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Goals for today

Identify possible transformations of the response when your errors have
unequal variance or are skewed

·

Understand how to use common transformations and make inference
from the resulting model

·

Understand that there are alternatives to transformation that we will use
later

·
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Why would you transform?

We have made a number of assumptions about our models, which include

What can we do when these assumptions are not met?

the distribution of the errors (IID)

linear relationship(s) between the response and predictor(s)

·

·
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What can you transform?

It’s possible to transform both sides of our models to

achieve constant variance 

correct for skewness 

linearize the relationship 

· (y)

· (y)

· (y, x)
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Types of transformations

The most common form is where 

and  (powers)

or  (roots)

For example

=y′ yλ

λ > 1

0 < λ < 1

λ = 2 ⇒ =y′ y2

λ = ⇒ =1
2

y′ y√
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Types of transformations

One can also use inverses where 

and  (powers)

or  (roots)

For example

=y′ y−λ

λ > 1

0 < λ < 1

λ = 2 ⇒ =y′ 1

y2

λ = ⇒ =1
2

y′ 1
y√
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Box-Cox transformation

The Box-Cox transformation is a popular method for stabilizing the variance
of errors

It is defined as

for all 

=y′ − 1yλ

λ

y > 0
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Box-Cox transformation

More specifically, because

we instead use

= log(y)lim
λ→0

− 1yλ

λ

= {y′  if λ ≠ 0
−1yλ

λ

log(y) if λ = 0
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Box-Cox transformation

How does one choose ?

By using profile likelihoods (which we will see in a later lecture)

(We’ll use the boxcox() function in the MASS package)

λ
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Box-Cox transformation
An example

Let’s return to the plant data from the Galapagos Archipelago where we
modeled diversity as a function of island area

## get data 
data(gala, package = "faraway")
## fit regression model 
mm <- lm(Species ~ Area, gala)
## estimate lambda 
MASS::boxcox(mm)
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Box-Cox transformation

Here is the result of calling boxcox(mm)
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Box-Cox transformation

After transformation, how do we interpret ?

Box-Cox transformations work well, but sometimes we can do better with an
approximation to 

λ = 0.17

λ
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Box-Cox transformation

General considerations

For example, if  = 5 there is little rationale for such an extreme
transformation

The Box–Cox method gets upset by outliers·

λ̂ 
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Box-Cox transformation

General considerations

This works if the constant is small, but it’s a “hack”

The Box–Cox method gets upset by outliers

If some  < 0, we can add a constant to all the 

·

· yi y
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Box-Cox transformation

General considerations

Recall that linear models work well for local non-linear functions

The Box–Cox method gets upset by outliers

If some  < 0, we can add a constant to all the 

If the range in  is small, then the Box–Cox transformation will not have
much effect

·

· yi y

· y
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Alternative to Box-Cox

Consider the fecundity of a fish versus its length
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Alternative to Box-Cox

Here’s the fit from a linear regression
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Alternative to Box-Cox

And here are the residuals from the fitted model
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Alternative to Box-Cox

This  is really close to 0.5 (ie, a square root transform)λ̂ 
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Square root transformation

Here’s the fit from a linear regression to y√
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Square root transformation

And here are the residuals from the fitted model
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Predictions from a transformed model

Using predict() will give fits on the transformed scale

## expected sqrt(fecundity) for length = 5 dm 
predict(ms, data.frame(ll = 5), interval = "confidence")

##        fit      lwr      upr 
## 1 65.25383 64.48932 66.01835
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Predictions from a transformed model

We need to incude the back-transformation on predict()

ŷ √ i

ŷ i

= xiβ̂ 

⇓

= (xiβ̂ )2
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Back-transformed fit

Here’s the fit and prediction interval on the natural scale
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Transformed polynomials

Think back to an early lecture where we transformed a nonlinear polynomial
into a linear model

= + + +yi β0 β1x1,i β2x2
2,i ϵi

⇓

= + + +yi β0 β1x1,i β2z2,i ϵi

=z2,i x2
2,i
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Transformed polynomials

Polynomials are an easy way to model nonlinearities in data, such as

Seasonal effects on primary productivity

Temperature effects on growth of poikilotherms

·

·
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Ecological data

Many ecological observations only take positive values 

The distributions of these data also tend to be “long-tailed”

(y > 0)

length or mass or fecundity

species counts/density

latency periods for infectious diseases

·

·

·
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Long-tailed data

Distribution of plant diversity data in the gala dataset
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Long-tailed data

These long-tailed data often follow a log-normal distribution
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Log transformation

A log-transformation is a really common way to deal with ecological data that
are constrained to be positive

= exp( + + )yi β0 β1xi ϵi

⇓

log( ) = + +yi β0 β1xi ϵi
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Log-log transformation

Consider allometric scaling laws in ecology of the form

For example, body mass as a function of length

= αyi x
β

i ϵi
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Log-log transformation

Log-log transformations are an easy way to linearize power models

= αmi l
β

i ϵi

⇓

log( ) = log(α) + β  log( ) + log( )mi li ϵi

⇓

= + β +yi α′ xi ϵ′
i
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Linear model for size of fish

The response and predictor are linear on the log-log scale
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Summary

Box-Cox is good to help ID a power/root, but the transformed variable can
be hard to interpret

·

 is good for equalizing variance· y√

 is good for skewed data· log(y)

 with  small relative to the data is good for skewed data with
some 0’s

· log(y + a) a

We will see later that there are model alternatives to transformations
(GLMs)

·
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