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Goals for today

Understand how generalized least squares can be used when the errors
are correlated

·

Understand how weighted least squares can be used when the errors have
nonconstant variance

·

Understand how robust methods can be used when the errors are non-
normal or when we have influential observations

·
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Concerns re: model assumptions

1. Adequacy of the model

2. Independence of errors

3. Non-constant variance

4. Normality of errors
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Possible options

1. Adequacy of the model  possible change in structure

2. Independence of errors  generalized least squares

3. Non-constant variance  weighted least squares

4. Normality of errors  robust methods, transformations

→

→

→

→
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Generalized least squares

Consider our general model where

which we can write more compactly as

What exactly is ?

= + + + ⋯ + +yi β0 β1x1,i β2x2,i βkxk,i ei

∼ N(0, )ei σ2

y = Xβ + e

e ∼ MVN(0, Σ)

Σ

5/46



An aside on multivariate normals

Consider a vector of random variables 

The mean of  is also a vector, but the variance of  is a matrix
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An aside on multivariate normals

More specifically for Σ

the diagonal contains the variances 

the off-diagonals are the covariances 
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An aside on multivariate normals

One of our key assumptions in ordinary least squares is that the errors  are
independent and identically distributed (IID)

Independent means the covariances are all zero
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An aside on multivariate normals

Identically distributed means the variances are all the same

Σ = = = I
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Generalized least squares

In cases where the variances are not equal or the covariances are not zero,
we can use generalized least squares (GLS)
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Generalized least squares

Let’s begin by expressing  as a product of  and a matrix , such thatΣ σ2 C

Σ = σ2
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Generalized least squares

Next we will specify  in terms of its Cholesky decomposition

where  is a lower triangular matrix

C

C = SS⊤
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Generalized least squares

You can think of the Cholesky decomposition as a square root transformation for matrices

Consider this example

## symmetrical matrix 
CC <- matrix(c(3,4,3,4,8,6,3,6,9), 3, 3) 
CC

##      [,1] [,2] [,3] 
## [1,]    3    4    3 
## [2,]    4    8    6 
## [3,]    3    6    9
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Generalized least squares

## Choleshky decomposition; `chol()` returns t(S) 
SS <- t(chol(CC)) 
round(SS, 2)

##      [,1] [,2] [,3] 
## [1,] 1.73 0.00 0.00 
## [2,] 2.31 1.63 0.00 
## [3,] 1.73 1.22 2.12

## reassemble Sigma 
SS %*% t(SS)

##      [,1] [,2] [,3] 
## [1,]    3    4    3 
## [2,]    4    8    6 
## [3,]    3    6    9
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Generalized least squares

We can now use our decomposition matrix  to transform our standard
regression model, such that

and hence

S

y

yS−1

y′

= Xβ + e

     ⇓

= Xβ + eS−1 S−1

= β +X′ e′

Var( ) = Var( e)e′ S−1
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Generalized least squares

We can now solve for 

and the errors  are now IID!

Var( )e′

Var( )e′ = Var( e)S−1

= Var(e)(S−1 S−1
)⊤

= Σ(S−1 S−1
)⊤

= [σC](S−1 S−1
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Generalized least squares

The  is then given bySSE

e′⊤
e′ = ( − ( − )y′ X′β̂ )⊤ y′ X′β̂ 

= ( y − X ( y − X )S−1 S−1 β̂ )⊤ S−1 S−1 β̂ 

= (y − X (y − X )β̂ )⊤S−1⊤
S−1 β̂ 

= (y − X (y − X )β̂ )⊤C−1 β̂ 
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Generalized least squares

We can minimize the SSE to find 

and from this find that

β̂ 

β̂ = min  (y − Xβ (y − Xβ))⊤C−1

= ( X) yX⊤C−1 X⊤C−1

Var( ) = ( Xβ̂  σ2 X⊤C−1 )−1
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Generalized least squares

This all looks great, but typcially we do not know 

Let’s think about situations where the  are not independent

C

ei

time series

spatial data

grouped (blocked) data

·

·

·
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Autcorrelated data

When modeling data that are collected over time, it’s common that the
predictor variable(s) will not account for all of the temporal structure in the
data
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Autcorrelated data

One option is to explicitly model the errors as an autoregressive process where
(replacing  with )

To do this in R we need additional packages not included with the base
installation (eg, nlme)

i t

= ϕ +et et−1 δt

∼ N(0, )δt τ2

⇓

∼ N(ϕ , )et et−1 τ2
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Weighted least squares

Sometimes the errors are independent but not identically distributed and the
covariance matrix is
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Weighted least squares

Sometimes the errors are independent but not identically distributed and the
covariance matrix is

In these cases we can use a subset of generalized least squares called
weighted least squares
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Weighted least squares

Similar to GLS, we can express  in terms of  and a matrix  with non-
diagonal elements equal to 0

Σ σ C

Σ = = Cσ2
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Weighted least squares

We saw earlier that we could fit a GLS model with OLS if we could express the
variance in the transformed errors as a function of the Cholesky
decomposition of , where

This suggest a weighting of  proportional to 

C = SS⊤

Var( )e′ = Var( e)S−1

= σI

e S−1
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Weighted least squares

Let’s define our variance multiplier  asS−1

=S−1
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Weighted least squares

From this we can define a weights matrix  as

How do we choose the weights?

