
Fitting mixed models and selecting among them
QERM 514 - Homework 6 Answer Key

8 May 2020

R Markdown file

You can find the R Markdown file used to create this answer key here.

Background

This week’s homework assignment focuses on fitting and evaluating linear mixed models. In
particular, you will consider different forms for a stock-recruit relationship that describes the density-
dependent relationship between fish spawning biomass in “brood year” t (St) and the biomass of
fish arising from that brood year that subsequently “recruit” to the fishery (Rt).

Ricker model

The Ricker model (Ricker 1954) is one of the classical forms for describing the stock-recruit
relationship. The deterministic form of the model is given by

Rt = St exp
[
r

(
1− St

k

)]
where r is the intrinsic growth rate and k is the carrying capacity of the environment. In fisheries
science, the model is often rewritten as

Rt = aSt exp (−bSt)

where a = exp r and b = r/k. We can make the model stochastic by including a multiplicative error
term εt ∼ N(0, σ2), such that

Rt = aSt exp (−bSt) exp(εt)

This model is clearly non-linear, but we can use a log-transform to linearize it. Specifically, we have
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logRt = log a+ logSt − bSt + εt

⇓
logRt − logSt = log a− bSt + εt

⇓
log(Rt/St) = log a− bSt + εt

⇓
yt = α− βSt + εt

where yt = log(Rt/St), α = log a, and β = b.

Data

The data for this assignment come from 21 populations of Chinook salmon (Oncorhynchus
tshawytscha) in Puget Sound. The original data come from the NOAA Fisheries Salmon Pop-
ulation Summary (SPS) database, which was subsequently cleaned and summarized for use in a
recent paper by Bal et al. (2019). The data are contained in the accompanying file ps_chinook.csv,
which contains the following columns:

• pop: name of the population

• pop_n: integer ID for population (1-21)

• year: year of spawning

• spawners: total number of spawning adults (1000s)

• recruits: total number of surviving offspring that “recruit” to the fishery (1000s)

Problems

As you work through the following problems, be sure to show all of the code necessary to produce
your answers. (Hint: You will need to define a new response variable before you can do any model
fitting.)

## load the data
psc <- read.csv("ps_chinook.csv")

## number of popns
n_pops <- length(unique(psc$pop))

## number of years
n_yrs <- length(unique(psc$year))

## new response variable: log(R/S)
psc$logRS <- log(psc$recruits / psc$spawners)
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a) Plot the number of recruits by population (y) against the number of spawners by population
(x), and add a line indicating the replacement level where recruits = spawners. Describe what
you see.

## set colors
clrs <- viridis::plasma(n_pops, alpha = 0.7, begin = 0.2, end = 0.8)

## set plot region
par(mai = c(0.9, 0.9, 0.6, 0.1))

## plot data
plot(0, 0, type = "n", las = 1,

xlim = range(psc$spawners), ylim = range(psc$recruits),
ylab = "Recruits (1000s)", xlab = "Spawners (1000s)")

abline(a = 0, b = 1)
for(i in 1:n_pops) {

pdat <- psc[psc$pop_n == i,]
points(pdat$spawners, pdat$recruits, pch = 16, col = clrs[i])

}
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b) Fit the following model and report your estimates for α and β. Also report your estimate of
σ2
ε . Based on the R2 value, does this seem like a promising model?
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log(Ri,t/Si,t) = α− βSi,t + εi,t

εi,t ∼ N(0, σ2
ε )

## base model with global parameters
mod_base <- lm(logRS ~ spawners, data = psc)
summary(mod_base)

##
## Call:
## lm(formula = logRS ~ spawners, data = psc)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3069 -0.5120 0.1275 0.6340 4.4641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.60045 0.06524 9.204 <2e-16 ***
## spawners -0.02398 0.02124 -1.129 0.26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.114 on 418 degrees of freedom
## Multiple R-squared: 0.00304, Adjusted R-squared: 0.0006545
## F-statistic: 1.274 on 1 and 418 DF, p-value: 0.2596

The estimate of α is 0.6 and β is -0.024. The estimate of σ2
ε is 1.24. The R2 value is only 0.003,

which is very small, so this does not seem to be a promising model.

c) Fit the following model and report your estimates for α, each of the δi, and β. Also report
your estimate of σ2

ε and σ2
δ . Based on the R2 value, how does this model compare to that

from part (b)?

log(Ri,t/Si,t) = (α+ δi)− βSi,t + εi,t

δi ∼ N(0, σ2
δ )

εi,t ∼ N(0, σ2
ε )

library(lme4)
## RE for alpha
mod_re_popn_alpha <- lmer(logRS ~ 1 + spawners + (1 | pop_n), data = psc)
summary(mod_re_popn_alpha)
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## Linear mixed model fit by REML ['lmerMod']
## Formula: logRS ~ 1 + spawners + (1 | pop_n)
## Data: psc
##
## REML criterion at convergence: 1285.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.0964 -0.4471 0.0452 0.5482 3.8110
##
## Random effects:
## Groups Name Variance Std.Dev.
## pop_n (Intercept) 0.07869 0.2805
## Residual 1.18007 1.0863
## Number of obs: 420, groups: pop_n, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.67647 0.09310 7.266
## spawners -0.06871 0.02703 -2.542
##
## Correlation of Fixed Effects:
## (Intr)
## spawners -0.493

