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Goals for today

Understand how to create design matrices for use in linear models·

Recognize the different coding schemes for factor models·

See how to use model.matrix() for creating & extracting design matrices·
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Models in matrix form

Recall the matrix form for our linear models, where

y = Xβ + e

e ∼ MVN(0, Σ)
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Models in matrix form

Let’s write out this model in more detail

The columns in  define the design of the analysis

y = Xβ + e
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Ordinary least squares

Also recall that we can use  to solve for 

Understanding the form of  is critical to our inference

X ŷ 

ŷ = Xβ̂ 

= X (( X y)X⊤ )−1X⊤

= yX( XX⊤ )−1X⊤

  

H

= Hy

X
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A simple starting point

Data = (Deterministic part) + (Stochastic part)
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Types of linear models

We classify linear models by the form of their deterministic part

Discrete predictor  ANalysis Of VAriance (ANOVA)

Continuous predictor  Regression

Both  ANalysis of COVAriance (ANCOVA)

→

→

→
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Possible models for growth of fish

Model Description

1-way ANOVA

2-way ANOVA

simple linear regression

multiple regression

ANCOVA

= + +growthi β0 β1,species ϵi

= + + +growthi β0 β1,species β2,tank ϵi

= + +growthi β0 β1rationi ϵi

= + + +   growthi β0 β1rationi β2 temperaturei ϵi

= + + +growthi β0 β1,species β2rationi ϵi
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Defining models with 
Mean only

What would  look like for a simple model of the data  that included a
mean only?

X

X y

y = μ + e
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Defining models with 
Mean only

Let’s start by rewriting our model as

X

y = + eβ0

= + e
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Defining models with 
Mean only

with  and 

X

y = + e

⎡

⎣

⎢
⎢
⎢
⎢

1

1

⋮

1

⎤

⎦

⎥
⎥
⎥
⎥

β0

= Xβ + e

X = [1 1⋯ 1]⊤ β = [ ]β0
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Defining models with 
Regression

What would  look like for a regression model with 2 predictors?

X

X

= + + +yi β0 β1x1,i β2x2,i ei

⇓?

y = Xβ + e
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Defining models with 
Regression

X

y = Xβ + e
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Defining models with 
Regression

What would  look like for model with an intercept and linear increase over
time ?

X

X
t

= + t +yt β0 β1 et

⇓?

y = Xβ + e
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Defining models with 
Regression

X

y = Xβ + e
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Defining models with 
Regression

X

y = Xβ + e
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Defining models with 
Analysis of variance (ANOVA)

ANOVA was popularized by Ronald Fisher ~100 years ago when he was
studying the variance of genetic traits among commercial crops

ANOVA is used to analyze differences among group means

X
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Comparing group means

Recall our analysis of fish growth as a function of ration
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Defining models with 
ANOVA

Here we want to know if the mean growth of fish varies among the 3 ration
sizes

How would we write the model for this?

X

ḡration1
=
?

ḡration2
=
?

ḡration3
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Defining models with 
ANOVA

Our model for an observation  is something like

X

yi

= +yi μi ei

 

=μi

⎧

⎩
⎨
⎪
⎪

 if fed ration 1μ1

 if fed ration 2μ2

 if fed ration 3μ3
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Defining models with 
ANOVA

We can use binary 0/1 coding to represent if/then constructs

X

= + + +yi μ1x1,i μ2x2,i μ3x3,i ei

 

= 1 if fed ration 1 and 0 otherwisex1,i

= 1 if fed ration 2 and 0 otherwisex2,i

= 1 if fed ration 3 and 0 otherwisex3,i
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Defining models with 
ANOVA

How would we specify the model matrix  for this?

