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Goals for today

+ Understand the 3 elements of a generalized linear model

+Understand how to identify the proper distribution for a generalized linear
model

- Understand the concept of a link function
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Forms of linear models

multiple random processes multiple forms of errors
multiple forms of errors multiple random processes
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Ecological data

At the individual level

1 Detection — presence/absence

2+ Detections — survival, movement
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Ecological data

At the individual level

1 Detection — presence/absence

2+ Detections — survival, movement

1 Measurement — fecundity, age, size

2+ Measurements — growth
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Ecological data

At the population level

Detections — presence/absence

Counts — density or survival/movement
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Data types

Discrete values

Sex

Age

Fecundity
Counts/Census

Survival (individual)
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Discrete data

Given the prevalence of discrete data in ecology (and elsewhere), we seek a
means for modeling them
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Generalized linear models (GLMS)

GLMs were developed by Nelder & Wedderburn in the 1970s
They include (as special cases):

- linear regression
- ANOVA

- logit models

- log-linear models

- multinomial models
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Generalized linear models (GLMS)

In particular, GLMs can explicitly model discrete data as outcomes
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A very important question

What is the distributional form of the random process(es) in my data?

Normal Negative binomial
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Distribution for discrete counts

The Poisson distribution is perhaps the best known

It gives the probability of a given number of events occurring in a fixed
interval of time or space
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Poisson distribution

Examples

- the number of Prussian soldiers killed by horse kicks per year from 1868 -
1931

+ the number of new COVID-19 infections per day in the US

- the number of email messages | receive per week from students in QERM
514
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Poisson distribution

It's unique in that it has one parameter A to describe both the mean and
variance

y; ~ Poisson(4)
Mean(y) = Var(y) = 4
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Distribution for the ratio of counts

Ratios (fractions) are also very important in ecology
They convey proportions such as

+ survivors / tagged individuals

+infected / susceptible

- student emails / total emails
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Distribution for the ratio of counts

The simplest ratio has as denominator of 1 & and numerator of either 0 or 1
For an individual, this can represent

- present (1/1) or absent (0/1)

- alive (1/1) or dead (0/1)

- mature (1/1) or immature (0/1)
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Bernoulli distribution

The Bernoulli distribution describes the probability of a single “event” y;
occurring

y; ~ Bernoulli(p)

where

Mean(y) =p Var(y) = p(1 — p)
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Binomial distribution

The binomial distribution is closely related to the Bernoulli

It describes the number of k “successes” in a sequence of n independent
Bernoulli “trials”

For example, the number of heads in 4 coin tosses
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Binomial distribution

For a population, these could be

* k survivors out of n tagged individuals
-k infected individuals out of n susceptible individuals

 k counts of allele A in n total chromosomes
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Generalized linear models (GLMS)

Three important components
1. Distribution of the data

Are they counts, proportions?
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Generalized linear models (GLMS)

Three important components

1. Distribution of the data
2. Link function g

Specifies the relationship between the linear predictor # = Xf and the mean
u of the distribution

glu) =n
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Generalized linear models (GLMS)

Three important components

1. Distribution of the data
2. Link function g

3. Linear predictor

n=Xp
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Common link functions

Identity () = Xp u=Xp
Log log(u) = Xp u = exp(Xp)
o 25) = 3 o=
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Canonical links

Where did we find these link functions?

For the exponential family of distributions (eg, Normal, Gamma, Poisson) we
can write out the distribution of y as

yO — b(0)
a(¢)

£0:6.9) = exp - c.))

@ is the conanical parameter of interest

@ is a scale (variance) parameter
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Exponential family

y0 — b(0)
a(9)

We seek some canonical function g that connects 7, 4, and @ such that

£0:6.9) = exp - c.))

gu) =n
n=20
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Normal distribution

y6 — b(0)
a(¢p)
U

f( O')= 1 ex <(y_/’l)2>
Y, K, /—271_0 p 152

with @ = y and ¢ = ¢

10:6.9) = exp - c.))

2
Y Hog(2rg)

a)=¢ bO) =% (P =-L—
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Normal distribution

y6 — b(0)
a(¢p)
U

f( O')= 1 ex <(y_/’l)2>
Y, K, /—271_0 p 152

with @ = 1(x) and ¢ = ¢

10:6.9) = exp - c.))

2
Y Hog(2rg)

a)=¢ bO) =% (P =-L—
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Poisson distribution

0 — b(o
F0:0.0) = exp (2 ¢)( '~ )
U

_ y
fOip) = eXp(y !ﬂ)ﬂ

with @ = log(u) and ¢ = 1
a(p) =1 b0 =exp(d) c(y,¢) = —log(y!)
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Binomial distribution

For the binomial distribution there are several possible link functions
- logit
+ probit

+complimentary log-log
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Generalized linear models (GLMS)

The word generalized means these models are broadly applicable

For example, GLMs include linear regression models
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Writing an LM as a GLM

Yi = a+ px; + €
¢; ~ N(0, 6%)
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Writing an LM as a GLM

Yi = a+ px; + €

¢; ~ N(0, 6%)
[}

Vi = MHi +€;

pi = a+ px;

¢; ~ N(0, 6%)
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Writing an LM as a GLM

Yi = Hi T €
pi = a+ f
e; ~ N(0, 6%)
2
Yi = €j
pi = a+ px;
e; ~ N(u;, 6°)
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Writing an LM as a GLM

Vi = €
Hi = o+ px;
e; ~ N(u;, 6°)
U
i ~ N(u;, 6%)
pi = a+ px;
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Writing an LM as a GLM

vi ~ N(u;, 6°)
pi = o+ px;
\Z
vi ~ Ny, 6°)
L(pi) = i
pi = a+ px;
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Writing an LM as a GLM

i ~ N(u;, 6%)
1(ui) = pi
pi = a+ px;
J

data distribution: y; ~ N(y;, 6%)
link function: 1(y;) = u;

linear predictor: u; = a + px;
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Example of a GLM

Log-density of live trees per unit area y; as a function of fire intensity I;

data distribution: y; ~ N(y;, 6%)
link function: 1(u;) = u;

linear predictor: u; = a + pF;
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Rethinking density

We have been considering (log) density itself as a response

Density; = f(Count;, Area;)
U

, Count;
Density; = :

Area;
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Rethinking density

We have been considering (log) density itself as a response

Density; = f(Count;, Area;)
U

, Count;
Density; = :

Area;

With GLMSs, we can shift our focus to

Count; = f(Area;)
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Example of a GLM

Counts of live trees y; as a function of area surveyed A; and fire intensity F;

data distribution: y; ~ Poisson(4;)
link function: log(4;) = y;

linear predictor: u; = a + f1A; + fo F;
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Example of a GLM

Probability of spotting a sparrow p; as a function of vegetation height H;

data distribution: y; ~ Bernoulli(p;)

link function: logit(p;) = log ( . ]iip. ) = Ui

linear predictor: u; = a + pH,;
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Example of a GLM

Survival of salmon from parr to smolt s; as a function of water temperature
I;

data distribution: y; ~ Binomial(N;, s;)

link function: logit(s;) = log ( 1 is ) — u;

linear predictor: u; = a + pT1;
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Summary

There are three important components to GLMs

1. Distribution of the data
2. Link function g

3. Linear predictor
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