More on linear models

Analysis of Ecological and Environmental Data
QERM 514

Mark Scheuerell
8 April 2020

Goals for today

- Understand how to represent a linear model with matrix notation
- Understand the concept, assumptions \& practice of least squares estimation for linear models
- Understand the concept of identifiability

Linear models in matrix form

Simple regression

$$
\begin{gathered}
y_{i}=\alpha+\beta x_{i}+e_{i} \\
\Downarrow^{*} \\
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}
\end{gathered}
$$

The i subscript indicates one of a total N observations
*The reason for this notation switch will become clear later

Linear models in matrix form

Simple regression

Let's make this general statement more specific

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i} \\
\Downarrow \\
y_{1}=\beta_{0}+\beta_{1} x_{1}+e_{1} \\
y_{2}=\beta_{0}+\beta_{1} x_{2}+e_{2} \\
\vdots \\
y_{N}=\beta_{0}+\beta_{1} x_{N}+e_{N}
\end{gathered}
$$

Linear models in matrix form

Simple regression

Let's now make the implicit " 1 " multiplier on β_{0} explicit

$$
\begin{gathered}
y_{1}=\beta_{0} \underline{1}+\beta_{1} x_{1}+e_{1} \\
y_{2}=\beta_{0} \underline{1}+\beta_{1} x_{2}+e_{2} \\
\vdots \\
y_{N}=\beta_{0} \underline{1}+\beta_{1} x_{N}+e_{N}
\end{gathered}
$$

Linear models in matrix form

Simple regression

Let's next gather the common terms into column vectors

$$
\begin{gathered}
y_{1}=\beta_{0} 1+\beta_{1} x_{1}+e_{1} \\
y_{2}=\beta_{0} 1+\beta_{1} x_{2}+e_{2} \\
\vdots \\
y_{N}=\beta_{0} 1+\beta_{1} x_{N}+e_{N}
\end{gathered}
$$

Linear models in matrix form

Simple regression

Maybe something like this?

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0} \\
\beta_{0} \\
\vdots \\
\beta_{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right]+\left[\begin{array}{c}
\beta_{1} \\
\beta_{1} \\
\vdots \\
\beta_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

An aside on linear algebra

We refer to the dimensions of matrices in a row-by-column manner
[rows \times columns]

An aside on linear algebra

When adding matrices, the dimensions must match
$[m \times n]+[m \times n] \checkmark$
$[m \times n]+[m \times p] \mathrm{X}$

An aside on linear algebra

When multiplying 2 matrices, the inner dimensions must match
$[m \times \underline{n}][\underline{n} \times p] \quad \checkmark$
$[m \times \underline{n}][\underline{p} \times n] \times$

An aside on linear algebra

When multiplying 2 matrices, the dimensions are [rows-of-first \times columns-of-second]
$[\underline{m} \times n][n \times \underline{p}]=[m \times p]$

Linear models in matrix form

Simple regression

Let's check the dimensions

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0} \\
\beta_{0} \\
\vdots \\
\beta_{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right]+\left[\begin{array}{c}
\beta_{1} \\
\beta_{1} \\
\vdots \\
\beta_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Linear models in matrix form

Simple regression

Let's check the dimensions

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0} \\
\beta_{0} \\
\vdots \\
\beta_{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right]+\left[\begin{array}{c}
\beta_{1} \\
\beta_{1} \\
\vdots \\
\beta_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]} \\
& {[N \times 1]=\underbrace{[N \times 1][N \times 1]}_{\text {OOPS! }}+\underbrace{[N \times 1][N \times 1]}_{\text {OOPS! }}+[N \times 1]}
\end{aligned}
$$

An aside on linear algebra

When multiplying a scalar times a vector/matrix, it's just element-wise

$$
a\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
a X \\
a Y \\
a Z
\end{array}\right]
$$

Linear models in matrix form

Simple regression

So this looks better

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\beta_{0}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]+\beta_{1}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]} \\
& {[N \times 1]=[N \times 1]+[N \times 1]+[N \times 1]}
\end{aligned}
$$

Linear models in matrix form

Simple regression

This is nice, but can we make β_{0} and β_{1} more compact?

