A gentle introduction to generalized linear models

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 8 May 2020

Goals for today

- Understand the 3 elements of a generalized linear model
- Understand how to identify the proper distribution for a generalized linear model
- Understand the concept of a link function

Forms of linear models

Ecological data

At the individual level

1 Detection \rightarrow presence/absence

2+ Detections \rightarrow survival, movement

Ecological data

At the individual level

1 Detection \rightarrow presence/absence

2+ Detections \rightarrow survival, movement

1 Measurement \rightarrow fecundity, age, size

2+ Measurements \rightarrow growth

Ecological data

At the population level

Detections \rightarrow presence/absence

Counts \rightarrow density or survival/movement

Data types

Discrete values

Sex

Age

Fecundity

Counts/Census

Survival (individual)

Discrete data

Given the prevalence of discrete data in ecology (and elsewhere), we seek a means for modeling them

GLMs were developed by Nelder & Wedderburn in the 1970s

They include (as special cases):

- linear regression
- · ANOVA
- logit models
- log-linear models
- multinomial models

In particular, GLMs can explicitly model discrete data as outcomes

A very important question

What is the distributional form of the random process(es) in my data?

Distribution for discrete counts

The Poisson distribution is perhaps the best known

It gives the probability of a given number of events occurring in a fixed interval of time or space

Poisson distribution

Examples

- the number of Prussian soldiers killed by horse kicks per year from 1868 -1931
- the number of new COVID-19 infections per day in the US
- the number of email messages I receive per week from students in QERM 514

Poisson distribution

It's unique in that it has one parameter λ to describe both the mean *and* variance

 $y_i \sim \text{Poisson}(\lambda)$

 $Mean(y) = Var(y) = \lambda$

Distribution for the ratio of counts

Ratios (fractions) are also very important in ecology

They convey proportions such as

- survivors / tagged individuals
- infected / susceptible
- student emails / total emails

Distribution for the ratio of counts

The simplest ratio has as denominator of 1 & and numerator of either 0 or 1

For an individual, this can represent

- present (1/1) or absent (0/1)
- alive (1/1) or dead (0/1)
- mature (1/1) or immature (0/1)

Bernoulli distribution

The Bernoulli distribution describes the probability of a single "event" y_i occurring

 $y_i \sim \text{Bernoulli}(p)$

where

$$Mean(y) = p \quad Var(y) = p(1-p)$$

Binomial distribution

The binomial distribution is closely related to the Bernoulli

It describes the number of k "successes" in a sequence of n independent Bernoulli "trials"

For example, the number of heads in 4 coin tosses

Binomial distribution

For a population, these could be

- *k* survivors out of *n* tagged individuals
- k infected individuals out of n susceptible individuals
- k counts of allele A in n total chromosomes

Three important components

1. Distribution of the data

Are they counts, proportions?

Three important components

- 1. Distribution of the data
- 2. Link function g

Specifies the relationship between the linear predictor $\eta = \mathbf{X}\boldsymbol{\beta}$ and the mean μ of the distribution

$$g(\mu) = \eta$$

Three important components

- 1. Distribution of the data
- 2. Link function g
- 3. Linear predictor η

 $\eta = \mathbf{X}\boldsymbol{\beta}$

Common link functions

Distribution	Link function	Mean function
Identity	$1(\mu) = \mathbf{X}\boldsymbol{\beta}$	$\mu = \mathbf{X}\boldsymbol{\beta}$
Log	$\log(\mu) = \mathbf{X}\boldsymbol{\beta}$	$\mu = \exp(\mathbf{X}\boldsymbol{\beta})$
Logit	$\log\left(\frac{\mu}{1-\mu}\right) = \mathbf{X}\boldsymbol{\beta}$	$\mu = \frac{\exp(\mathbf{X}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}\boldsymbol{\beta})}$

Canonical links

Where did we find these link functions?

