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Goals for today

Understand how to evaluate models via AIC and BIC·

Understand model likelihoods and evidence ratios·

Understand how model averaging can address model uncertainty·

Understand the differences between in-sample and out-of-sample
methods

·
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Model selection

There are 2 general approaches to model selection:

1. In-sample

2. Out-of-sample
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In-sample model selection

There are 2 general ways to do in-sample selection:

1. Null hypothesis testing ( -test, likelihood ratio test)

2. Regularization (AIC, BIC)

F
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K-L divergence

Recall the relationship between K-L divergence and likelihood

DKL = E [log( )]
(y; θ)

(y; Θ)

= E (log (y; θ) − log (y; Θ))

= −E (log (y; θ))
  

entropy

E (log (y; Θ))
  

log likelihood

= constant − E (log (y; Θ))
  

log likelihood
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Akaike’s information criterion

Akaike’s information criterion (AIC) for a given model is

where  is the number of parameters in the model

= constant −DKL E (log (y; Θ))
  

log likelihood

⇓

AIC ≈ 2DKL

⇓

AIC = 2k − 2 log (y; θ)

k
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Bayesian information criterion

Not long after Akaike developed his information criterion, Gideon Schwarz
derived the Bayesian information criterion (BIC)
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Bayesian information criterion

BIC also has a relationship to K-L divergence

where  is the number of parameters &  is the sample size

= constant −DKL E (log (y; Θ))
  

log likelihood

⇓

BIC ≈ 2DKL

⇓

BIC = k log n − 2 log (y; θ)

k n
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Biases in AIC and BIC

AIC tends to select more complex models, regardless of 

BIC tends to select more simple models, regardless of 

Thus, some people use both in model selection

n

n
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AIC and BIC for Gaussian distributions

If our model is based on a Gaussian (normal) distribution, we can replace the
likelihood term in AIC or BIC

where  (a biased variance estimator)

IC = constant − 2 log (y; θ)

= constant + n log σ ̂ 2

=σ ̂ 2 SSE
n
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AIC and BIC for Gaussian distributions

More specifically, we have

AIC = 2k − 2 log (y; θ)

= 2k + n log σ ̂ 2
 

BIC = k log n − 2 log (y; θ)

= k log n + n log σ ̂ 2
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Differences in AIC or BIC

When using AIC or BIC for model selection, it’s easier to think about
differences among models

For the  model in a set of models

 is the minimum  among all of the models in the set

The “best” model will have  = 0

ith

ΔI = I − min ICCi Ci

min IC IC

ΔIC
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Differences in AIC or BIC

Given a set of models and their  values, what is the strength of evidence
against a model with a higher ?

ΔIC
ΔIC
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Differences in AIC

Some guidelines for  from Burnham & Anderson (2002)

Interpretation

0 - 2 essentially none

4 - 7 considerably less

> 10 substantial

ΔAIC

ΔAICi
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Differences in BIC

Some guidelines for  from Kass & Raftery (1995)

Interpretation

0 - 2 not worth more than a bare mention

2 - 6 positive

6 - 10 strong

> 10 very strong

ΔBIC

ΔBICi
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A benchmark for 

Why do we use a lower cutoff for  = 2?

Consider 2 models (A & B) that have the same AIC, and are otherwise
identical other than B having 1 more parameter

ΔAIC

ΔAIC

A : y = α + e

B : y = α + μ + e
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A benchmark for 

Why do we use a lower cutoff for  = 2?

We can decompose their AIC’s and compare the difference in log-likelihoods

Thus, adding 1 parameter to an otherwise identical model should increase its
log-likelihood by at least 2 units

ΔAIC

ΔAIC

AI = AICB CA

2(k + 1) − log = 2k − logB A

2k + 2 − log = 2k − logB A

log = log + 2B A
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Relative rankings

Using information criteria to rank our models works well, but the “best”
model may not be any good in practice

Thus, we also need to consider other measures of goodness-of-fit, predictive
ability (eg, , )R2 MSPE
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QUESTIONS?



Uncertainty in our analysis

We have been focused on 2 types of uncertainty (variance):

1. parameter (how good are our estimates of )

2. sampling (how noisy are the data; how big is )

β̂ 

σ2
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Model uncertainty

There is a 3  form of uncertainty that is also importantrd

1. parameter (how good are our estimates of )

2. sampling (how noisy are the data; how big is )

3. model (how do we know this is the correct model)

β̂ 

σ2
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Model likelihood

Let’s consider a way to assign a weighting to a given model

Recall that we defined the likelihood of some parameters given some data to
be

(θ | y) = (y; θ)
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Model likelihood

Let’s consider a way to assign a weighting to a given model

Recall that we defined the likelihood of some parameters given some data to
be

We can similarly define the likelihood of a model  given the data as

(θ | y) = (y; θ)

f

(f  | y) = (y; f )
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Model likelihood

More formally, given = AI − min AICΔi Ci

(y; ) ∝ exp(− )fi
1

2
Δi
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Akaike weights

Because the model likelihoods are all relative (just as with other likelihoods),
we can create a set of normalized Akaike weights that sum to 1

=wi

exp(− )1
2

Δi

exp(− )∑S

s=1
1
2

Δi

 is the weight of evidence in favor of model  being the “best” model in
the set

· wi i
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Evidence ratios

We can compute the evidence in favor of model  relative to model  as the
ratio of their likelihoods

j i

E =Rij

(y; )fi

(y; )fj
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Evidence ratios

Given a set of Akaike weights, this evidence is also given by the ratio of model
weights

