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Goals for today

Understand the concept of a likelihood function·

Understand the difference between probability and likelihood·

Understand maximum likelihood estimation·

Understand the characteristics of maximum likelihood estimates·
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Maximum likelihood estimation (MLE)

What is maximum likelihood estimation?

A method used to estimate the parameter(s) of a model given some data

As the name suggests, the goal is to maximize the likelihood
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The likelihood function

Here we are referring to the likelihood of some parameters given some data,
which can be written as

(θ|y)  or  (θ|y)
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The likelihood function

Here we are referring to the likelihood of some parameters given some data,
which can be written as

We’ll write this as

to avoid confusion with the “|” meaning conditional probability

(θ|y)  or  (θ|y)

(y; θ)  or  (y; θ)
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The likelihood function

Let’s define the likelihood function to be

where  is a model for  with parameter(s) 

(y; θ) = (y)fθ

(y)fθ y θ
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The likelihood function

For discrete data,  is the probability mass function (pmf)(y)fθ
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The likelihood function

For discrete data,  is the probability mass function (pmf)

For continuous data,  is the probability density function (pdf)

The pmf of pdf can be for any distribution

(y)fθ

(y)fθ
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Gaussian likelihood function

Let’s begin with the pdf for a Gaussian (normal) distribution

f (y; μ, ) ∼ N(μ, )σ2 σ2

 

f (y; μ, ) = exp[− ]σ2 ( )
1

2πσ2

1/2 (y − μ)2

2σ2
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Gaussian likelihood function
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Gaussian likelihood function

Note that  is not a probability!

The pdf gives you densities for given values of ,  & 

It’s only constraint is

f (y; μ, )σ2

y μ σ2

f (y)dy = 1∫
+∞

−∞
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Beta likelihood function

For example, many densities of  > 1Beta(α, β)
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Likelihood vs probability

Probability is linked to possible results

Possible results are mutually exclusive and exhaustive
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Likelihood vs probability

Probability is linked to possible results

Likelihood is linked to hypotheses

Hypotheses are neither mutually exclusive nor exhaustive
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Likelihood vs probability
An example

Suppose I ask you to predict the outcomes of 10 tosses of a fair coin·

There are 11 possible results (0 to 10 correct predictions)·

The actual result will always be only 1 of 11 possible results·

Thus, the probabilities for each of the 11 possible results must sum to 1·
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Likelihood vs probability
An example

Suppose you predict 7 of 10 tosses correctly·

I might hypothesize that you just guessed, but someone else might
hypothesize that you are a psychic

·

These are different hypotheses, but they are not mutually exclusive (you
might be a psychic who likes to guess)

·

We would say that my hypothesis is nested within the other·
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Likelihood vs probability
An example

Importantly, there is no limit to the hypotheses we (or others) might
generate

·

Because we don’t generally consider the entire suite of all possible
hypotheses, the likelihoods of our hypotheses do not have any absolute
meaning

·

Only the relative likelihoods (“likelihood ratios”) have meaning·
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Maximizing the likelihood

What does it mean to maximize ?

We want to find the parameter(s)  of our model  which are most likely
to have generated our observed data 

(y; θ)

θ (y)fθ
y
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Maximizing the likelihood

More formally, we can write this as

θ ̂ = (y; θ))max
θ

= (y)max
θ

fθ
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Maximizing the likelihood

In practice, we have multiple observations , so we need
the joint distribution for 

y = { , , … , }y1 y2 yn

y

= ( , , … , )θ ̂  max
θ

fθ y1 y2 yn
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Maximizing the likelihood

Remember independent and identically distributed (IID) errors?

If the data  are independent, we can make use of

The joint probability of all of the  is the product of their marginal
probabilities

Y

( , , … , ) = ( )fθ y1 y2 yn ∏
i=1

n

fθ yi

yi
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Maximizing the likelihood

If the data  are identically distributed, we can use the same distribution and
parameterization for 

Y

(y)fθ
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Maximizing the likelihood

If the data  are both independent and identically distributed, then we have

(This assumption isn’t necessary, but it makes our lives easier)

Y

= ( )θ ̂  max
θ ∏

i=1

n

fθ yi
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Maximum likelihood estimates

The value(s) of  that maximizes the likelihood function is/are called the
maximum likelihod estimate(s) (MLE) of 

θ ̂ 

θ
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Binomial distribution

Let’s begin with a simple example of coin tossing

Assume we have a “fair” coin with equal chance of coming up heads or tails

Pr(H) = Pr(T)
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Binomial distribution

If we flip the coin 2 times, what is the probability that we get exactly 1 heads?

