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Goals for today

Understand the the concept of bias-variance trade-offs·

Understand the use of null hypothesis tests for “in-sample” model
selection

·

Understand the use of an information criterion for model selection·
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Approximating the truth

In general, our goal is to approximate a true model  with an estimate 

In doing so, we estimate the model parameters from the data

f (x)

(x)f ̂ 
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Variability among models

Imagine we could repeat our model building process by gathering new data
and fitting new models

Due to randomness in the underlying data sets, each of our models will have
a range of predictions and associated errors
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Model errors

The model errors arise from 2 sources:

How much do the predictions  vary among our different models?

1. Variance

(x)f ̂ 
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Variance in models

Var( ) =f ̂  ∑( −E( )f ̂ 
i f ̂ )2

n−1
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Model errors

The model errors arise from 2 sources:

How close is the expected prediction of our model to the true value ?

1. Variance

2. Bias

f (x)
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Bias in models

Bias( ) = f − E( )f ̂  f ̂ 

8/59



Bias versus variance
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Accuracy versus precision
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Sum of squared errors

Recall that the squared difference between our model predictions and the
observed values is the sum of squared errors (SSE)

SSE = ( − = ( − β∑
i=1

n

yi ŷ i)
2

∑
i=1

n

yi Xi)
2
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Mean squared error

Recall also that the expectation of the SSE is the mean squared error, which
gives us an estimate of the variance in the ei

MSE = =
SSE

n − k
σ ̂ 2
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Mean squared error

We can decompose the MSE into its bias and variance pieces

Here  is the irreducible error

(See here for a full derivation)

MSE = + Var( ) +Bias2 f ̂  σ2

σ2
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Model errors

There is a trade-off between a model’s ability to simultaneously minimize
both bias and variance

bias decreases as model complexity increases·

variance increases as model complexity increases·
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Bias-variance trade-off
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Model complexity

How do we choose the right level of model complexity?

We want to include predictors  thatx

have a strong relationship with 

offer new info about  given other predictors

· y

· y
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Model complexity

How do we choose the right level of model complexity?

We want to exclude predictors  thatx

don’t have a strong relationship with 

offer the same info about  as other predictors (collinearity)

· y

· y
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Model selection

Selecting among possible models begins with a reasonable set based on first
principles
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Model selection

Selecting among possible models begins with a reasonable set based on first
principles

This set of models

may represent different hypotheses about the process of interest·

may represent different combinations of predictors·
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Model selection

There are 2 general approaches to model selection:

Uses the same information to fit and evaluate the model

1. In-sample
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Model selection

There are 2 general approaches to model selection:

Uses different information to fit and evaluate the model

1. In-sample

2. Out-of-sample
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In-sample model selection

There are 2 general ways to do in-sample selection:

1. Null hypothesis testing

2. Regularization
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Null hypothesis tests

We have already seen a variety of -tests to test different models

For example, given this full model

we might test

 or 

F

= + + + +yi β0 β1x1,i β2x2,i β3x3,i ei

: = 0H0 β1 : = cH0 β2

: = = = 0H0 β1 β2 β3
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Null hypothesis tests

There are several methods for testing models in a stepwise manner:

Sequentially add predictors to a model based on their -value & re-test the
model

Forward·

p
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Null hypothesis tests

There are several methods for testing models in a stepwise manner:

Fit a model with all of the predictors, remove the one with the largest -value
& re-test the model

Forward

Backwards

·

·

p
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Null hypothesis tests

There are several issues with stepwise selection:

The final model is chosen as if there was no uncertainty about it·

The one-at-a-time nature of adding/dropping predictors can miss the
optimal model

·

Lots of null hypothesis tests & choices about · α

No underlying theoretical basis for the approach·

These were once standard practice, but are rarely seen now·
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Likelihood ratio test

For nested models, we can make use of a likelihood ratio test, which compares
the goodness of fit between 2 models
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Likelihood ratio 

Given the likelihoods from a full model  and a reduced model with
fewer parameters ,

(LR)

(y; Θ)
(y; θ)

LR =
(y; θ)

