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Goals for today

Understand the concept and practice of partitioning sums-of-squares

Understand the uses of R2 and adjusted-R2 for linear models

Understand the use of F-tests for hypothesis testing

Understand how to estimate confidence intervals

·

·

·

·
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Partitioning variance

In general, we have something like

and hence

DATA = MODEL + ERRORS

Var(DATA) = Var(MODEL) + Var(ERRORS)
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Partitioning total deviations

The total deviations in the data equal the sum of those for the model and
errors

= +−yi ȳ

⏟Total

−ŷ i ȳ

⏟Model

−yi ŷ i
⏟Error
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Partitioning total deviations

Here is a plot of some data  and a predictor y x
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Partitioning total deviations

And let’s consider this model: = α + β +yi xi ei
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Partitioning total deviations
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Sum-of-squares: Total

The total sum-of-squares  measures the total variation in the data as
the differences between the data and their mean

(SSTO)

SSTO = ∑ ( − )yi ȳ 2
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Sum-of-squares: Model

The model (regression) sum-of-squares  measures the variation
between the model fits and the mean of the data

(SSR)

SSR = ∑ ( − )ŷ i ȳ
2
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Sum-of-squares: Error

The error sum-of-squares  measures the variation between the data
and the model fits

(SSE)

SSE = ∑ ( − )yi ŷ i
2
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Partitioning sums-of-squares

The sums-of-squares have the same additive property as the deviations

= +∑( −yi ȳ)2

  

SSTO

∑( −ŷ i ȳ)2

  

SSR

∑( −yi ŷ i)
2

  

SSE
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Goodness-of-fit

How about a measure of how well a model fits the data?

 measures the variation in  without considering · SSTO y X

 measures the reduced variation in  after considering · SSE y X

Let’s consider this reduction in variance as a proportion of the total·
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Goodness-of-fit

A common option is the coefficient of determination or ( )R2

= = 1 −R2 SSR

SSTO

SSE

SSTO
 

0 < < 1R2
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Degrees of freedom

The number of independent elements that are free to vary when estimating
quantities of interest
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Degrees of freedom
An example

Imagine you have 7 hats and you want to wear a different one on each day
of the week.

·

On day 1 you can choose any of the 7, on day 2 any of the remaining 6,
and so forth

·

When day 7 rolls around, however, you are out of choices: there is only
one unworn hat

·

Thus, you had 7 - 1 = 6 days of freedom to choose your hat·
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Model in geometric space

 is -dim;  is -dim;  is -dimy n ŷ  k e (n − k)
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Degrees of freedom
Linear models

Beginning with , we have

The data are unconstrained and lie in an -dimensional space, but estimating
the mean  from the data costs 1 degree of freedom , so

SSTO

SSTO = ∑ ( − )yi ȳ 2

n

( )ȳ (df )

d = n − 1fSSTO
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Degrees of freedom
Linear models

For the  we have

We estimate the data  with a -dimensional model, but we lose 1  when
estimating the mean, so

SSR

SSR = ∑ ( − )ŷ i ȳ
2

( )ŷ  k df

d = k − 1fSSR
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Degrees of freedom
Linear models

The  is analogous

The data lie in an -dimensional space and we represent them in a -
dimensional subspace, so

SSE

SSE = ∑ ( − )yi ŷ i
2

n k

d = n − kfSSE
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Mean squares

The expectation of the sum-of-squares or “mean square” gives an indication
of the variance for the model and errors

A mean square is a sum-of-squares divided by its degrees of freedom

MS =
SS

df

⇓

MSR =    &   MSE =
SSR

k − 1

SSE

n − k
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Variance estimates

We are typically interested in two variance estimates:

1. The variance of the residuals 

2. The variance of the model parameters 

e

B
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Variance estimates
Residuals

In a least squares context, we assume that the model errors (residuals) are
independent and identically distributed with mean 0 and variance 

The problem is that we don’t know  and therefore we must estimate it

σ2

σ2
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Variance estimates
Residuals

If  then∼ N(0, 1)zi

= z ∼∑
i=1

n

z2
i z⊤ χ2

n
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Variance estimates
Residuals

If  then

In our linear model,  so

∼ N(0, 1)zi

= z ∼∑
i=1

n

z2
i z⊤ χ2

n

∼ N(0, )ei σ2

= e ∼ ⋅∑
i=1

n

e2
i e⊤ σ2 χ2

n−k
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Variance estimates
Residuals

Thus, given

then

e ∼ ⋅e⊤ σ2 χ2
n−k

E( ) = n − kχ2
n−k

E( e) = SSEe⊤

SSE = (n − k)  ⇒   = = MSEσ2 σ2 SSE

n − k
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Variance estimates
Parameters