E = =Rij

(y; )fi

(y; )fj

wi

wj
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Evidence ratios

Most often, we are interested in the  between the best model and others
in the set

ERij

ER1j =
exp(− 0)1

2

exp(− )1
2

Δj

=
1

exp(− )1
2

Δj

= exp( )
1

2
Δj
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Evidence ratios

The relationship between  and the evidence ratio is exponentialΔAIC

Δ

2

4

8

16

→ ER

→ 2.7

→ 7.4

→ 55

→ 2981
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Ambivalence

Some people fret when they cannot definitively select a best model within
their set

This is not a defect of the information criterion, but rather that the data are
ambivalent concerning model structures
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Data must be fixed

Note: when using information criteria, the data must be fixed across all
models

That is, our inference is conditional on the data in hand
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Multimodel inference

Given uncertainty in which model is the “best”, we can use multimodel
inference to average our predictions over all models in a set

This is equivalent to the National Weather Service’s ensemble predictions
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Model averaging

We can use Akaike weights to average the parameters or predictions from
several models

For a given parameter , it’s model averaged estimate is

and  is the total number of models in the set

θ

=θ ̂ ¯
∑
i=1

S

wiθ ̂ 
i

S
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Model averaging

If a given parameter  does not appear in all models, we can use an indicator
function to compute the average estimate

θ

=θ ̂ ¯ I( )∑S

i=1 fi wiθ ̂ 
i

I( )∑S

i=1 fi wi
 

I( ) = {fi
1

0

if θ is in fi

otherwise
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Model selection

Selecting among possible models begins with a reasonable set based on first
principles

This set of models

may represent different hypotheses about the process of interest·

may represent different combinations of predictors·

should be finite·
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Model selection

Selecting among possible models begins with a reasonable set based on first
principles

This set of models

may represent different hypotheses about the process of interest·

may represent different combinations of predictors·

sound reasonable to others as well·
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Model selection

Be very wary of “data mining” (“everything but the kitchen sink”)·

Use your knowledge of the system to choose predictors judiciously·

Pay attention to possible collinearity among predictors·
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QUESTIONS?



Out-of-sample model selection

We have seen several in-sample approaches to model selection

Let’s check out some options for out-of-sample selection

39/55



Model validation

A common Q is, “How well does a model predict new data?”

To answer this, we can use  data points to fit the model and reserve 
data points for model validation

There are several measures for evaluating out-of-sample predictions

n − q q
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Scale-dependent measures

Their scale depends on the units of the data

Should not be used when comparing across different data sets
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Scale-dependent measures
Mean squared prediction error (MSPE)

Mean squared prediction error (MSPE) is perhaps the most common

MSPE =
( −∑q

i=1 yi ŷ i)
2

q
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Scale-dependent measures
Root mean squared prediction error (RMSPE)

RMSPE is the square root of MSPE

It has the advantage of being on the same scale as the data

RMSPE = MSPE‾ ‾‾‾‾‾√
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Scale-dependent measures
Mean absolute error (MAE)

MAE =
−∑q

i=1
∣∣yi ŷ i ∣∣

q
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Percentage-based measures

They have the advantage of being scale-independent

They can be used to compare models across different data sets

However, they are extremely skewed when any ≈ 0yi
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Percentage-based measures
Mean absolute percentage error (MAPE)

MAPE =
∑q

i=1
∣∣pi ∣∣

q
 

= 100pi

−yi ŷ i
yi
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Percentage-based measures
Root mean square percentage error (RMSPE)

RMSPE =
∑q

i=1 p2
i

q

‾ ‾‾‾‾‾‾‾

√
 

= 100pi

−yi ŷ i
yi
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Model validation

There is a long, winding road littered with numerous critiques of these
different methods

My advice is to consider “what happens if I’m wrong?” and consider the
biases of the different methods

48/55



Cross-validation

Another form of out-of-sample selection is cross-validation

There are 2 types:

Exhaustive methods use all possible combinations of fitting and testing data

1. Exhaustive

49/55



Cross-validation

Another form of out-of-sample model selection is cross-validation

There are 2 types:

Non-exhaustive methods do not use all possible combinations of fitting and
testing data

1. Exhaustive

2. Non-exhaustive
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Cross-validation

Another form of out-of-sample model selection is cross-validation

There are 2 types:

Both types rely on some form of model validation method like we just
discussed

1. Exhaustive

2. Non-exhaustive
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Cross-validation
Exhaustive

Leave-p-out cross-validation uses  data points for fitting the model, and
 points for evaluating the fit

If  and  even somewhat large, this can be prohibitively slow because

there are  combinations

For example, if  and  there are  different

permutations

n − p
p

p > 1 n

( )n

k

p = 3 n = 20 ( ) = 1140
20

3
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Cross-validation
Exhaustive

Leave-one-out cross-validation uses  data points for fitting the model,
and 1 point for evaluating the fit

This results in  models being fit

n − 1

n
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Cross-validation
Non-exhaustive

-fold cross-validation is a hybrid approach where the data are randomly
partitioned into  equal sized groups

One of the  sub-samples is retained for validation while the remaining 
groups are used for fitting

This process is then repeated  times, with each of the  sub-samples used
exactly once for validation

The  results can then be averaged to produce a single estimate

k
k

k k − 1

k k

k
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Summary

Here we have seen the difference between in-sample and out-of-sample
model selection

using AIC and BIC for model selection·

using model weights in evidence ratios to compare one model to another·

using model averaging to address model uncertainty·

using exhaustive and non-exhaustive cross-validation·
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