Intro to mixed effects models

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 1 May 2020

Goals for today

- Understand the difference between fixed and random effects
- Understand reasons to use random effects models
- Understand the benefits & costs of random effects models

Forms of linear models

Terminology

Mixed effects models are known by many names

- Variance components models
- Random effects models
- Varying coefficients models
- Hierarchical linear models
- Multilevel models

Why use linear mixed models?

- Ecological data are often messy, complex, and incomplete
- · Data are often grouped by location, species, etc
- May have multiple samples from the same individual
- Often small sample sizes for some locations, species, etc

fixed factor: *qualitative* predictor (eg, sex)

fixed effect: quantitative change ("slope")

fixed factor: qualitative predictor (eg, sex)

fixed effect: *quantitative* change ("slope")

random factor: *qualitative* predictor whose levels are randomly sampled from a population (eg, age)

random effect: *quantitative* change whose levels are randomly sampled from a population

Fixed effects describe *specific levels* of factors that are *not* part of a larger group

Fixed effects describe *specific levels* of factors that are *not* part of a larger group

Random effects describe varying levels of factors drawn from a larger group

Fixed effects

- \cdot nutrient added or not
- female vs male
- wet vs dry

Random effects

- genotype
- plot within a forest
- \cdot genus within family

Random effects

Random effects occur in 3 circumstances

1. nested (hierarchical) studies

(eg, fish within lakes, multiple lakes within a state)

Random effects

Random effects occur in 3 circumstances

- 1. nested (hierarchical) studies
- 2. time series (longitudinal) studies

(eg, repeated measurements from the same place or individual)

Random effects

Random effects occur in 3 circumstances

- 1. nested (hierarchical) studies
- 2. time series (longitudinal) studies
- 3. spatial studies

(eg, multiple trees within a plot)

Fixed effects influence only the **mean** of *y*

Random effects influence only the **variance** of y

A linear model (ANCOVA)

Fish mass as a function of its length and *specific* lake

$$y_{i,j} = \alpha + \beta x_{i,j} + \delta_j + \underbrace{\epsilon_{i,j}}_{\text{fixed}}$$

 y_i is the log(mass) for fish *i* in lake *j*

 x_i is the log(length) for fish *i* in lake *j*

 δ_j is the mean log(mass) of fish in lake j

 $\epsilon_{i,j} \sim \mathrm{N}(0, \sigma_{\epsilon})$

A linear mixed model

Fish mass as a function of its length and *general* lake

 y_i is the log(mass) for fish *i* in lake *j*

 x_i is the log(length) for fish *i* in lake *j*

 δ_j is the mean log(mass) of fish in lake j

 $\epsilon_{i,j} \sim N(0, \sigma_{\epsilon})$ and $\delta_j \sim N(0, \sigma_{\delta})$

Michael Freeman's visualization

Five fundamental assumptions

- Within-group errors are *independent* with mean zero and variance σ^2
- Within-group errors are *independent of the random effects*
- · Random effects are normally distributed with mean zero and covariance Ψ
- Covariance matrix Ψ *does not depend* on the level
- Random effects are *independent* among different levels

Levels of random effects

In many cases, we can have multiple *levels* of random effects

trees within plots within forests within regions within states

Tricks to random effects

- learning which variables are random effects
- correctly specifying the fixed and random effects in a model
- getting the nesting structure correct

Questions about random effects

Experimental design

Where does most of the variation occur & where would increased replication help?

Questions about random effects

Hierarchical structure

What are the different levels of variation?

To qualify as *true replicates*, measurements must

- be independent
- not be part of a time series
- \cdot not be grouped in together in one place
- not be repeated on the same subject

An example

Imagine a field experiment to test insecticide effects on plant2

- 20 plots: 10 sprayed & 10 unsprayed
- 50 plants within each plot
- \cdot each plant is measured 5 times

An example

Imagine a field experiment to test insecticide effects on plants

- 20 plots: 10 sprayed & 10 unsprayed
- 50 plants within each plot
- each plant is measured 5 times

What are the degrees of freedom?

 $20 \times 50 \times 5 = 5000$ (?)

An example

Imagine a field experiment to test insecticide effects on plants

- 20 plots: 10 sprayed & 10 unsprayed
- 50 plants within each plot
- each plant is measured 5 times

What are the degrees of freedom?

 $20 \times 50 \times 5 = 5000$ (?)

2 × 9 = 18 (!)

Model for means

Consider a simple one-way ANOVA model

$$y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$
$$\epsilon_{ij} \sim N(0, \sigma_{\sigma}^2)$$

where the group-level means α_j are *fixed*

Model for means

Now consider this one-way ANOVA model

$$y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$
$$\epsilon_{ij} \sim N(0, \sigma_{\sigma}^2)$$
$$\alpha_j \sim N(0, \sigma_{\alpha}^2)$$

where the group-level means α_j are *random*

Distribution of means

Intraclass correlation

The means in the fixed effect model are independent

The means in the random effects model are correlated

Intraclass correlation

The means in the fixed effect model are independent

The means in the random effects model are correlated

$$\rho = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\epsilon}^2}$$

The correlation depends on the relative size of σ_{lpha}^2 vs σ_{ϵ}^2

Group means

In fixed effects models, the group means are

$$\alpha_j = \bar{y} - \mu$$

Shrinkage of group means

In fixed effects models, the group means are

$$\alpha_j = \bar{y} - \mu$$

In random effects models, the group means "shrink" towards one another

$$\alpha_j = (\bar{y} - \mu) \left(\frac{\sigma_\alpha^2}{\sigma_\alpha^2 + \sigma_\epsilon^2} \right)$$

Shrinkage

Consider what happens to α_j as $\sigma^2_{\alpha} \rightarrow \infty$

$$\alpha_{j} = (\bar{y} - \mu) \left(\frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2}} \right)$$

$$\Downarrow$$

$$\alpha_{j} = (\bar{y} - \mu) \left(\frac{\infty}{\infty + \sigma_{\epsilon}^{2}} \right)$$

$$= \bar{y} - \mu$$

Shrinkage

As $\sigma_{\alpha}^2 \rightarrow \infty$, our random effects become increasingly independent

Benefits

- Broadens our inference to a larger population
- Larger groups inform smaller groups ("Robin Hood Effect")

Benefits

- Broadens our inference to a larger population
- Larger groups inform smaller groups ("Robin Hood Effect")
- Represents a "compromise" in terms of information used
 - fixed effects: no grouping ("no pooling")
 - random effects: some grouping ("partial pooling")
 - none: all one group ("complete pooling")

Costs

- Precision decreases with number of levels
- Random effects perhaps more difficult to explain