X

X
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Defining models with 
ANOVA

Let’s rewrite our model as

X

= + + +yi β1x1,i β2x2,i β3x3,i ei

⇓

y = Xβ + e
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Defining models with 
ANOVA

And define  as

X

X
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Defining models with 

Let’s now re-order all of the observations into their groups

X

y =  with  + + = n
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Defining models with 

We can then define  and  as

X

X β
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Defining models with 
ANOVA

Here are the mean growth rates of our 3 groups of fish

 19.6

 25.6

 35

X

= =ȳj=1 β1

= =ȳj=2 β2

= =ȳj=3 β3
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Defining models with 
ANOVA

And here are the results of our ANOVA model

This confirms that we have fit a model of means

X

## fit ANOVA w/ `- 1` to remove intercept 
m1 <- lm(yy ~ ration - 1) 
coef(m1)

## ration_1 ration_2 ration_3  
## 19.62001 25.64846 35.01523
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Defining models with 
ANOVA

X
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Defining models with 
ANOVA

Suppose we wanted to reframe our model to instead include the effect of
ration relative to the overall mean growth rate 

and calculate the groups means as

X

(μ)

= μ + + + +yi β1x1,i β2x2,i β3x3,i ei

= μ +ȳj=1 β1

= μ +ȳj=2 β2

= μ +ȳj=3 β3

30/67



Defining models with 

We would then define  and  as

X

X β
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Defining models with 
ANOVA

And here are the results of our ANOVA model

Wait–what happened here?!

X

## design matrix 
X <- cbind(rep(1,nn*pp), ration)
## fit ANOVA w/ `- 1` to remove intercept 
m2 <- lm(yy ~ X - 1) 
coef(m2)

##          X        X_1        X_2        X_3  
##  35.015235 -15.395221  -9.366774         NA
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Defining models with 

Can you spot the problem in our design matrix?

X
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Defining models with 
ANOVA

X

## solve for beta by hand 
beta <- solve(t(X) %*% X) %*% t(X) %*% yy

## Error in solve.default(t(X) %*% X) :  
##   system is computationally singular: reciprocal condition number
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Defining models with 

 is not full rank 

X

X ( = + + )X(⋅1) X(⋅2) X(⋅3) X(⋅4)
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Defining models with 
ANOVA

Let’s think about our model again

where we want the group means to be

X

= μ + + + +yi β1x1,i β2x2,i β3x3,i ei

= μ +ȳj=1 β1

= μ +ȳj=2 β2

= μ +ȳj=3 β3
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Defining models with 
ANOVA

Consider the overall mean of  in terms of the group means

X

y

=ȳ
+ +ȳj=1 ȳj=2 ȳj=3

3

37/67



Defining models with 
ANOVA

Consider the overall mean of  in terms of the group means

X

y

=ȳ
+ +ȳj=1 ȳj=2 ȳj=3

3

⇓

μ =
(μ + ) + (μ + ) + (μ + )β1 β2 β3

3

⇓

+ + = 0β1 β2 β3
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Defining models with 
ANOVA

Now we can rewrite our model as

and calculate the group means as

X

= μ + + + (- + - ) +yi β1x1,i β2x2,i β1 β2 x3,i ei

ȳj=1

ȳj=2

ȳj=3

= μ + β1

= μ + β2

= μ − ( + )β1 β2
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Defining models with 

We would then define  and  as

X

X β
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Defining models with 
ANOVA

X

## empty design matrix 
XX <- matrix(NA, nn*pp, pp)
## for mu 
XX[i1,] <- matrix(c(1,  1,  0), nn, pp, byrow = TRUE)
## for beta_1 
XX[i2,] <- matrix(c(1,  0,  1), nn, pp, byrow = TRUE)
## for beta_2 
XX[i3,] <- matrix(c(1, -1, -1), nn, pp, byrow = TRUE)
## fit model & get parameters 
Bvec <- coef(lm(yy ~ XX - 1)) 
names(Bvec) <- c("mu", "beta_1", "beta_2") 
Bvec

##        mu    beta_1    beta_2  
## 26.761236 -7.141222 -1.112776
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Defining models with 
ANOVA

X

## mean of ration 1 
Bvec["mu"] + Bvec["beta_1"]
## mean of ration 2 
Bvec["mu"] + Bvec["beta_2"]
## mean of ration 3 
Bvec["mu"] - (Bvec["beta_1"] + Bvec["beta_2"])

##       mu  
## 19.62001  
##       mu  
## 25.64846  
##       mu  
## 35.01523
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Defining models with 
ANOVA

