Problems with model errors

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 15 April 2020

Goals for today

- Understand how generalized least squares can be used when the errors are correlated
- Understand how weighted least squares can be used when the errors have nonconstant variance
- Understand how robust methods can be used when the errors are nonnormal or when we have influential observations

Concerns re: model assumptions

- 1. Adequacy of the model
- 2. Independence of errors
- 3. Non-constant variance
- 4. Normality of errors

Possible options

- 1. Adequacy of the model \rightarrow possible change in structure
- 2. Independence of errors \rightarrow generalized least squares
- 3. Non-constant variance \rightarrow weighted least squares
- 4. Normality of errors \rightarrow robust methods, transformations

Consider our general model where

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_k x_{k,i} + e_i$$
$$e_i \sim \mathcal{N}(0, \sigma^2)$$

which we can write more compactly as

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ $\mathbf{e} \sim \text{MVN}(\mathbf{0}, \mathbf{\Sigma})$

What exactly is Σ ?

Consider a vector of random variables **z**

The mean of \mathbf{z} is also a vector, but the variance of \mathbf{z} is a matrix

More specifically for $\pmb{\Sigma}$

- the diagonal contains the variances σ_i^2
- the off-diagonals are the covariances $\gamma_{ij} = \gamma_{ji}$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \sigma_2^2 & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}$$

One of our key assumptions in ordinary least squares is that the errors **e** are *independent and identically distributed* (IID)

Independent means the covariances are all zero

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

Identically distributed means the variances are all the same

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix} = \sigma^2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \sigma^2 \mathbf{I}$$

In cases where the variances are not equal or the covariances are not zero, we can use *generalized least squares* (GLS)

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \gamma_{12} & \cdots & \gamma_{1n} \\ \gamma_{21} & \sigma_2^2 & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{n1} & \gamma_{n2} & \cdots & \sigma_n^2 \end{bmatrix}$$

Let's begin by expressing Σ as a product of σ^2 and a matrix ${f C}$, such that

$$\boldsymbol{\Sigma} = \sigma^2 \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{21} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

Next we will specify ${f C}$ in terms of its Cholesky decomposition

 $\mathbf{C} = \mathbf{S}\mathbf{S}^{\top}$

where \mathbf{S} is a *lower triangular* matrix

$$\mathbf{S} = \begin{bmatrix} s_{11} & 0 & \cdots & 0 \\ s_{21} & s_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{bmatrix}$$

You can think of the Cholesky decomposition as a square root transformation for matrices

Consider this example

```
## symmetrical matrix
CC <- matrix(c(3,4,3,4,8,6,3,6,9), 3, 3)
CC</pre>
```

 ##
 [,1]
 [,2]
 [,3]

 ##
 [1,]
 3
 4
 3

 ##
 [2,]
 4
 8
 6

 ##
 [3,]
 3
 6
 9

Choleshky decomposition; `chol()` returns t(S)
SS <- t(chol(CC))
round(SS, 2)</pre>

[,1] [,2] [,3]
[1,] 1.73 0.00 0.00
[2,] 2.31 1.63 0.00
[3,] 1.73 1.22 2.12

reassemble Sigma
SS %*% t(SS)

##		[,1]	[,2]	[,3]
##	[1,]	3	4	3
##	[2,]	4	8	6
##	[3,]	3	6	9

We can now use our decomposition matrix ${\bf S}$ to transform our standard regression model, such that

and hence

$$Var(\mathbf{e}') = Var(\mathbf{S}^{-1}\mathbf{e})$$

We can now solve for Var(e')

$$Var(\mathbf{e}') = Var(\mathbf{S}^{-1}\mathbf{e})$$
$$= \mathbf{S}^{-1}Var(\mathbf{e})(\mathbf{S}^{-1})^{\top}$$
$$= \mathbf{S}^{-1}\mathbf{\Sigma}(\mathbf{S}^{-1})^{\top}$$
$$= \mathbf{S}^{-1}[\sigma\mathbf{C}](\mathbf{S}^{-1})^{\top}$$
$$= \mathbf{S}^{-1}[\sigma\mathbf{S}\mathbf{S}^{\top}](\mathbf{S}^{-1})^{\top}$$
$$= \sigma\mathbf{I}$$

and the errors e^{\prime} are now IID!