(y; Θ)
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Likelihood ratio 

Given the likelihoods from a full model  and a reduced model with
fewer parameters ,

Because , this ratio will vary from

0 (data unlikely to have come from the reduced model) to
1 (data equally likely to have come from either model)

(LR)

(y; Θ)
(y; θ)

LR =
(y; θ)

(y; Θ)

(y; θ) < (y; Θ)
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Likelihood ratio test

More formally, given the likelihoods from a full model  and reduced
model , the test statistic  is given by

(y; Θ)
(y; θ) λ

λ = −2 log(LR)

= −2 log( )
(y; θ)

(y; Θ)
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Likelihood ratio test

The test statistic  follows a Chi-squared distribution

where  is the difference in the number of parameters between
the 2 models

λ

λ ∼ χ2
( − )kΘ kθ

df = −kΘ kθ
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Likelihood ratio test

Alternatively, the test can be expressed in terms of log-likelihoods

λ = −2 log( )
(y; θ)

(y; Θ)

= −2 [log (y; θ) − log (y; Θ)]
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Likelihood ratio test

Our null hypothesis for this test is that the data were just as likely to have
come from the reduced model

and we reject  if 

: y = (x)H0 fθ

: y = (x)HA fΘ

H0 λ > χ2
df
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Linear models for size of fish
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Linear models for size of fish

Two simple choices:

1. 

2. 

(mas ) = α +log10 si ei

(mas ) = α + β  (lengt ) +log10 si log10 hi ei
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Linear models for size of fish

Let’s make some simple substitutions

 and 

so that

= (mas )yi log10 si = (lengt )xi log10 hi

1. 

2. 

= α +yi ei

= α + β  +yi xi ei
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Fit reduced model

## fit reduced model 
m1 <- lm(L10_mass ~ 1) 
faraway::sumary(m1)

##             Estimate Std. Error t value  Pr(>|t|) 
## (Intercept) 2.185557   0.094317  23.172 < 2.2e-16 
##  
## n = 35, p = 1, Residual SE = 0.55799, R-Squared = 0

## log-likelihood
(LL_1 <- logLik(m1))

## 'log Lik.' -28.73589 (df=2)
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Fit full model

## fit full model 
m2 <- lm(L10_mass ~ L10_length) 
faraway::sumary(m2)

##             Estimate Std. Error t value  Pr(>|t|) 
## (Intercept) -5.77317    0.46626 -12.382 5.966e-14 
## L10_length   3.29059    0.19237  17.106 < 2.2e-16 
##  
## n = 35, p = 2, Residual SE = 0.18031, R-Squared = 0.9

## log-likelihood
(LL_2 <- logLik(m2))

## 'log Lik.' 11.32497 (df=3)
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Likelihood ratio test

The -value is very small so we reject  and conclude that the data were
unlikely to have come from the simple model

λ = −2 [log (y; θ) − log (y; Θ)]
## test statistic 
lambda <- as.numeric(-2 * (LL_1 - LL_2))
## degrees of freedom (ignoring sigma for both models) 
df <- length(coef(m2)) - length(coef(m1))
## p-value 
pchisq(lambda, df, lower.tail = FALSE)

## [1] 3.520383e-19

p H0
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QUESTIONS?



Model selection for non-nested models

The likelihood ratio test only works for nested models

What can do we if model A is not nested within B?
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Kullback-Leibler divergence

One can characterize the “distance” between 2 distributions (models) with the
Kullback-Leibler divergence
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Likelihood and K-L divergence

Let’s return to our likelihood ratio

LR =
(y; θ)

(y; Θ)
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Likelihood and K-L divergence

For a set of data with independent samples , we can
compute the likelihood ratio for all of the  by taking the product of the
likelihood ratio over all 

{ , , … , }y1 y2 yn

yi

i

LR = ∏
i=1

n
( ; θ)yi

( ; Θ)yi

44/59



Likelihood and K-L divergence

As we saw for the likelihood, we can take the log of  and work with a sum
instead

LR

LR = ( )∏
i=1

n
( ; θ)yi

( ; Θ)yi

⇓

log LR = log( )∑
i=1

n
( ; θ)yi

( ; Θ)yi
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Likelihood and K-L divergence

