Introduction to linear models

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 6 April 2020

Goals for today

- Identify whether a model is linear in the predictors
- Recognize that linear models can approximate nonlinear functions
- Understand the difference between categorical and continuous models
- Recognize the difference between written and coded factors

Forms of linear models

Errors	Single random process	Multiple random processes
Normal	Linear Model (LM)	Linear Mixed Model (LMM)
Non-normal	Generalized Linear Model (GLM)	Generalized Linear Mixed Model (GLMM)

Forms of linear models

What is a linear model?

A relationship that defines a response variable as a linear function of one or more predictor variables

Which of these are linear models?

1) $y_i = \delta x_i$ 2) $y_i = \alpha + \beta x_i$ 3) $y_i = \alpha x_i^\beta$ 4) $y_i = \alpha + \beta x_i + \gamma z_i$ 5) $y_i = \alpha + \beta x_i + \gamma z_i$ 5) $y_i = \alpha + \beta x_i + \gamma z_i$ 5) $y_i = \alpha + \beta x_i + \gamma z_i$ 6) $y_t = \mu + \phi(y_{t-1} - \mu)$ 7) $y_i = (\alpha + x_i)\beta x_i$ 8) $y_i = \frac{\alpha x_i}{1 + \beta x_i}$

Which of these are linear models?

 $\frac{1) y_i = \delta x_i}{2) y_i = \alpha + \beta x_i}$ $\frac{3) y_i = \alpha x_i^{\beta}$ $\frac{3) y_i = \alpha x_i^{\beta}}{2}$ $\frac{6) y_i = \mu + \beta x_i}{7}$ $\frac{7) y_i = (\alpha + \beta x_i + \gamma z_i)$ $\frac{8) y_i = \frac{\alpha x_i}{1 + \beta x_i}$

5)
$$y_i = \alpha + \beta \frac{1}{x_i}$$

6) $y_t = \mu + \phi(y_{t-1} - \mu)$
7) $y_i = (\alpha + x_i)\beta x_i$
8) $y_i = \frac{\alpha x_i}{1 + \beta x_i}$

What is a linear model?

A relationship that defines a response variable as a linear function of one or more predictor variables

 characterized by a sum of terms, each of which is the product of a parameter and a single predictor

Is this a linear model?

$$y_i = \alpha(1 + \beta x_i)$$

Is this a linear model?

$$y_i = \alpha(1 + \beta x_i)$$

Yes, if

$$y_i = \alpha (1 + \beta x_i)$$

= $\alpha + \alpha \beta x_i$
= $\alpha + \gamma x_i$ with $\gamma = \alpha \beta$

What is a linear model?

A relationship that defines a response variable as a linear function of one or more predictor variables

- characterized by a sum of terms, each of which is the product of a parameter and a single predictor
- the predictor can be a transformed variable

Linear transformations

There are only 2 forms of a linear model with 2 parameters

$$y_i = \alpha + \beta x_i$$

or

$$y_i = \beta_1 x_{1,i} + \beta_2 x_{2,i}$$

There are *many* forms of nonlinear models with 2 parameters

 $y_{i} = \alpha x_{i}^{\beta}$ $y_{i} = \alpha + x_{i}^{\beta}$ $y_{i} = \alpha^{\beta x_{i}}$ $y_{i} = \alpha + \beta \frac{1}{x}$ \vdots

In linear models, effect sizes of different predictors are directly comparable

- intercept: units = response (eg, grams)
- slope: units = response per predictor (eg, grams per cm)

In linear models, effect sizes of different predictors are directly comparable

- intercept: units = response (eg, grams)
- slope: units = response per predictor (eg, grams per cm)

In nonlinear models, common inference tools (*p*-values, confidence intervals) may not be available

If we reduce the scale (interval) enough, we can approximate a nonlinear function with a linear model

$$y = x^{2}$$

$$\Downarrow$$

$$\frac{dy}{dx} = 2x$$

Consider the quadratic $y = \alpha + \beta x + x^2$

A stochastic example with $y = \frac{1}{2} + 2x + x^2 + \epsilon_i$

set.seed(514)
nn <- 30
alpha <- 2
beta <- 1/2
eps <- rnorm(nn, 0, 1) ## errors ~ N(0,1)
x_all <- runif(nn, -2, 2)
y_all <- alpha + beta*x_all + x_all^2 + eps
x_loc <- x_all[x_all >= 0 & x_all <= 1]
y_loc <- y_all[x_all >= 0 & x_all <= 1]</pre>

A stochastic example with $y = \frac{1}{2} + 2x + x^2 + \epsilon_i$

Linear model for size of fish

In R, we can use lm() to fit linear regression models

 $y_i = \alpha + \beta x_i + e_i$

 $lm(y \sim x)$

(notice that the intercept α is implicit here)

