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Goals for today

Identify whether a model is linear in the predictors

Recognize that linear models can approximate nonlinear functions
Understand the difference between categorical and continuous models
Recognize the difference between written and coded factors
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Forms of linear models

Errors Single random process Multiple random processes

Normal Linear Model (LM) Linear Mixed Model (LMM)

Non-normal Generalized Linear Model (GLM) Generalized Linear Mixed Model (GLMM)

3/44



Forms of linear models

multiple random processes multiple forms of errors
multiple forms of errors multiple random processes
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What s a linear model?

A relationship that defines a response variable as a linear function of one or
more predictor variables
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Which of these are linear models?

1) yi = 6x; 5))’i=05+,5x%

2)yi = a+ px; 6) v = i+ p(vi-1 — 1)
3) yi = ax! 7) yi = (a + x;)px;

D yi = a+ pxi +yzi 8) yi = —

1+ﬂx,-
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Which of these are linear models?

1) y; = 6x; 5))’i=05+,5x%
2) yi = a+ px; O)yi = u+ dQyi—1 — )
3y = ax! 7)vi = (@ + x)px;

4)yi = a+ px; + yz 8) yi = 1f/c3x
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What s a linear model?

A relationship that defines a response variable as a linear function of one or more
predictor variables

+ characterized by a sum of terms, each of which is the product of a
parameter and a single predictor
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Is this a linear model?

yi = a(l + px;)
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Is this a linear model?

yi = a(l + px;)
Yes, if

yi = a(l + px;)
= a + afx;
= a+ yx; with y = aff
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What s a linear model?

A relationship that defines a response variable as a linear function of one or more
predictor variables

+ characterized by a sum of terms, each of which is the product of a
parameter and a single predictor

+ the predictor can be a transformed variable
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Linear transformations

Vi = a+ px?
[}
yi = a+ pz;

<i =Xl-2
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Linear vs nonlinear models

There are only 2 forms of a linear model with 2 parameters
Yi = a+ px;

or

Vi = Pix1; + Paxo
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Linear vs nonlinear models

There are many forms of nonlinear models with 2 parameters

yz'=00€f
Vi =a+xiﬂ
yi = abv

1

yi=a+p—
X
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Linear vs nonlinear models

In linear models, effect sizes of different predictors are directly comparable
- intercept: units = response (eg, grams)

- slope: units = response per predictor (eg, grams per cm)
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Linear vs nonlinear models

In linear models, effect sizes of different predictors are directly comparable
- intercept: units = response (eg, grams)
- slope: units = response per predictor (eg, grams per cm)

In nonlinear models, common inference tools (p-values, confidence intervals)
may not be available
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Locally linear models

If we reduce the scale (interval) enough, we can approximate a nonlinear
function with a linear model

17/44



Locally linear models
Consider the quadraticy = a + fx + x?
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Locally linear models

A stochastic example withy = % +2x +x* + ¢

set.seed(514)

nn <- 30

alpha <- 2

beta <- 1/2

eps <- rnorm(nn, 0, 1) ## errors ~ N(0,1)

x all <- runif(nn, -2, 2)

y all <- alpha + beta*x all + x all”"2 + eps
X loc <- x all[x all >= 0 & x all <= 1]

y loc <- y all[x all >= 0 & x all <= 1]
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Locally linear models

A stochastic example withy = % +2x +x* + ¢
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Linear model for size of fish

In R, we can use 1m() to fit linear regression models
yi = a+px; + e
Im(y ~ x)

(notice that the intercept a is implicit here)
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Linear model for size of fish

In R, we use summary () to get info about a fitted model
fitted regr model <- 1m(L10 mass ~ L10 length)

summary (fitted regr model)
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Locally linear models

## model 1: full dataset
fit 1 <- Im(y_all ~ x all)
summary (fit 1)

##

## Call:

## lm(formula = y all ~ x_all)

##

## Residuals:

## Min 10 Median 30 Max

## -2.8928 -0.9158 -0.2639 0.9593 3.4595

##

## Coefficients:

# Estimate Std. Error t value Pr(>|t])

## (Intercept) 3.1293 0.3075 10.176 6.54e-11 **%*

## x_all 0.3395 0.3339 1.017 0.318

## ——=

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 1.669 on 28 degrees of freedom