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\beta_{0}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]+\beta_{1}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Linear models in matrix form

Simple regression

What if we move $\beta_{0} \& \beta_{1}$ to the other side of the predictors...

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \beta_{0}+\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right] \beta_{1}+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Linear models in matrix form

Simple regression
...and group the predictors and parameters into matrices

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{ll}
\beta_{0} & \beta_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Linear models in matrix form

Simple regression

Let's check the dimensions

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{ll}
\beta_{0} & \beta_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]} \\
& {[N \times 1]=\underbrace{[N \times 2][1 \times 2]}_{\text {OOPS! }}+[N \times 1]}
\end{aligned}
$$

An aside on linear algebra

Matrix multiplication works on a row-times-column manner

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
a X+b Y \\
c X+d Y
\end{array}\right]
$$

$[2 \times 2][2 \times 1]=[2 \times 1]$

Linear models in matrix form

Simple regression

Let's transpose the parameter vector $\left[\beta_{0} \beta_{1}\right]^{\top}$

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]
$$

Linear models in matrix form

Simple regression
and check the dimensions

$$
\begin{aligned}
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right] \\
{[N \times 1] } & =[N \times 2][2 \times 1]+[N \times 1] \\
& =[N \times 1]+[N \times 1] \\
& =[N \times 1]
\end{aligned}
$$

Linear models in matrix form

Simple regression

Lastly, we can write the model in a more compact notation

$$
\begin{gathered}
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{N}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]} \\
\Downarrow \\
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}
\end{gathered}
$$

Linear models in matrix form

Multiple regression

The matrix form is generalizaable to multiple predictors

$$
\begin{gathered}
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]=\left[\begin{array}{ccc}
1 & x_{1,1} & x_{2,1} \\
1 & x_{1,2} & x_{2,2} \\
\vdots & \vdots & \\
1 & x_{1, N} & x_{2, N}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{N}
\end{array}\right]} \\
\Downarrow \\
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}
\end{gathered}
$$

QUESTIONS?

Ordinary least squares

In general, we have something like

$$
D A T A=M O D E L+E R R O R S
$$

Ideally we have something like

$$
D A T A \approx M O D E L
$$

and hence

$$
E R R O R S \approx 0
$$

Ordinary least squares

From this it follows that

$$
\operatorname{Var}(D A T A)=\operatorname{Var}(M O D E L)+\operatorname{Var}(E R R O R S)
$$

Our hope is that

$$
\operatorname{Var}(D A T A) \approx \operatorname{Var}(M O D E L)
$$

and hence
$\operatorname{Var}(E R R O R S) \approx 0$

Ordinary least squares

Our model for the data is

$$
y_{i}=f\left(\text { predictors }_{i}\right)+e_{i}
$$

and our estimate of y is

$$
\hat{y}_{i}=f\left(\text { predictors }_{i}\right)
$$

and therefore the errors (residuals) are given by

$$
e_{i}=y_{i}-\hat{y}_{i}
$$

In general, we want to minimize each of the e_{i}

Ordinary least squares

Specifically, we want to minimize the sum of their squares

$$
\min \sum_{i=1}^{N} e_{i}^{2} \Rightarrow \min \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Ordinary least squares

For our linear regression model, we have

$$
\begin{gathered}
\min \sum_{i=1}^{N}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\Downarrow \\
\min \sum_{i=1}^{N}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right)^{2}
\end{gathered}
$$

An aside on linear algebra

Recall that matrix multiplication works in a row-by-column manner

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
a X+b Y \\
c X+d Y
\end{array}\right]
$$

An aside on linear algebra

If \mathbf{v} is an $[n \times 1]$ column vector $\& \mathbf{v}^{\top}$ is its [$1 \times n$] transpose, multiplying $\mathbf{v}^{\top} \mathbf{v}$ gives the sum of the squared values in \mathbf{v}

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[a^{2}+b^{2}+c^{2}\right]
$$

$$
[1 \times n][n \times 1]=[1 \times 1]
$$

Ordinary least squares

Writing our linear regression model in matrix form, we have

$$
\begin{gathered}
\mathbf{y}=\mathbf{X} \hat{\boldsymbol{\beta}}+\mathbf{e} \\
\Downarrow \\
\mathbf{e}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}
\end{gathered}
$$

so the sum of squared errors is

$$
\mathbf{e}^{\top} \mathbf{e}=(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\top}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})
$$