We can normalize  for different sampling effort by dividing by log LR n

= log( )log LRˆ

1

n ∑
i=1

n
( ; θ)yi

( ; Θ)yi
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Likelihood and K-L divergence

Let’s now imagine we collect an infinite number of samples (we’re going to be
busy!) and consider what happens to the log LR

lim
n→∞

log LRˆ = log( )lim
n→∞

1

n ∑
i=1

n
( ; θ)yi

( ; Θ)yi

= E [log( )]
( ; θ)yi

( ; Θ)yi
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Likelihood and K-L divergence

This expectation is known as the Kullback-Leibler divergence

= E [log( )]DKL

(y; θ)

(y; Θ)
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K-L divergence

We can further decompose the K-L divergence as

DKL = E [log( )]
(y; θ)

(y; Θ)

= E (log (y; θ) − log (y; Θ))

= −E (log (y; θ))
  

entropy

E (log (y; Θ))
  

log likelihood
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K-L divergence

We can further decompose the K-L divergence as

DKL = E [log( )]
(y; θ)

(y; Θ)

= E (log (y; θ) − log (y; Θ))

= −E (log (y; θ))
  

entropy

E (log (y; Θ))
  

log likelihood

= constant − E (log (y; Θ))
  

log likelihood
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An information criterion

In the early 1970s, Hirotugu Akaike figured out a connection between
maximum likelihood and K-L divergence

Imagine our data came from some unknown model · f

We have 2 candidate models,  and , for approximating · g1 g2 f

If we knew , we could use the K-L divergence to measure the information
lost when using  and  to approximate 

· f

g1 g2 f

Unfortunately, we do not know , but Akaike found a way around this
problem

· f
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An information criterion

Akaike showed that we can use an information criterion (AIC) based on the K-L
divergence to measure the relative information lost when using  versus g1 g2

= constant −DKL E (log (y; Θ))
  

log likelihood

⇓

AIC ≈ 2DKL
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Akaike’s information criterion

Specifically, Akaike’s information criterion for a given model is

where  is the number of parameters in the model

AIC = 2k − 2 log (y; θ)

k
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Akaike’s information criterion

Given a set of candidate models, the preferred model has the lowest AIC

AIC = 2k − 2 log (y; θ)

AIC rewards goodness of fit (as measured by the likelihood)·

AIC penalizes over-fitting (as measured by the number of parameters)·

Thus, AIC helps us prevent over-fitting by addressing the bias-variance
trade-off

·

54/59



Bias in AIC

When the sample size  is small, AIC tends to select models that have too
many parameters

To address this potential for over-fitting, a corrected form of AIC was
developed

The additional penalty term goes to 0 as 

n

AICc = AIC +
2k(k + 1)

n − k − 1

n → ∞
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Linear models for size of fish

Two simple choices:

1. 

2. 

(mas ) = α +log10 si ei

(mas ) = α + β  (lengt ) +log10 si log10 hi ei
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Fit the models in R

Model 2 has the lowest AIC and is therefore the most parsimonious

## fit intercept-only model 
m1 <- lm(L10_mass ~ 1)
## fit intercept + slope model 
m2 <- lm(L10_mass ~ L10_length)
## calculate AIC's 
AIC(m1, m2)

##    df       AIC 
## m1  2  61.47179 
## m2  3 -16.64995
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Bias-corrected AICc

Model 2 still has the lowest AIC and is therefore the most parsimonious

## function for AICc 
AICc <- function(AIC, n, k) { 
  AIC + (2 * k^2 + k) / (n - k - 1)
}
## sample size 
n <- 35
## number of parameters = intercept (+ slope) + sigma = 2 (3) 
k1 <- 2; k2 <- 3
## AICc for model 1 
AICc(AIC(m1), n, k1)

## [1] 61.78429

## AICc for model 2 
AICc(AIC(m2), n, k2)

## [1] -15.97253
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Summary

We have seen 2 general approaches approaches to in-sample model
selection

-tests and Likelihood-ratio tests for nested models· F

AIC for both nested and non-nested models·

Only the latter helps us address the bias-variance trade-off·
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