## Multiple R-squared: 0.03559, Adjusted R-squared: 0.001152

## F-statistic: 1.033 on 1 and 28 DF, p-value: 0.3181
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Locally linear models

## model 2:

"local" data

fit 2 <- Im(y_loc ~ x loc)
summary (fit 2)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula =

Residuals:
Min
-1.6465 -0.4

Coefficients

(Intercept)
X loc

Signif. code

Residual sta
Multiple R-s
F-statistic:

y loc ~ x loc)

10 Median 30

Max

216 0.0882 0.5340 1.2668

Estimate Std. Error t value Pr(>|t])
1.627 0.1423
2.180 0.0609

1.1381 0.6993
2.7334 1.2539

s: 0 '"**¥x' 0,001 "**'

0.01 '=*'

0.05 '." 0.1

ndard error: 0.9015 on 8 degrees of freedom
quared: 0.3727, Adjusted R-squared: 0.2942

4,752 on 1 and 8 DF,

p-value:

0.06087

1

1
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Linear model for size of fish

In R, we use coef () to extract the intercept(s) and slope(s)
fitted regr model <- 1Im(y ~ X)

coef(fitted regr model)
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Locally linear models

## intercept and slope for model 2
coef (fit 2)

## (Intercept) x_loc
## 1.138064 2.733440
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Locally linear models

## intercept and slope for model 2
coef (fit 2)

## (Intercept) x_loc
## 1.138064 2.733440

True model: y = % + 2x + x?

Estimate: § ~ 1.1 4+ 2.7x + Ox?
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Linear models can be good
approximations to nonlinear functions
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QUESTIONS?



Common forms for linear models
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A simple starting point

Data = (Deterministic part) + (Stochastic part)
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Types of linear models

We classify linear models by the form of their deterministic part
Discrete predictor = ANalysis Of VAriance (ANOVA)

Continuous predictor — Regression

Both — ANalysis of COVAriance (ANCOVA)
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Possible models for growth of fish

_

growth; = a + fspecies; + ¢; 1-way ANOVA
growth; = a + 1 species + Po.tank + €; 2-way ANOVA
growth, = a + fration; + ¢, simple linear regression
growth, = a + piration; + prtemperature; + ¢; multiple regression
growth;, = a + B species + poration; + €; ANCOVA
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Example
Fish growth during an experiment

- A biologist at the WA Dept of Fish & Wildlife contacts you for help with an
experiment

+ She wants to know how growth of hatchery salmon is affected by their
ration size

-+ She sends you a spreadsheet with 2 cols:

1. fish growth (mm)
2. ration size (2g, 4g, 6g)
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ANOVA model
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More info arrives

It turns out that targeting the exact ration is hard, but they know how much
each fish ate during the trial
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Continuous predictor

Growth (mm)
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Continuous predictor
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Linear regression

Growth (mm)
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growth; = a + fration; + ¢;
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More info arrives

It also turns out that there are 3 lineages of fish in the trials
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Continuous & discrete predictors
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ANCOVA

Growth (mm)

0 2 4 6 8 10 12

Ration size (g)

gI'OWthi =a-+ ﬁ 1,lineage + ﬁzrationi + €;

42/44



Notation for categorical effects

Here we have specified categorical effects in AN(C)OVA models as discrete
parameters

For example, for a one-way ANOVA with 3 factors

yi = a+fj +¢€

the definition of f; is

p 1f factor 1
p; =4 p» if factor 2
p5 1f factor 3
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Notation for categorical effects

In practice, we will use a combination of -1/0/1 predictors, so our model
becomes

yi = a+ fix1; + paxoi + P3xz; + €

and each of the x;; indicates whether the i observation was assigned factor
J

(We'll visit this again when we discuss design matrices)

44/44