Recall that our estimate of the model parameters is

= ( X yβ̂  X⊤ )−1X⊤
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Variance estimates
Parameters

Estimating the variance of the model parameters  requires some linear
algebra

For a scalar , if  then 

For a vector , if  then 

β

z Var(z) = σ2 Var(az) = a2σ2

z Var(z) = Σ Var(Az) = AΣA⊤
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Variance estimates
Parameters

The variance of the parameters is therefore

β̂ = ( X yX⊤ )−1X⊤

= [( X ] yX⊤ )−1X⊤

⇓

Var( ) = [( X ] Var(y)β̂  X⊤ )−1X⊤ [( X ]X⊤ )−1X⊤
⊤
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Variance estimates
Parameters

Recall that we can write our model in matrix form as

y = Xβ + e

e ∼ MVN(0, I)σ2
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Variance estimates
Parameters

We can rewrite our model more compactly as

y = Xβ + e

e ∼ MVN(0, I)σ2

⇓

y ∼ MVN(Xβ, )Iσ2

⏟Var(y|Xβ)
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Variance estimates
Parameters

Our estimate of  is thenVar( )β̂ 

Var( )β̂  = [( X ] Var(y)X⊤ )−1X⊤ [( X ]X⊤ )−1X⊤ ⊤

= [( X ] IX⊤ )−1X⊤ σ2 [( X ]X⊤ )−1X⊤ ⊤

= ( X ( X)σ2 X⊤ )−1 X⊤ [( X ]X⊤ )−1 ⊤

= ( Xσ2 X⊤ )−1
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Variance estimates
Parameters

Let’s think about the variance of 

This suggests that our confidence in our estimate increases with the spread
in 

β̂ 

Var( ) = ( Xβ̂  σ2 X⊤ )−1

X
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Effect of  on parameter precision

Consider these two scenarios where the slope of the relationship is identical

X
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QUESTIONS?



Inferential methods

Once we’ve estimated the model parameters and their variance, we might
want to draw conclusions from our analysis
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Comparing models

Imagine we had 2 linear models of varying complexity:

It would seem logical to ask whether the complexity of (2) is necessary?

1. a model with one predictor

2. a model with five predictors
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Hypothesis test to compare models

Recall our partitioning of sums-of-squares, where

We might prefer the more complex model (call it ) over the simple model
(call it ) if

or, more formally, if

SSTO = SSR + SSE

Θ

θ

SS < SSEΘ Eθ

> a constant
SS − SSEθ EΘ

SSEΘ
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Hypothesis test to compare models

If  has  parameters and  has , we can scale this ratio to arrive at an -
statistic that follows an  distribution

Θ kΘ θ kθ F

F

F = ∼
(SS − SS ) /( − )Eθ EΘ kΘ kθ

SS /(n − )EΘ kΘ

F − ,n−kΘ kθ kΘ
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-distribution

The -distribution is the ratio of two random variates, each with a 
distribution

If  and  are independent, then

F

F χ2
n

A ∼ χ2
dfA

B ∼ χ2
dfB

∼
( )A

dfA

( )B
dfB

Fd ,dfA fB
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-distributionF
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Test of all predictors in a model

Suppose we wanted to test whether the collection of predictors in a model
were better than simply estimating the data by their mean.

We write the null hypothesis as

and we would reject  if 

Θ : y = Xβ + e

θ : y = μ + e

: = = ⋯ = = 0H0 β1 β2 βk

H0 F > F
(α)

− ,n−kΘ kθ kΘ
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Hypothesis test to compare models

SS = (y − Xβ) = e = SSEEΘ (y − Xβ)⊤ e⊤

SS = (y − ) = SSTOEθ (y − )ȳ ⊤ ȳ

⇓

F =
(SSTO − SSE) /(k − 1)

SSE/(n − k)
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Predictors of plant diversity

Later in lab we will work with the gala dataset  in the faraway package,
which contains data on the diversity of plant species across 30 Galapagos
islands

For now let’s hypothesize that

diversity = (area, elevation, distance to nearest island)

From Johnson & Raven (1973) Science 179:893-895

†

f

†
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Testing one predictor

We might ask whether any one predictor could be dropped from a model

For example, can  be dropped from ourf full model?nearest

= α + + + +speciesi β1areai β2elevationi β3nearesti ϵi
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Testing one predictor

One option is to fit these two models and compare them via our -test with F

: = 0H0 β3

speciesi

 

speciesi

= α + + + +β1areai β2elevationi β3nearesti ϵi

= α + + +β1areai β2elevationi ϵi
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Testing one predictor

