuals

48/57



Deviance residuals

We can instead use the deviance residuals

 is 1 (-1) if y is 1 (0)

This is the default for residuals()

= (2 − 1)ei yi Di

2y − 1
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Deviance residuals

We then place the deviance residuals into bins for easier inspection

Can use binnedplot() from the arm package to do this

Sensitive to the number of bins (~30/bin is good)

Mean of  not constrained to 0

Check to see that ~95% of points fall within the CI

·

· e

·
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Deviance residuals

51/57



-  plots

We can examine a -  plot, but there is no assumption that the  are
normal

It can help to identify unusual points

Q Q

Q Q e
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-  plotsQ Q
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Leverage

We can also calculate the leverages  to look for unusual observation in
predictor space

Recall we are potentially concerned about 

We can use faraway::halfnorm()

h

h > 2 k
n
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Leverage
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Cook’s Distance

Recall that we can use Cook’s  to identify potentially influential pointsD

= ( )Di e2
i

1

k

hi

1 − hi
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Cook’s Distance
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