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Goals for today

Recognize that diagnostic checks are necessary for any model·

Learn how to check for constant variance, normally distributed errors, and
autocorrelation

·

Learn how to check for outlying or influential observations·

2/52



Model diagnostics

We have seen how to fit models, estimate parameters with uncertainty, and
conduct hypothesis tests

All of these rely on a number of assumptions about

our model (its structure is correct)·

the errors (independent, equal variance, normally distributed)·

observations and predictors (no undue influence)·
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Model structure

Our focus here is on linear models, and we saw previously that we can use
linear models to approximate nonlinear functions

The specific form of the model should reflect our understanding of the
system and any particular hypotheses we’d like to test
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Checking error assumptions

So far our models have assumed the errors to be independent and identically
distributed (IID)

What exactly does this mean?
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Checking error assumptions
Constant variance

Let’s begin with the notion of “identically distributed”, which suggests no
change in the variance across the model space

For example, if our errors are assumed to be normally distributed, such that

then we expect no difference in  among any of the .

∼ N(0, )  ⇒  ϵ ∼ MVN(0, I)ϵi σ2 σ2

σ2 ϵi

6/52



Checking error assumptions
Constant variance

To check this assumption, we can plot our estimates  against
our fitted values  and look for any patterns

= = y −ϵ̂ i ei ŷ 

ŷ i
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Checking error assumptions
Constant variance
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Checking error assumptions
Constant variance

For a finer resolution, we can also plot  against our fitted values  and
look for any patterns

The distribution of  is a skewed half-normal on the positive interval; the
square-root transformation makes them less skewed

| |ϵ̂ i‾ ‾‾√ ŷ i

| |ϵ̂ i
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Checking error assumptions
Constant variance
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Checking error assumptions
Constant variance

We can formally test the assumption of homogeneous variance via Levene’s
Test, which compares the absolute values of the residuals among  groups of
data

Levene’s test is a one-way ANOVA of the residuals

j

= −Zij
∣∣yij ŷ j

∣∣
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Checking error assumptions
Constant variance

The statistic for Levene’s Test is

The test statistic  is approximately -distributed with  and 
degrees of freedom

W = ⋅
(n − k)

(k − 1)

∑k

j=1
nj( − )Zj Z̄

2

∑k

j=1
∑nj

i=1 ( − )Zij Zi
¯ 2

W F k − 1 N − k
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Checking error assumptions

Levene’s Test is easy to compute in R

## split residuals (ee) into 2 groups 
g1 <- ee[ee < median(ee)] 
g2 <- ee[ee > median(ee)]
## Levene's Test 
var.test(g1, g2)

##  
##  F test to compare two variances 
##  
## data:  g1 and g2 
## F = 0.90486, num df = 14, denom df = 14, p-value = 0.8543 
## alternative hypothesis: true ratio of variances is not equal to 1 
## 95 percent confidence interval: 
##  0.3037877 2.6951999 
## sample estimates: 
## ratio of variances  
##          0.9048584
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Checking error assumptions
Constant variance

What can we do if we find evidence of heteroscedasticity?

Try a transformation or weighted least squares, which we will see later this
week
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Checking error assumptions
Residuals vs other predictors

We can also plot the residuals against any potential predictors that were not
included in the model

If we see a (linear) pattern, then consider including that predictor in a new
model
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Checking error assumptions
Residuals vs other predictors for = α + β +yi x1,i ei
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Checking error assumptions
Normality

We seek a method for assessing whether our residuals are indeed normally
distributed

The easiest way is via a so-called -  plot (for quantile-quantile)Q Q
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Checking error assumptions
Expected quantiles for ϵ ∼ N(0, 1)
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Checking error assumptions
Heavy-tailed (leptokurtic)
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Checking error assumptions
Short-tailed (platykurtic)
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Checking error assumptions
-  plots via qqnorm(x) in RQ Q
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Correlated errors

One component of IID errors is “independent”

This means we expect no correlation among any of the errors
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Correlated errors

We might expect to find correlated errors when working with

Temporal data

Spatial data

Blocked data

·

·

·
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Correlated errors

Consider a model for tree growth as a function of temperature
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Correlated errors

Closer examination of the residuals reveals a problem
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Correlated errors

We can estimate the autocorrelation function in R with acf()
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QUESTIONS



Unusual observations
Outliers

It is often the case that one or more data points do not fit our model well

We refer to these as outliers
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Unusual observations
Influence

Some outliers affect the fit of the model

We refer to these as influential observations
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Unusual observations
Leverage points

Leverage points are extreme in the predictor  space

They may or may not affect model fit

(X)
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Unusual observations
Examples
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Unusual observations
Identifying leverage points

Remember the “hat matrix” ?