We could also fit our grand mean model after some simple algebra

X

= μ + + + +yi β1x1,i β2x2,i β3x3,i ei

⇓

− μ = + + +yi β1x1,i β2x2,i β3x3,i ei

⇓

− = + + +yi ȳ β1x1,i β2x2,i β3x3,i ei
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Defining models with 
ANOVA

X

## fit anova with implicit grand mean 
m2 <- lm((yy - mean(yy)) ~ ration - 1) 
coef(m2)

##  ration_1  ration_2  ration_3  
## -7.141222 -1.112776  8.253998
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Defining models with 
ANOVA

X

## do we recover our means? 
coef(m2) + mean(yy)

## ration_1 ration_2 ration_3  
## 19.62001 25.64846 35.01523

coef(m1)

## ration_1 ration_2 ration_3  
## 19.62001 25.64846 35.01523
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Comparing group means
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Defining models with 
ANOVA

What if we wanted to treat one group as a control or reference (eg, our low
ration) and estimate the other effects relative to it?

such that

X

= + ( + ) + ( + ) +yi β1x1,i β1 β2 x2,i β1 β3 x3,i ei

ȳj=1

ȳj=2

ȳj=3

= β1

= +β1 β2

= +β1 β3

47/67



Defining models with 

We would define  and  as

X

X β
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Defining models with 
ANOVA

X

## empty design matrix 
XX <- matrix(NA, nn*pp, pp)
## for beta_1 
XX[i1,] <- matrix(c(1, 0, 0), nn, pp, byrow = TRUE)
## for beta_1 + beta_2 
XX[i2,] <- matrix(c(1, 1, 0), nn, pp, byrow = TRUE)
## for beta_1 + beta_3 
XX[i3,] <- matrix(c(1, 0, 1), nn, pp, byrow = TRUE)
## fit anova with implicit grand mean 
Bvec <- coef(lm(yy ~ XX - 1)) 
names(Bvec) <- c("beta_1", "beta_2", "beta_3") 
Bvec

##    beta_1    beta_2    beta_3  
## 19.620014  6.028446 15.395221
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Defining models with 
ANOVA

X

## mean of ration 1 
Bvec["beta_1"]
## mean of ration 2 
Bvec["beta_1"] + Bvec["beta_2"]
## mean of ration 3 
Bvec["beta_1"] + Bvec["beta_3"]

##   beta_1  
## 19.62001  
##   beta_1  
## 25.64846  
##   beta_1  
## 35.01523
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Comparing group means
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Analysis of covariance (ANCOVA)
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Analysis of covariance (ANCOVA)

Here is our model with the categorical effect of lineage & the continuous
effect of ration

= α + + +growthi β1,lineage β2rationi ϵi

53/67



Analysis of covariance (ANCOVA)

Dropping the global intercept & writing out the lineage effects yields

= + +growthi + +β1x1,i β2x2,i β3x3,i
  

lineage

β4x4,i

⏟ration

ei
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Defining models with 

We would then define  and  as

X

X β

X =    β =
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Analysis of covariance (ANCOVA)

## create design matrix 
XX <- cbind(L1 = rep(c(1,0,0), ea = nn), # effect of lineage 1 
            L2 = rep(c(0,1,0), ea = nn), # effect of lineage 2 
            L3 = rep(c(0,0,1), ea = nn), # effect of lineage 3 
            RA = x_cov)                  # effect of ration
## fit model 
Bvec <- coef(lm(yy ~ XX - 1)) 
names(Bvec) <- c("beta_1", "beta_2", "beta_3", "beta_4") 
Bvec

##    beta_1    beta_2    beta_3    beta_4  
## 10.205959 15.286507 19.435551  1.950062
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Analysis of covariance (ANCOVA)

57/67



Design matrices with model.matrix()

We have been building our design matrices by hand, but we could instead
use

model.matrix() with factor()
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Design matrices with model.matrix()

factor(x) tells R to treat x as categorical

## 2 groups with 2 obs each 
groups <- factor(c(1, 1, 2, 2))
## inspect them 
groups

## [1] 1 1 2 2 
## Levels: 1 2

59/67



Design matrices with model.matrix()

model.matrix(~ x) uses a right-hand side formula ~ x

## create design matrix from `groups` 
model.matrix(~ groups)

##   (Intercept) groups2 
## 1           1       0 
## 2           1       0 
## 3           1       1 
## 4           1       1 
## attr(,"assign") 
## [1] 0 1 
## attr(,"contrasts") 
## attr(,"contrasts")$groups 
## [1] "contr.treatment"
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Design matrices with model.matrix()

What if we don’t use factor()?