Our 4 possible outcomes are

2 of 4 flips are heads, so 

1. 

2. 

3. 

4. 

{H, H}

{H, T}

{T, H}

{T, T}

Pr(H = 1) = 2/4 = 0.5
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Binomial distribution

Let’s think about this in terms of the probabilities

1.  X

2.  ✓

3.  ✓

4.  X

{H, H} : Pr(H) × Pr(H) = 0.5 × 0.5 = 0.25

{H, T} : Pr(H) × Pr(T) = 0.5 × 0.5 = 0.25

{T, H} : Pr(T) × Pr(H) = 0.5 × 0.5 = 0.25

{T, T} : Pr(T) × Pr(T) = 0.5 × 0.5 = 0.25

Pr(H = 1) = 0.25 + 0.25 = 0.5
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Binomial distribution

We can generalize this by

1. 

2. 

3. 

4. 

{H, H} : Pr(H) × Pr(H)

{H, T} : Pr(H) × (1 − Pr(H))

{T, H} : (1 − Pr(H)) × Pr(H)

{T, T} : (1 − Pr(H)) × (1 − Pr(H)))

Pr(H = 1) = Pr(H)(1 − Pr(H)) + (1 − Pr(H)) Pr(H)

= 2[Pr(H)(1 − Pr(H))]
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Binomial distribution

Now consider the probability of exactly 1 heads in 3 coin tosses

 X

 X

 X

 X

 ✓

 ✓

 ✓

 X

{H, H, H}

{H, H, T}

{H, T, H}

{T, H, H}

{H, T, T}

{T, H, T}

{T, T, H}

{T, T, T}

Pr(H = 1) = Pr(H)(1 − Pr(H))(1 − Pr(H))

      + (1 − Pr(H)) Pr(H)(1 − Pr(H))

      + (1 − Pr(H))(1 − Pr(H)) Pr(H)

= 3[Pr(H)(1 − Pr(H) ])2
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Binomial distribution

Let’s define  to be the number of “successes” out of  “trials” and  to be the
probability of a success

We can generalize our probability statement to be

k n p

Pr(k; n, p) = ( ) (1 − p
n

k
pk )n−k

 

( ) =
n

k

n!

k!(n − k)!
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Binomial distribution

What is the probability of getting 1 heads in 3 tosses?

## trials 
n <- 3
## successes 
k <- 1
## probability of success 
p <- 0.5
## Pr(k = 1) 
choose(n, k) * p^k * (1 - p)^(n-k)

## [1] 0.375
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Binomial distribution

What is the probability of getting 1 heads in 3 tosses?

## trials 
n <- 3
## successes 
k <- 1
## probability of success 
p <- 0.5
## Pr(k = 1) 
dbinom(k, n, p)

## [1] 0.375
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Binomial likelihood

What if we don’t know what  is?

For example, we tag 100 juvenile fish in June and 20 are alive the following
year

What is the probability of surviving?

p
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Binomial likelihood

We need to find  that maximizes the likelihoodp

(k; n, p) = ( ) (1 − p
n

k
pk )n−k

⇓

(20; 100, p) = ( ) (1 − pmax
p

100

20
p20 )100−20
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Binomial likelihood

Let’s try some different values for p

(20; 100, 0.3) = ( ) (1 − 0.3 ≈ 0.0076
100

20
0.320 )100−20

(20; 100, 0.25) = ( ) (1 − 0.25 ≈ 0.049
100

20
0.2520 )100−20

(20; 100, 0.2) = ( ) (1 − 0.2 ≈ 0.099
100

20
0.220 )100−20

(20; 100, 0.15) = ( ) (1 − 0.15 ≈ 0.040
100

20
0.1520 )100−20
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Binomial likelihood

The maximum likelihood occurs at p = 0.2
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Maximum likelihood estimates

In practice, finding the MLE is not so trivial

We will use numerical optimization methods to find the MLE
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Maximizing the likelihood