Another option is to estimate a -statistic as

and compare it to a -distribution with  degrees of freedom

t

=ti
β̂ 

i

SE ( )β̂ 
i

t n − k
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Testing 2+ predictors

Sometimes we might want to know whether we can drop 2+ predictors from
a model

For example, can we drop both  and  from our full model?elevation nearest

speciesi

 

speciesi

= α + + + +β1areai β2elevationi β3nearesti ϵi

= α + +β1areai ϵi

: = = 0H0 β2 β3
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Testing a subspace

Some tests cannot be expressed in terms of the inclusion or exclusion of
predictors

Consider a test of whether the areas of the current and adjacent island could
be added together and used in place of the two separate predictors

= α + + + ⋯ +speciesi β1areai β2adjacenti ϵi

 

= α + + ⋯ +speciesi β1(area + adjacent)i ϵi

: =H0 βarea βadjacent
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Testing a subspace

What if we wanted to test whether a predictor had a specific (non-zero)
value?

For example, is there a 1:1 relationship between  and  after
controlling for the other predictors?

species elevation

= α + + + +speciesi β1areai 1
⎯⎯

elevationi β3nearesti ϵi

: = 1H0 β2
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Testing a subspace

We can also modify our -test from before and use it for our comparison by
including the hypothesized  as an offset

t

βH0

=ti
( − )βi
^

βH0

SE ( )β̂ 
i
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Caveats about hypothesis testing

Null hypothesis testing (NHT) is a slippery slope

-values are simply the probability of obtaining a test statistic as large or
greater than that observed

· p

-values are not weights of evidence· p

“Critical” or “threshold” values against which to compare -values must be
chosen a priori

· p

Be aware of “  hacking” where researchers make many tests to find
significance

· p
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QUESTIONS?



Confidence intervals for 

We can also use confidence intervals (CI’s) to express uncertainty in 

They take the form

where here  is our predetermined Type-I error rate

β

β̂ 
i

100(1 − α)% CI : ± SE( )β̂ 
i t

(α/2)
n−p β̂ 

α
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Bootstrap confidence intervals

The - and -based CI’s we have described depend on the assumption of
normality

The bootstrap  method provides a way to construct CI’s without this
assumption

Efron (1979) The Annals of Statistics 7:1–26

F t

†

†
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Bootstrap procedure

1. Fit your model to the data

2. Calculate 

3. Do the following many times:

4. Select the  and  percentiles from the saved 

e = y − Xβ̂ 

Generate  by sampling with replacement from 

Calculate  = 

Estimate  from  & )

· e∗ e

· y∗ X +β̂  e∗

· β̂ ∗ X y∗

α
2

(1 − )α
2

β̂ ∗
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Confidence interval for new predictions

Given a fitted model , we might want to know the uncertainty
around a new estimate  given some new predictor 

y = X + eβ̂ 

y∗ X∗
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CI for the mean response

Suppose we wanted to estimate the uncertainty in the average response
given by

Recall that the general formula for a CI on a quantity  is

So we would have

=ŷ ∗ X∗ β̂ 

z

100(1 − α)% CI : E(z)  ±   SD(z)t
(α/2)
df

  ±  ŷ ∗ t
(α/2)
df Var ( )ŷ ∗‾ ‾‾‾‾‾‾‾√
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CI for the mean response

We can calculate the SD of our expectation as

Var ( )ŷ ∗

SD ( )ŷ ∗

= Var ( )X∗ β̂ 

= Var ( )X∗ ⊤ β̂  X∗

= [ ( X ]X∗ ⊤ σ2 X⊤ )−1 X∗

⇓

= σ ( XX∗ ⊤
X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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CI for the mean response

So our CI on the mean response is given by

±   σŷ ∗ t
(α/2)
df ( XX∗ ⊤

X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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CI for a specific response

What about the uncertainty in a specific prediction?

In that case we need to account for our additional uncertainty owing to the
error in our relationship, which is given by

= + eŷ ∗ X∗ β̂ 
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CI for a specific response

The SD of the new prediction is given by

Var ( )ŷ ∗

SD ( )ŷ ∗

= Var ( ) + Var (e)X∗ ⊤ β̂  X∗

= [ ( X ] +X∗ ⊤ σ2 X⊤ )−1 X∗ σ2

= ( ( X + 1)σ2 X∗ ⊤ X⊤ )−1X∗

⇓

= σ 1 + ( XX∗ ⊤
X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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CI for a specific response

So our CI on the new prediction is given by

This is typically referred to as the prediction interval

±   σŷ ∗ t
(α/2)
df 1 + ( XX∗ ⊤

X⊤ )−1X∗‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
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