For the exponential family of distributions (eg, Normal, Gamma, Poisson) we can write out the distribution of y as

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} - c(y, \phi)\right)$$

 θ is the *conanical* parameter of interest

 ϕ is a scale (variance) parameter

Exponential family

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} - c(y, \phi)\right)$$

We seek some *canonical* function *g* that connects η , μ , and θ such that

 $g(\mu) = \eta$ $\eta \equiv \theta$

Normal distribution

$$f(y;\theta,\phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} - c(y,\phi)\right)$$
$$\Downarrow$$
$$f(y;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$$

with $\theta = \mu$ and $\phi = \sigma^2$

$$a(\phi) = \phi$$
 $b(\theta) = \frac{\theta^2}{2}$ $c(y, \phi) = -\frac{\frac{y^2}{\phi} + \log(2\pi\phi)}{2}$

Normal distribution

$$f(y;\theta,\phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} - c(y,\phi)\right)$$
$$\Downarrow$$
$$f(y;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$$

with $\theta = 1(\mu)$ and $\phi = \sigma^2$

$$a(\phi) = \phi$$
 $b(\theta) = \frac{\theta^2}{2}$ $c(y, \phi) = -\frac{\frac{y^2}{\phi} + \log(2\pi\phi)}{2}$

Poisson distribution

with $\theta = \log(\mu)$ and $\phi = 1$ $a(\phi) = 1$ $b(\theta) = \exp(\theta)$ $c(y, \phi) = -\log(y!)$

Binomial distribution

For the binomial distribution there are several possible link functions

- logit
- probit
- · complimentary log-log

The word *generalized* means these models are broadly applicable

For example, GLMs include linear regression models

 $y_i = \alpha + \beta x_i + \epsilon_i$ $\epsilon_i \sim N(0, \sigma^2)$

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

$$\psi$$

$$y_i = \mu_i + \epsilon_i$$

$$\mu_i = \alpha + \beta x_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

$$y_i = \epsilon_i$$

$$\mu_i = \alpha + \beta x_i$$

$$\epsilon_i \sim N(\mu_i, \sigma^2)$$

$$\psi$$

$$y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = \alpha + \beta x_i$$

$$y_i \sim N(\mu_i, \sigma^2)$$
$$\mu_i = \alpha + \beta x_i$$
$$\Downarrow$$
$$y_i \sim N(\mu_i, \sigma^2)$$
$$1(\mu_i) = \mu_i$$
$$\mu_i = \alpha + \beta x_i$$

 $y_i \sim N(\mu_i, \sigma^2)$ $1(\mu_i) = \mu_i$ $\mu_i = \alpha + \beta x_i$ \Downarrow data distribution: $y_i \sim N(\mu_i, \sigma^2)$

link function: $1(\mu_i) = \mu_i$

linear predictor: $\mu_i = \alpha + \beta x_i$

Log-density of live trees per unit area y_i as a function of fire intensity F_i

data distribution: $y_i \sim N(\mu_i, \sigma^2)$

link function: $1(\mu_i) = \mu_i$

linear predictor: $\mu_i = \alpha + \beta F_i$

Rethinking density

We have been considering (log) density itself as a response

Density_i =
$$f(\text{Count}_i, \text{Area}_i)$$

 \Downarrow
Density_i = $\frac{\text{Count}_i}{\text{Area}_i}$

Rethinking density

We have been considering (log) density itself as a response

Density_i =
$$f(\text{Count}_i, \text{Area}_i)$$

 \Downarrow
Density_i = $\frac{\text{Count}_i}{\text{Area}_i}$

With GLMs, we can shift our focus to

 $\operatorname{Count}_i = f(\operatorname{Area}_i)$

Counts of live trees y_i as a function of area surveyed A_i and fire intensity F_i

data distribution: $y_i \sim \text{Poisson}(\lambda_i)$

link function: $log(\lambda_i) = \mu_i$

linear predictor: $\mu_i = \alpha + \beta_1 A_i + \beta_2 F_i$

Probability of spotting a sparrow p_i as a function of vegetation height H_i

data distribution: $y_i \sim \text{Bernoulli}(p_i)$

link function:
$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \mu_i$$

linear predictor: $\mu_i = \alpha + \beta H_i$

Survival of salmon from parr to smolt s_i as a function of water temperature T_i

data distribution: $y_i \sim \text{Binomial}(N_i, s_i)$

link function:
$$logit(s_i) = log\left(\frac{s_i}{1 - s_i}\right) = \mu_i$$

linear predictor: $\mu_i = \alpha + \beta T_i$

Summary

There are three important components to GLMs

- 1. Distribution of the data
- 2. Link function g
- 3. Linear predictor η