W

W = SS⊤
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Weighted least squares
Errors proportional to the predictor

In general, the weights  should reflect differences in the variance of the
errors 

In many ecological applications, we find that the variance is proportional to a
predictor

This suggests 

wi

ϵi

Var( ) =ϵi xiσ
2

=wi
1

xi
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Weighted least squares
Observations are averages

It’s not uncommon that the observations  are actually averages of several
pieces of raw data

In that case

This suggests 

yi

Var( ) =ϵi

σ2

ni

=wi ni
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Weighted least squares
Observations are sums

Similarly, the observations  might be sums of several pieces of raw data

In that case

This suggests 

yi

Var( ) =ϵi niσ
2

=wi
1

ni
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Robust regression

We saw in the last lecture that non-normal errors & unusual observations
can affect model fits

heteroscedastic errors where · Var( ) ∝ei ni

outliers that do not come from the data generating process·
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Robust regression

We saw in the last lecture that non-normal errors & unusual observations
can affect model fits

In these case we can use so-called robust regression

heteroscedastic errors where 

outliers that do not come from the data generating process

· Var( ) ∝ei ni

·
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Robust regression
M-estimation

Recall that our goal in ordinary least squares is to minimize the error sum-of-
squares 

The objective function is the squared differences between the data and their
estimates

(SSE)

SSE = ( − β∑
i=1

n

yi xi)
2
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Robust regression
M-estimation

An alternative is to minimize a different function

SSE

SSE

= ( − β∑
i=1

n

yi xi)
2

⇓

= f (z)∑
i=1

n
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Robust regression
M-estimation

One possibility for  is the least absolute deviation (LAD)f (z)

SSE = − β∑
i=1

n

∣∣yi xi ∣∣
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Robust regression
M-estimation

Another possibility is Huber’s method where

and 

SSE = f (z)∑
i=1

n

 

f (z) = {
z2

2

c |z| − c2

2

if  |z| ≤ c

otherwise

c = ∝ Median(| |)σ ̂  ϵ̂ 
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Robust regression
M-estimation via Huber’s method
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Robust regression
M-estimation via Huber’s method

Note the following:

M-estimation does not address points with large leverage

it says nothing about which predictors to include

it says nothing about which transformations to make

·

·

·
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Robust regression
Least trimmed squares

M-estimation will fail if the large errors are numerous and extreme in value

Least trimmed squares (LTS) is a resistant regression method that deals well
with this situation
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Robust regression
Least trimmed squares

LTS minimizes the sum of squares of the  smallest residuals

and  indicates the residuals are sorted in ascending order

The default is 

where  is the floor function

q
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⌊⋅⌋
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Robust regression
Least trimmed squares

In practice, we can easily fit LTS models in R with MASS::ltsreg() but it does
not provide estimates of the parameter uncertainty

We can, however, estimate it via bootstrapping
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Robust regression
Least trimmed squares bootstrapping procedure

1. Fit your model to the data

2. Calculate 

3. Do the following many times:

4. Select the  and  percentiles from the saved 

e = y − Xβ̂ 

Generate  by sampling with replacement from 

Calculate  = 

Estimate  from  & )

· e∗ e

· y∗ X +β̂  e∗

· β̂ 
∗

X y∗

α
2

(1 − )α
2

β̂ ∗
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Summary

1. Robust methods protect against long-tailed errors, but they cannot
overcome problems with the choice of model and its variance structure
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Summary

1. Robust methods protect against long-tailed errors, but they cannot
overcome problems with the choice of model and its variance structure

2. Robust methods give  without the associated inferential methods, but we
can use bootstrapping to overcome this

β̂ 
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3. Robust methods can be used to confirm least squares estimates; it’s
worth checking if they deviate from one another
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Summary

1. Robust methods protect against long-tailed errors, but they cannot
overcome problems with the choice of model and its variance structure

2. Robust methods give  without the associated inferential methods, but we
can use bootstrapping to overcome this

3. Robust methods can be used to confirm least squares estimates; it’s
worth checking if they deviate from one another

4. Robust methods are useful when data need to be fit automatically without
human intervention, which is rare in ecology

β̂ 
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