## 2 groups with 2 obs each 
groups <- c(1, 1, 2, 2)
## create design matrix from `groups` 
model.matrix(~ groups)

##   (Intercept) groups 
## 1           1      1 
## 2           1      1 
## 3           1      2 
## 4           1      2 
## attr(,"assign") 
## [1] 0 1
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Design matrices with model.matrix()

You can drop the intercept term with - 1

## 2 groups with 2 obs each 
groups <- factor(c(1, 1, 2, 2))
## create design matrix from `groups` 
model.matrix(~ groups - 1)

##   groups1 groups2 
## 1       1       0 
## 2       1       0 
## 3       0       1 
## 4       0       1 
## attr(,"assign") 
## [1] 1 1 
## attr(,"contrasts") 
## attr(,"contrasts")$groups 
## [1] "contr.treatment"
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Design matrices with model.matrix()

The names/categories are irrelevant for factor()

## 2 groups with 2 obs each 
groups <- factor(c("ref", "ref", "exp", "exp"))
## create design matrix from `groups` 
model.matrix(~ groups)

##   (Intercept) groupsref 
## 1           1         1 
## 2           1         1 
## 3           1         0 
## 4           1         0 
## attr(,"assign") 
## [1] 0 1 
## attr(,"contrasts") 
## attr(,"contrasts")$groups 
## [1] "contr.treatment"
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Design matrices with model.matrix()

R assigns factors in alphabetical order; the reference is first

## 2 groups with 2 obs each 
groups <- factor(c("ref", "ref", "exp", "exp"))
## create design matrix from `groups` 
model.matrix(~ groups)

##   (Intercept) groupsref 
## 1           1         1 
## 2           1         1 
## 3           1         0 
## 4           1         0 
## attr(,"assign") 
## [1] 0 1 
## attr(,"contrasts") 
## attr(,"contrasts")$groups 
## [1] "contr.treatment"
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Design matrices with model.matrix()

We can change the reference case with relevel()

## 2 groups with 2 obs each 
groups <- relevel(groups, "ref")
## create design matrix from `groups` 
model.matrix(~ groups)

##   (Intercept) groupsexp 
## 1           1         0 
## 2           1         0 
## 3           1         1 
## 4           1         1 
## attr(,"assign") 
## [1] 0 1 
## attr(,"contrasts") 
## attr(,"contrasts")$groups 
## [1] "contr.treatment"
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Design matrices with model.matrix()

We can add multiple factors with +

diet <- factor(c(1, 1, 2, 2)) 
sex <- factor(c("f", "m", "f", "m")) 
model.matrix(~ diet + sex)

##   (Intercept) diet2 sexm 
## 1           1     0    0 
## 2           1     0    1 
## 3           1     1    0 
## 4           1     1    1 
## attr(,"assign") 
## [1] 0 1 2 
## attr(,"contrasts") 
## attr(,"contrasts")$diet 
## [1] "contr.treatment" 
##  
## attr(,"contrasts")$sex 
## [1] "contr.treatment"
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Design matrices with model.matrix()

You can also extract the design matrix from a fitted model

## ANCOVA model from above 
mod_fit <- lm(yy ~ XX - 1)
## get design matrix 
mm <- model.matrix(mod_fit) 
head(mm)

##   XXL1 XXL2 XXL3      XXRA 
## 1    1    0    0 11.944444 
## 2    1    0    0  3.835147 
## 3    1    0    0  3.376075 
## 4    1    0    0  4.112188 
## 5    1    0    0  2.721664 
## 6    1    0    0  1.779256
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