Linear model for size of fish

In R, we use summary() to get info about a fitted model

fitted_regr_model <- lm(L10_mass ~ L10_length)</pre>

summary(fitted_regr_model)

```
## model 1: full dataset
fit_1 <- lm(y_all ~ x_all)
summary(fit_1)</pre>
```

```
##
## Call:
## lm(formula = y all ~ x all)
##
## Residuals:
##
      Min
          10 Median 30
                                    Max
## -2.8928 -0.9158 -0.2639 0.9593 3.4595
##
## Coefficients:
           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.1293 0.3075 10.176 6.54e-11 ***
## x all
         0.3395 0.3339 1.017 0.318
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.669 on 28 degrees of freedom
## Multiple R-squared: 0.03559, Adjusted R-squared: 0.001152
## F-statistic: 1.033 on 1 and 28 DF, p-value: 0.3181
```

```
## model 2: "local" data
fit_2 <- lm(y_loc ~ x_loc)
summary(fit_2)</pre>
```

```
##
## Call:
## lm(formula = y loc ~ x loc)
##
## Residuals:
##
      Min
          10 Median
                              30
                                    Max
## -1.6465 -0.4216 0.0882 0.5340 1.2668
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.1381 0.6993 1.627 0.1423
## x loc
          2.7334
                      1.2539 2.180 0.0609 .
## ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9015 on 8 degrees of freedom
## Multiple R-squared: 0.3727, Adjusted R-squared: 0.2942
## F-statistic: 4.752 on 1 and 8 DF, p-value: 0.06087
```

Linear model for size of fish

In **R**, we use **coef()** to extract the intercept(s) and slope(s)

fitted_regr_model <- lm(y ~ x)</pre>

coef(fitted_regr_model)

intercept and slope for model 2
coef(fit_2)

(Intercept) x_loc
1.138064 2.733440

intercept and slope for model 2
coef(fit_2)

(Intercept) x_loc
1.138064 2.733440

True model: $y = \frac{1}{2} + 2x + x^2$ Estimate: $\hat{y} \approx 1.1 + 2.7x + 0x^2$ Linear models can be *good approximations* to nonlinear functions

QUESTIONS?

Common forms for linear models

A simple starting point

Data = (Deterministic part) + (Stochastic part)

Types of linear models

We classify linear models by the form of their deterministic part

Discrete predictor \rightarrow ANalysis Of VAriance (ANOVA)

Continuous predictor \rightarrow Regression

Both \rightarrow ANalysis of COVAriance (ANCOVA)

Possible models for growth of fish

Model	Description
$growth_i = \alpha + \beta species_i + \epsilon_i$	1-way ANOVA
$growth_i = \alpha + \beta_{1,species} + \beta_{2,tank} + \epsilon_i$	2-way ANOVA
$growth_i = \alpha + \beta ration_i + \epsilon_i$	simple linear regression
$growth_i = \alpha + \beta_1 ration_i + \beta_2 temperature_i + \epsilon_i$	multiple regression
$growth_i = \alpha + \beta_{1,species} + \beta_2 ration_i + \epsilon_i$	ANCOVA

Example

Fish growth during an experiment

- A biologist at the WA Dept of Fish & Wildlife contacts you for help with an experiment
- She wants to know how growth of hatchery salmon is affected by their ration size
- She sends you a spreadsheet with 2 cols:
 - 1. fish growth (mm)
 - 2. ration size (2g, 4g, 6g)

ANOVA model

 $\operatorname{growth}_i = \alpha + \beta_{\operatorname{ration}} + \epsilon_i$

More info arrives

It turns out that targeting the exact ration is hard, but they know how much each fish ate during the trial

Continuous predictor

Ration size (g)

Continuous predictor

Ration size (g)

Linear regression

growth_{*i*} = α + β ration_{*i*} + ϵ_i

More info arrives

It also turns out that there are 3 lineages of fish in the trials

Continuous & discrete predictors

Ration size (g)

ANCOVA

 $\operatorname{growth}_i = \alpha + \beta_{1,\operatorname{lineage}} + \beta_2 \operatorname{ration}_i + \epsilon_i$

Notation for categorical effects

Here we have specified categorical effects in AN(C)OVA models as discrete parameters

For example, for a one-way ANOVA with 3 factors

$$y_i = \alpha + \beta_j + \epsilon_i$$

the definition of β_j is

$$\beta_j = \begin{cases} \beta_1 \text{ if factor 1} \\ \beta_2 \text{ if factor 2} \\ \beta_3 \text{ if factor 3} \end{cases}$$

Notation for categorical effects

In practice, we will use a combination of -1/0/1 predictors, so our model becomes

$$y_i = \alpha + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \epsilon_i$$

and each of the $x_{j,i}$ indicates whether the i^{th} observation was assigned factor j

(We'll visit this again when we discuss design matrices)