Ecological data \& distributions

Analysis of Ecological and Environmental Data
QERM 514

Mark Scheuerell
3 April 2020

Goals for today

- Identify features of data that drive analyses
- Think critically about what the data could tell you

General approach

Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction

General approach

Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction

Common questions in ecology

At the individual level

Sex?

Fecundity?
Growth?
Survival?
Movement?

Common questions in ecology

At the population level

Abundance?
Survival?
Spatial distribution?
Movement/migration?

General approach

Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction

Ecological data

At the individual level

1 Detection \rightarrow presence/absence
2+ Detections \rightarrow survival, movement

Ecological data

At the individual level

1 Detection \rightarrow presence/absence
2+ Detections \rightarrow survival, movement

1 Measurement \rightarrow fecundity, age, size
2+ Measurements \rightarrow growth

Ecological data

At the population level

Detections \rightarrow presence/absence

Counts \rightarrow density or survival/movement

Data collection methods

Nonexhaustive counts

Data collection methods

Exhaustive counts

Data collection methods

(Non)exhaustive surveys
Depletions

Data collection methods

(Non)exhaustive surveys
Depletions
Capture/Tag/Recapture

Data types

Discrete values

Sex
Age
Fecundity
Counts/Census
Survival (individual)

Data types

Continuous

Size (length, mass)

Density
Survival (population)

A note on continuous variables

Approximating rational numbers with real numbers

Survival (7 of 9 survived ≈ 0.78)

Composition (4 age-3, 18 age-4, 11 age- $5 \rightarrow \sim 55 \%$ age-4)

Density (3 animals in 21 ha plot ≈ 0.14 per ha)

A note on continuous variables

Approximating rational numbers with real numbers

Which of these give you more confidence?
A) $3 / 9 \approx 0.33$
B) $300 / 900 \approx 0.33$

The importance of raw data cannot be overstated

Distributions of data

Discrete distributions

Binary $(0,1) \rightarrow$ Bernoulli

Discrete distributions

Binary $(0,1) \rightarrow$ Bernoulli

Count $\left(\mathbb{Z}^{\geq}\right) \rightarrow$ Poisson or Negative-Binomial

Discrete distributions

Binary $(0,1) \rightarrow$ Bernoulli

Count $\left(\mathbb{Z}^{\geq}\right) \rightarrow$ Poisson or Negative-Binomial

Composition $\left(S^{D}\right) \rightarrow$ Binomial $(D=2)$ or Multinomial $(D>2)$

Continuous distributions

Density $\left(\mathbb{R}^{\geq}\right) \rightarrow$ log-Normal or Gamma

Continuous distributions

Density $\left(\mathbb{R}^{\geq}\right) \rightarrow$ log-Normal or Gamma

Proportion $\left(C^{D}\right) \rightarrow$ Beta $(D=2)$ or Dirichlet $(D>2)$

Continuous distributions

Density $\left(\mathbb{R}^{\geq}\right) \rightarrow$ log-Normal or Gamma

Proportion $\left(C^{D}\right) \rightarrow$ Beta $(D=2)$ or Dirichlet $(D>2)$

Transformations $(\mathbb{R}) \rightarrow$ Normal

