Ecological data & distributions

Analysis of Ecological and Environmental Data

QERM 514

Mark Scheuerell 3 April 2020

Goals for today

- Identify features of data that drive analyses
- · Think critically about what the data could tell you

General approach

Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction

General approach

 $Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction$

Common questions in ecology

At the individual level

Sex?

Fecundity?

Growth?

Survival?

Movement?

Common questions in ecology

At the population level

Abundance?

Survival?

Spatial distribution?

Movement/migration?

General approach

Question \rightarrow Data \rightarrow Model \rightarrow Inference \rightarrow Prediction

Ecological data

At the individual level

1 Detection → presence/absence

2+ Detections → survival, movement

Ecological data

At the individual level

- 1 Detection → presence/absence
- 2+ Detections → survival, movement

- 1 Measurement → fecundity, age, size
- 2+ Measurements → growth

Ecological data

At the population level

Detections → presence/absence

Counts → density or survival/movement

Nonexhaustive counts

Exhaustive counts

(Non)exhaustive surveys

Depletions

(Non)exhaustive surveys

Depletions

Capture/Tag/Recapture

Data types

Discrete values

Sex

Age

Fecundity

Counts/Census

Survival (individual)

Data types

Continuous

Size (length, mass)

Density

Survival (population)

A note on continuous variables

Approximating rational numbers with real numbers

Survival (7 of 9 survived \approx 0.78)

Composition (4 age-3, 18 age-4, 11 age-5 \rightarrow ~55% age-4)

Density (3 animals in 21 ha plot \approx 0.14 per ha)

A note on continuous variables

Approximating rational numbers with real numbers

Which of these give you more confidence?

- A) $3 / 9 \approx 0.33$
- B) $300 / 900 \approx 0.33$

The importance of raw data cannot be overstated

Distributions of data

Discrete distributions

Binary $(0,1) \rightarrow Bernoulli$

Discrete distributions

Binary $(0,1) \rightarrow Bernoulli$

Count $(\mathbb{Z}^{\geq}) \rightarrow \underline{\text{Poisson}}$ or $\underline{\text{Negative-Binomial}}$

Discrete distributions

Binary $(0,1) \rightarrow Bernoulli$

Count $(\mathbb{Z}^{\geq}) \rightarrow \underline{\text{Poisson}}$ or $\underline{\text{Negative-Binomial}}$

Composition $(S^D) \to \text{Binomial } (D = 2) \text{ or Multinomial } (D > 2)$

Continuous distributions

Density $(\mathbb{R}^{\geq}) \to \underline{\mathsf{log}\text{-Normal}}$ or $\underline{\mathsf{Gamma}}$

Continuous distributions

Density $(\mathbb{R}^{\geq}) \to \underline{\mathsf{log}\text{-Normal}}$ or Gamma

Proportion
$$(C^D) \rightarrow \underline{\mathsf{Beta}}(D=2)$$
 or $\underline{\mathsf{Dirichlet}}(D>2)$

Continuous distributions

Density $(\mathbb{R}^{\geq}) \to \underline{\mathsf{log}\text{-Normal}}$ or $\underline{\mathsf{Gamma}}$

Proportion
$$(C^D) \rightarrow \underline{\mathsf{Beta}}(D=2)$$
 or $\underline{\mathsf{Dirichlet}}(D>2)$

Transformations $(\mathbb{R}) \to Normal$