The values along the diagonal  are the leverages

(H)

=hi Hii
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Unusual observations
Identifying leverage points

Also recall that

Large  lead to small variances of  & hence  tends to 

Var( ) = (1 − )ϵ̂ i σ2 hi

hi ϵi ŷ i yi
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Unusual observations
Identifying leverage points

 has dimensions  and 

Thus, on average we should expect that 

Any  deserve closer inspection

H n × n trace(H) = = k∑n

i=1
hi

=h̄i
k
n

> 2hi
k
n

34/52



Unusual observations
Identifying leverage points

We can easily compute the  in R via the function hatvalues()hi

## leverages of points in middle plot on slide 30 
hv <- hatvalues(m2)
## threshold value for h_i ~= 0.36 
th <- 2 * (2 / length(hv))
## are any h_i > Eh? 
hv > th

##     1     2     3     4     5     6     7     8     9    10    11  
## FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
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Unusual observations
Identifying leverage points

We can also identify high leverage via a half-normal plot (R)
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Using leverage to standardize residuals

We can use the leverages to scale the residuals so their variance is 1

Doing so allows for easy examination via -  plots as values should lie on
the 1:1 line

=ri

ϵ̂ i

σ ̂  1 − hi‾ ‾‾‾‾‾√

Q Q
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Using leverage to standardize residuals

Standardized residuals from the high leverage example
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Unusual observations
Identifying outliers

One way to detect outliers is to estimate  different models where we
exclude one data point from each model

More formally we have

where  indicates that the th datum has been omitted

If  is large, then observation  is an outlier

n

=ŷ (i) X(i)β̂ 
(i)

(i) i

−yi ŷ (i) i
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Unusual observations
Identifying outliers

To evaluate the size of particular outlier we need to scale the residuals

This is similar to scaling a parameter estimate by its standard deviation to
test model hypotheses, with

and we compare it to a -distribution with  degrees of freedom

=ti
βi

SE ( )βi

t n − k
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Unusual observations
Identifying outliers

It turns out that the variance of the difference  is just like that for a
prediction interval

−yi ŷ (i)

( − ) = (1 + )Varˆ yi ŷ (i) σ ̂ 2(i) X⊤
i ( )X⊤

(i)X(i)
−1

Xi
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Unusual observations
Identifying outliers

We can now compute the “studentized” (scaled) residuals as

which are distributed as a  distribution with  df

=ti
−yi ŷ (i)

σ ̂ (i) 1 + X⊤
i ( )X⊤

(i)X(i)
−1

Xi
‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√

t n − k − 1
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Unusual observations
Identifying outliers

There is an easer way to do this without fitting  different models, where

and  is the residual for the th case based on a model that includes all of the
data

n

= =ti
−yi ŷ (i)

σ ̂ (i) 1 − hi‾ ‾‾‾‾‾√
ei

n − k − 1

n − k − e2
i

‾ ‾‾‾‾‾‾‾‾‾‾

√
ri i
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Unusual observations
Identifying outliers

Some points to consider

Two or more outliers next to each other can hide each other·

An outlier in one model may not be an outlier in another·

The error distribution may not be normal and so larger residuals may be
expected

·

Individual outliers are usually much less of a problem in larger datasets·
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Unusual observations
Identifying outliers

What can be done about outliers?

Check for a data-entry error·

Examine the physical context — why did it happen?·

Exclude the point from the analysis but try reincluding it later if the model
is changed

·

Consider using “robust regression” (more later)·

Be wary of automatic discarding of outliers·
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Unusual observations
Influential observations

Influential observations might not be outliers nor have high leverage, but we
want to identify them

Cook’s Distance  is a popular choice, where

 scales the errors by their  and leverage

(D)

= ( )Di e2
i

1

k

hi

1 − hi

Di df
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Unusual observations

We can evaulate Cook’s  with a half-normal plotD
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Summary

When fitting linear models via least squares we make several assumptions
about our model
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Summary

The importance of our assumptions can be ranked as

If we get this wrong, explanations & predictions will be off

1. Systematic form of the model

49/52



Summary

The importance of our assumptions can be ranked as

Dependence (correlation) among errors means there is less info in the data
than the sample size suggests

1. Systematic form of the model

2. Independence of errors
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Summary

The importance of our assumptions can be ranked as

This may affect inference and confidence/prediction intervals

1. Systematic form of the model

2. Independence of errors

3. Non-constant variance
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Summary

The importance of our assumptions can be ranked as

This is less of a concern as sample size increases

1. Systematic form of the model

2. Independence of errors

3. Non-constant variance

4. Normality of errors
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