The *SSE* is then given by

$$\mathbf{e}^{\prime \mathsf{T}} \mathbf{e}^{\prime} = (\mathbf{y}^{\prime} - \mathbf{X}^{\prime} \hat{\boldsymbol{\beta}})^{\mathsf{T}} (\mathbf{y}^{\prime} - \mathbf{X}^{\prime} \hat{\boldsymbol{\beta}})$$

= $(\mathbf{S}^{-1} \mathbf{y} - \mathbf{S}^{-1} \mathbf{X} \hat{\boldsymbol{\beta}})^{\mathsf{T}} (\mathbf{S}^{-1} \mathbf{y} - \mathbf{S}^{-1} \mathbf{X} \hat{\boldsymbol{\beta}})$
= $(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})^{\mathsf{T}} \mathbf{S}^{-1}^{\mathsf{T}} \mathbf{S}^{-1} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})$
= $(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})$

We can minimize the SSE to find $\hat{oldsymbol{eta}}$

$$\hat{\boldsymbol{\beta}} = \min (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} \mathbf{C}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$
$$= (\mathbf{X}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{X}) \mathbf{X}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{y}$$

and from this find that

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^\top \mathbf{C}^{-1} \mathbf{X})^{-1}$$

This all looks great, but typcially we do not know ${f C}$

Let's think about situations where the e_i are not independent

- \cdot time series
- spatial data
- grouped (blocked) data

Autcorrelated data

When modeling data that are collected over time, it's common that the predictor variable(s) will not account for all of the temporal structure in the data

Autcorrelated data

One option is to explicitly model the errors as an *autoregressive process* where (replacing i with t)

$$e_{t} = \phi e_{t-1} + \delta_{t}$$
$$\delta_{t} \sim N(0, \tau^{2})$$
$$\Downarrow$$
$$e_{t} \sim N(\phi e_{t-1}, \tau^{2})$$

To do this in **R** we need additional packages not included with the base installation (eg, **nlme**)

Sometimes the errors are *independent* **but not** *identically distributed* and the covariance matrix is

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

Sometimes the errors are *independent* **but not** *identically distributed* and the covariance matrix is

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

In these cases we can use a subset of generalized least squares called *weighted least squares*

Similar to GLS, we can express Σ in terms of σ and a matrix ${f C}$ with non-diagonal elements equal to 0

$$\boldsymbol{\Sigma} = \sigma^2 \begin{bmatrix} c_1 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & c_n \end{bmatrix} = \sigma^2 \mathbf{C}$$

We saw earlier that we could fit a GLS model with OLS if we could express the variance in the transformed errors as a function of the Cholesky decomposition of $\mathbf{C} = \mathbf{S}\mathbf{S}^{\mathsf{T}}$, where

$$Var(\mathbf{e}') = Var(\mathbf{S}^{-1}\mathbf{e})$$
$$= \sigma \mathbf{I}$$

This suggest a *weighting* of **e** proportional to \mathbf{S}^{-1}

Let's define our variance multiplier S^{-1} as

$$\mathbf{S}^{-1} = \begin{bmatrix} \frac{1}{\sqrt{w_1}} & 0 & 0 & 0\\ 0 & \frac{1}{\sqrt{w_2}} & 0 & 0\\ 0 & 0 & \ddots & 0\\ 0 & 0 & 0 & \frac{1}{\sqrt{w_n}} \end{bmatrix}$$

From this we can define a weights matrix \boldsymbol{W} as

$$\mathbf{W} = \mathbf{S}\mathbf{S}^{\top}$$
$$= \begin{bmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_3 \end{bmatrix}$$

How do we choose the weights?

Errors proportional to the predictor

In general, the weights w_i should reflect differences in the variance of the errors ϵ_i

In many ecological applications, we find that the variance is proportional to a predictor

$$\operatorname{Var}(\epsilon_i) = x_i \sigma^2$$

This suggests $w_i = \frac{1}{x_i}$

Observations are averages

It's not uncommon that the observations y_i are actually averages of several pieces of raw data

In that case

$$\operatorname{Var}(\epsilon_i) = \frac{\sigma^2}{n_i}$$

This suggests $w_i = n_i$

Observations are sums

Similarly, the observations y_i might be sums of several pieces of raw data In that case

$$\operatorname{Var}(\epsilon_i) = n_i \sigma^2$$

This suggests $w_i = \frac{1}{n_i}$

We saw in the last lecture that non-normal errors & unusual observations can affect model fits

