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Goals for today

Identify whether a model is linear in the predictors

Recognize that linear models can approximate nonlinear functions

Understand the difference between categorical and continuous models

Recognize the difference between written and coded factors

·

·

·

·
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Forms of linear models

Errors Single random process Multiple random processes

Normal Linear Model (LM) Linear Mixed Model (LMM)

Non-normal Generalized Linear Model (GLM) Generalized Linear Mixed Model (GLMM)
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Forms of linear models
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What is a linear model?

A relationship that defines a response variable as a linear function of one or
more predictor variables
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Which of these are linear models?

1)  = δyi xi

2)  = α + βyi xi

3)  = αyi x
β

i

4)  = α + β + γyi xi zi

 

5)  = α + βyi
1
xi

6)  = μ + ϕ( − μ)yt yt−1

7)  = (α + )βyi xi xi

8)  =yi
αxi

1+βxi
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What is a linear model?

A relationship that defines a response variable as a linear function of one or more
predictor variables

characterized by a sum of terms, each of which is the product of a
parameter and a single predictor

·
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Is this a linear model?

= α(1 + β )yi xi
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Is this a linear model?

Yes, if

= α(1 + β )yi xi

yi = α(1 + β )xi

= α + αβxi

= α + γ   with  γ = αβxi
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What is a linear model?

A relationship that defines a response variable as a linear function of one or more
predictor variables

characterized by a sum of terms, each of which is the product of a
parameter and a single predictor

the predictor can be a transformed variable

·

·
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Linear transformations

= α + βyi x2
i

⇓

= α + βyi zi

=zi x2
i
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Linear vs nonlinear models

There are only 2 forms of a linear model with 2 parameters

or

= α + βyi xi

= +yi β1x1,i β2x2,i
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Linear vs nonlinear models

There are many forms of nonlinear models with 2 parameters

= αyi x
β

i

= α +yi x
β

i

=yi αβxi

= α + βyi

1

x

⋮
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Linear vs nonlinear models

In linear models, effect sizes of different predictors are directly comparable

intercept: units = response (eg, grams)

slope: units = response per predictor (eg, grams per cm)

·

·
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Linear vs nonlinear models

In linear models, effect sizes of different predictors are directly comparable

In nonlinear models, common inference tools (p-values, confidence intervals)
may not be available

intercept: units = response (eg, grams)

slope: units = response per predictor (eg, grams per cm)

·

·
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Locally linear models

If we reduce the scale (interval) enough, we can approximate a nonlinear
function with a linear model

y = x2

⇓

= 2x
dy

dx
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Locally linear models
Consider the quadratic y = α + βx + x2
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Locally linear models
A stochastic example with y = + 2x + +1

2
x2 ϵi

set.seed(514) 
nn <- 30 
alpha <- 2 
beta <- 1/2 
eps <- rnorm(nn, 0, 1) ## errors ~ N(0,1) 
x_all <- runif(nn, -2, 2) 
y_all <- alpha + beta*x_all + x_all^2 + eps 
x_loc <- x_all[x_all >= 0 & x_all <= 1] 
y_loc <- y_all[x_all >= 0 & x_all <= 1]
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Locally linear models
A stochastic example with y = + 2x + +1

2
x2 ϵi
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Linear model for size of fish

In R, we can use lm() to fit linear regression models

lm(y ~ x)

(notice that the intercept  is implicit here)

= α + β +yi xi ei

α

21/44



Linear model for size of fish

In R, we use summary() to get info about a fitted model

fitted_regr_model <- lm(L10_mass ~ L10_length)

summary(fitted_regr_model)
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Locally linear models

## model 1: full dataset 
fit_1 <- lm(y_all ~ x_all) 
summary(fit_1)

##  
## Call: 
## lm(formula = y_all ~ x_all) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -2.8928 -0.9158 -0.2639  0.9593  3.4595  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   3.1293     0.3075  10.176 6.54e-11 *** 
## x_all         0.3395     0.3339   1.017    0.318     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.669 on 28 degrees of freedom 
## Multiple R-squared:  0.03559,    Adjusted R-squared:  0.001152  
## F-statistic: 1.033 on 1 and 28 DF,  p-value: 0.3181
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Locally linear models

## model 2: "local" data 
fit_2 <- lm(y_loc ~ x_loc) 
summary(fit_2)

##  
## Call: 
## lm(formula = y_loc ~ x_loc) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -1.6465 -0.4216  0.0882  0.5340  1.2668  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   1.1381     0.6993   1.627   0.1423   
## x_loc         2.7334     1.2539   2.180   0.0609 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.9015 on 8 degrees of freedom 
## Multiple R-squared:  0.3727, Adjusted R-squared:  0.2942  
## F-statistic: 4.752 on 1 and 8 DF,  p-value: 0.06087
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Linear model for size of fish

In R, we use coef() to extract the intercept(s) and slope(s)

fitted_regr_model <- lm(y ~ x)

coef(fitted_regr_model)
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Locally linear models

## intercept and slope for model 2 
coef(fit_2)

## (Intercept)       x_loc  
##    1.138064    2.733440
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Locally linear models

True model: 

Estimate: 

## intercept and slope for model 2 
coef(fit_2)

## (Intercept)       x_loc  
##    1.138064    2.733440

y = + 2x +1
2

x2

≈ 1.1 + 2.7x + 0y ̂  x2
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Linear models can be good
approximations to nonlinear functions
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QUESTIONS?



Common forms for linear models
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A simple starting point

Data = (Deterministic part) + (Stochastic part)
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Types of linear models

We classify linear models by the form of their deterministic part

Discrete predictor  ANalysis Of VAriance (ANOVA)

Continuous predictor  Regression

Both  ANalysis of COVAriance (ANCOVA)

→

→

→
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Possible models for growth of fish

Model Description

1-way ANOVA

2-way ANOVA

simple linear regression

multiple regression

ANCOVA

= α + β +growthi speciesi ϵi

= α + + +growthi β1,species β2,tank ϵi

= α + β +growthi rationi ϵi

= α + + +   growthi β1rationi β2 temperaturei ϵi

= α + + +growthi β1,species β2rationi ϵi
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Example
Fish growth during an experiment

A biologist at the WA Dept of Fish & Wildlife contacts you for help with an
experiment

She wants to know how growth of hatchery salmon is affected by their
ration size

She sends you a spreadsheet with 2 cols:

·

·

·

1. fish growth (mm)

2. ration size (2g, 4g, 6g)
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ANOVA model

= α + +growthi βration ϵi
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More info arrives

It turns out that targeting the exact ration is hard, but they know how much
each fish ate during the trial

36/44



Continuous predictor
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Continuous predictor
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Linear regression

= α + β +growthi rationi ϵi
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More info arrives

It also turns out that there are 3 lineages of fish in the trials
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Continuous & discrete predictors

41/44



ANCOVA

= α + + +growthi β1,lineage β2rationi ϵi
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Notation for categorical effects

Here we have specified categorical effects in AN(C)OVA models as discrete
parameters

For example, for a one-way ANOVA with 3 factors

the definition of  is

= α + +yi βj ϵi

βj

=βj

⎧

⎩

⎨
⎪

⎪

 if factor 1β1

 if factor 2β2

 if factor 3β3
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Notation for categorical effects

In practice, we will use a combination of -1/0/1 predictors, so our model
becomes

and each of the  indicates whether the  observation was assigned factor

(We’ll visit this again when we discuss design matrices)

= α + + + +yi β1x1,i β2x2,i β3x3,i ϵi

xj,i ith

j
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