Let’s return to our general statement for the MLE

If the densities are small and/or  is large, the product will become
increasingly tiny

= ( )θ ̂  max
θ ∏

i=1

n

fθ yi

n
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Log-likelihood

To address this, we can make use of the logarithm function, which has 2 nice
properties:

1. it’s a monotonically increasing function

2. log(ab) = log(a) + log(b)
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Log-likelihood

We thereby transform our likelihood into a log-likelihood

θ ̂ = ( )max
θ ∏

i=1

n

fθ yi

= log ( )max
θ ∑

i=1

n

fθ yi
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Maximizing the likelihood

If the data  are both independent and identically distributed, we can
average over the log-likelihoods and remove the dependency on the number
of observations

y

θ ̂ = log ( )max
θ ∑

i=1

n

fθ yi

= log ( )max
θ

1

n ∑
i=1

n

fθ yi
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Minimizing the log-likelihood

Lastly, we have been focused on minimizing functions, so we’ll minimize the
negative log-likelihood

= log ( )θ ̂  max
θ

1

n ∑
i=1

n

fθ yi

⇓

= − log ( )θ ̂  min
θ

1

n ∑
i=1

n

fθ yi
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Gaussian likelihood function

Let’s return to the pdf for a normal distribution

f (y; μ, ) = exp[− ]σ2 ( )
1

2πσ2

1/2 (y − μ)2

2σ2
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Gaussian likelihood function

Let’s return to the pdf for a normal distribution

f (y; μ, ) = exp[− ]σ2 ( )
1

2πσ2

1/2 (y − μ)2

2σ2

⇓

f ( , … , ; μ, )y1 yn σ2 = f ( ; μ, )∏
i=1

n

yi σ2

= exp[− ]( )
1

2πσ2

n/2 ( − μ∑n

i=1 yi )2

2σ2
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Gaussian log-likelihood function

The log-likelihood is then

f (y; μ, ) = exp[− ]σ2 ( )
1

2πσ2

1/2 (y − μ)2

2σ2

⇓

log f (y; μ, ) = − log(2π ) − ( − μσ2 n

2
σ2 1

2σ2 ∑
i=1

n

yi )2
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Gaussian MLE

What values of  and  maximize the log-likelihood?

We need to take some derivatives!

μ σ
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Gaussian MLE
Mean

log f (y; μ, ) = 0 − = 0
∂

∂μ
σ2 −2n( − μ)ȳ

2σ2

⇓

= 0
−2n( − μ)ȳ

2σ2

⇓

= =μ̂  ȳ
1

n ∑
i=1

n

yi
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Gaussian MLE
Variance

log f (y; μ, ) = − − ( − μ) = 0
∂

∂σ
σ2 n

σ

1

σ3 ∑
i=1

n

yi

⇓

= ( − μ)
n

σ

1

σ3 ∑
i=1

n

yi

⇓

= ( − )σ ̂ 2
1

n ∑
i=1

n

yi ȳ
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Gaussian MLE
Variance

Recall from earlier lectures that we defined

but our MLE is

= ( − )σ ̂ 2
1

n − 1 ∑
i=1

n

yi ȳ

= ( − )σ ̂ 2MLE

1

n ∑
i=1

n

yi ȳ
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Gaussian MLE
Variance

Hence, our MLE for the variance is biased low

(n − 1)σ ̂ 2

nσ ̂ 2MLE

= ( − )∑
i=1

n

yi ȳ

= ( − )∑
i=1

n

yi ȳ

⇓

=σ ̂ 2MLE

n − 1

n
σ ̂ 2
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Gaussian MLE
General properties

Asymptotically, as n → ∞

estimates are unbiased·

estimates are normally distributed·

variance of estimate is minimized·
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Gaussian MLE
General properties

Invariance: if  is MLE of  then  is MLE of θ ̂  θ f ( )θ ̂  f (θ)
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Gaussian MLE
Least squares estimates are MLEs

For cases where  then

is also the MLE for 

y ∼ N(Xβ, Σ)

= ( X yβ̂  X⊤ )−1X⊤

β
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Maximum likelihood estimation
Summary

Maximum likelihood estimation is much more general than least squares,
which means we can use it for

mixed effects models

generalized linear models

Bayesian inference

·

·

·
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