- heteroscedastic errors where $Var(e_i) \propto n_i$
- outliers that do not come from the data generating process

We saw in the last lecture that non-normal errors & unusual observations can affect model fits

- heteroscedastic errors where $Var(e_i) \propto n_i$
- outliers that do not come from the data generating process

In these case we can use so-called *robust regression*

M-estimation

Recall that our goal in ordinary least squares is to minimize the error sum-of-squares (SSE)

$$SSE = \sum_{i=1}^{n} (y_i - \beta \mathbf{x}_i)^2$$

The objective function is the squared differences between the data and their estimates

M-estimation

An alternative is to minimize a different function

$$SSE = \sum_{i=1}^{n} (y_i - \beta \mathbf{x}_i)^2$$
$$\Downarrow$$
$$SSE = \sum_{i=1}^{n} f(z)$$

M-estimation

One possibility for f(z) is the *least absolute deviation* (LAD)

$$SSE = \sum_{i=1}^{n} |y_i - \boldsymbol{\beta} \mathbf{x}_i|$$

M-estimation

Another possibility is *Huber's method* where

$$SSE = \sum_{i=1}^{n} f(z)$$
$$f(z) = \begin{cases} \frac{z^2}{2} & \text{if } |z| \le c\\ c |z| - \frac{c^2}{2} & \text{otherwise} \end{cases}$$

and $c = \hat{\sigma} \propto \text{Median}(|\hat{\epsilon}|)$

M-estimation via Huber's method

Х

M-estimation via Huber's method

Note the following:

- M-estimation does not address points with large leverage
- \cdot it says nothing about which predictors to include
- \cdot it says nothing about which transformations to make

Least trimmed squares

M-estimation will fail if the large errors are numerous and extreme in value

Least trimmed squares (LTS) is a resistant regression method that deals well with this situation

Least trimmed squares

LTS minimizes the sum of squares of the q smallest residuals

$$SSE = \sum_{i=1}^{n} e_i^2 \rightarrow SSE_q = \sum_{i=1}^{q} e_{(i)}^2$$

and (i) indicates the residuals are sorted in ascending order

The default is $q = \lfloor n/2 \rfloor + \lfloor (k+1)/2 \rfloor$

where $\lfloor \cdot \rfloor$ is the floor function

Least trimmed squares

In practice, we can easily fit LTS models in **R** with **MASS::ltsreg()** but it does not provide estimates of the parameter uncertainty

We can, however, estimate it via bootstrapping

Least trimmed squares bootstrapping procedure

- 1. Fit your model to the data
- 2. Calculate $\mathbf{e} = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}$
- 3. Do the following *many* times:
 - Generate \mathbf{e}^* by sampling *with replacement* from \mathbf{e}
 - Calculate $\mathbf{y}^* = \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{e}^*$
 - Estimate $\hat{\pmb{\beta}}^*$ from **X** & **y***)

4. Select the $\frac{\alpha}{2}$ and $(1 - \frac{\alpha}{2})$ percentiles from the saved $\hat{\beta}^*$

1. Robust methods protect against long-tailed errors, but they cannot overcome problems with the choice of model and its variance structure

- 1. Robust methods protect against long-tailed errors, but they cannot overcome problems with the choice of model and its variance structure
- 2. Robust methods give $\hat{\beta}$ without the associated inferential methods, but we can use bootstrapping to overcome this

- 1. Robust methods protect against long-tailed errors, but they cannot overcome problems with the choice of model and its variance structure
- 2. Robust methods give $\hat{\beta}$ without the associated inferential methods, but we can use bootstrapping to overcome this
- 3. Robust methods can be used to confirm least squares estimates; it's worth checking if they deviate from one another

- 1. Robust methods protect against long-tailed errors, but they cannot overcome problems with the choice of model and its variance structure
- 2. Robust methods give $\hat{\beta}$ without the associated inferential methods, but we can use bootstrapping to overcome this
- 3. Robust methods can be used to confirm least squares estimates; it's worth checking if they deviate from one another
- 4. Robust methods are useful when data need to be fit automatically without human intervention, which is rare in ecology