Finding the minimum

For example, at what value of x does this parabola reach its minimum?

$$
y=2 x^{2}-3 x+1
$$

Recall from calculus that we

1. differentiate y with respect to x
2. set the result to 0
3. solve for x

Finding the minimum

For example, at what value of x does this parabola reach its minimum?

$$
\begin{gathered}
y=2 x^{2}-3 x+1 \\
\Downarrow \\
\frac{d y}{d x}=4 x-3 \\
\Downarrow \\
4 x-3=0 \\
x=\frac{3}{4}
\end{gathered}
$$

Ordinary least squares

We want to minimize the sum of squared errors

$$
\begin{aligned}
\mathbf{e}^{\top} \mathbf{e} & =(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\top}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}) \\
& =\mathbf{y}^{\top} \mathbf{y}-\mathbf{y}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{y}+\hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

and so we want

$$
\frac{\partial}{\partial \hat{\boldsymbol{\beta}}} \mathbf{y}^{\top} \mathbf{y}-\mathbf{y}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{y}+\hat{\boldsymbol{\beta}}^{\top} \mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}
$$

Ordinary least squares

(via several steps)

$$
\begin{gathered}
\frac{\partial S S E}{\partial \hat{\boldsymbol{\beta}}}=-2 \mathbf{X}^{\top} \mathbf{y}+2 \mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}} \\
\Downarrow \\
-2 \mathbf{X}^{\top} \mathbf{y}+2 \mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}=0 \\
\mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\top} \mathbf{y} \\
\Downarrow \\
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
\end{gathered}
$$

Ordinary least squares

Returning to our estimate of the data, we have

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{X} \hat{\boldsymbol{\beta}} \\
& =\mathbf{X}\left(\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right) \\
& =\underbrace{\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}}_{\mathbf{H}} \mathbf{y} \\
& =\mathbf{H} \mathbf{y}
\end{aligned}
$$

Ordinary least squares

\mathbf{H} is called the "hat matrix" because it maps \mathbf{y} onto $\hat{\mathbf{y}}$ (" y-hat")

Ordinary least squares

Consider for a moment what it means if

$$
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Ordinary least squares

Consider for a moment what it means if

$$
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

We can estimate the data without any model parameters!

Ordinary least squares

Key assumptions

- Model is linear in parameters*
- Observations y_{i} are a random sample from the population
- The predictor(s) is/are known without measurement error
- The predictor(s) is/are independent of the response
- If $2+$ predictors, they are independent of each other
- Errors are IID: $e_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) ; \operatorname{Cov}\left(e_{i}, e_{j}\right)=0$
* parameters are not multiplied or divided by other parameters, nor do they appear as an exponent

Independent \& identically distributed

How do we know if our errors are IID?

- Knowledge of the problem/design
- Examine residual plots
- Tests of model fits

We will discuss this more in later lectures

Ordinary least squares

What can we say about $\hat{\boldsymbol{\beta}}$ when estimated this way?

1. It's the maximum likelihood estimate (MLE)
2. It's the best linear unbiased estimate (BLUE)

NOTE: these propoerties only hold if the errors $\left(e_{i}\right)$ are independent and identically distributed (IID)

Identifiability

Recall the solution for $\hat{\boldsymbol{\beta}}$ where

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

If the quantity $\mathbf{X}^{\top} \mathbf{X}$ is not invertible, then $\hat{\boldsymbol{\beta}}$ is partially unidentifiable.
This occurs when the columns of \mathbf{X} are not independent (ie, \mathbf{X} is not of "full rank")

Lack of identifiability

When does it arise?

- analysis of designed experiments (more later)
- two predictors are perfectly correlated (eg, temperature entered in both degrees F \& degrees C)
- predictors are subsets of one another (eg, counts of trees in 3 categories: DBH $\geq 10 \mathrm{~cm}$, DBH $\geq 20 \mathrm{~cm}$, DBH $\geq 30 \mathrm{~cm}$)
- number of parameters equals or exceeds the observations $p=n$: model is saturated $p \geq n$: model is supersaturated