The estimate of α is 0.68 and β is -0.069. The estimates of the δi are

round(ranef(mod_re_popn_alpha)$pop_n, 3)

## (Intercept)
## 1 -0.016
## 2 -0.230
## 3 -0.197
## 4 0.187
## 5 -0.209
## 6 0.083
## 7 0.093
## 8 -0.021
## 9 -0.031
## 10 0.253
## 11 0.139
## 12 -0.383
## 13 -0.104
## 14 -0.160
## 15 -0.104
## 16 0.117
## 17 0.323
## 18 -0.208
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## 19 -0.139
## 20 0.454
## 21 0.154

## get Var(epsilon) & Var(delta)
(var_re_site <- as.data.frame(VarCorr(mod_re_popn_alpha)))
## variance of random effects
sigma2_delta <- var_re_site$vcov[1]
## variance of residuals
sigma2_epsilon <- var_re_site$vcov[2]

## grp var1 var2 vcov sdcor
## 1 pop_n (Intercept) <NA> 0.07869448 0.2805254
## 2 Residual <NA> <NA> 1.18007270 1.0863115

The estimate of σ2
ε is 1.18 and the estimate of σ2

δ is 0.08.

## R^2
SSE <- sum(residuals(mod_re_popn_alpha)^2)
SSTO <- sum((psc$logRS - mean(psc$logRS))^2)
(R2 <- 1 - SSE / SSTO)

## [1] 0.0766575

The R2 value for this model is only ~0.077, which is much better than that for (b), but still quite
low.

d) Fit the following model and report your estimates for α, each of the ηi, and β. Also report
your estimate of σ2

ε and σ2
η. Based on the R2 value, how does this model compare to that

from part (c)?

log(Ri,t/Si,t) = α− (β + ηi)Si,t + εi,t

ηi ∼ N(0, σ2
η)

εi,t ∼ N(0, σ2
ε )

The trick here is to recognize that you only want a random effect for the slope η, and not the
intercept, which means you need to specify the random effect as (-1 + spawners | pop_n).

## RE for beta
mod_re_popn_beta <- lmer(logRS ~ 1 + spawners + (-1 + spawners | pop_n), data = psc)
summary(mod_re_popn_beta)

## Linear mixed model fit by REML ['lmerMod']
## Formula: logRS ~ 1 + spawners + (-1 + spawners | pop_n)
## Data: psc
##
## REML criterion at convergence: 1288.5
##
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## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.2761 -0.4227 0.0607 0.5318 3.9257
##
## Random effects:
## Groups Name Variance Std.Dev.
## pop_n spawners 0.3082 0.5552
## Residual 1.1137 1.0553
## Number of obs: 420, groups: pop_n, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.92446 0.08902 10.385
## spawners -0.56726 0.15951 -3.556
##
## Correlation of Fixed Effects:
## (Intr)
## spawners -0.483

The estimate of α is 0.92 and β is -0.567. The estimates of the ηi are

round(ranef(mod_re_popn_beta)$pop_n, 3)

## spawners
## 1 -0.274
## 2 -0.693
## 3 -0.554
## 4 0.504
## 5 0.096
## 6 0.034
## 7 0.416
## 8 0.223
## 9 0.126
## 10 0.518
## 11 0.412
## 12 -1.110
## 13 -0.419
## 14 -0.403
## 15 0.217
## 16 0.468
## 17 0.501
## 18 -0.532
## 19 -0.252
## 20 0.542
## 21 0.180

## get Var(epsilon) & Var(eta)
(var_re_site <- as.data.frame(VarCorr(mod_re_popn_beta)))
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## variance of random effects
sigma2_eta <- var_re_site$vcov[1]
## variance of residuals
sigma2_epsilon <- var_re_site$vcov[2]

## grp var1 var2 vcov sdcor
## 1 pop_n spawners <NA> 0.3082175 0.5551734
## 2 Residual <NA> <NA> 1.1137233 1.0553309

The estimate of σ2
ε is 1.11 and the estimate of σ2

η is 0.31.

## R^2
SSE <- sum(residuals(mod_re_popn_beta)^2)
(R2 <- 1 - SSE / SSTO)

## [1] 0.1364586

The R2 value for this model is only ~0.136, which is much better than that for (c), but still quite
low.

e) Fit the following model and report your estimates for α, each of the δi, β, and each of the
ηi. Also report your estimate of σ2

ε , σ2
δ , and σ2

η. Based on the R2 value, how does this model
compare to that from part (d)? (Hint: Refer back to the beginning of Lab 6 for how to fit
uncorrelated random effects for both intercept and slope.)

log(Ri,t/Si,t) = (α+ δi)− (β + ηi)Si,t + εi,t

δi ∼ N(0, σ2
δ )

ηi ∼ N(0, σ2
η)

εi,t ∼ N(0, σ2
ε )

Here you want uncorrelated random effects for both the intercept and slope, which means you need
to specify the random effects as (1 + spawners || pop_n).

## RE for beta
mod_re_popn_both <- lmer(logRS ~ 1 + spawners + (1 + spawners || pop_n), data = psc)
summary(mod_re_popn_both)

## Linear mixed model fit by REML ['lmerMod']
## Formula: logRS ~ 1 + spawners + ((1 | pop_n) + (0 + spawners | pop_n))
## Data: psc
##
## REML criterion at convergence: 1281.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.3703 -0.4275 0.0468 0.5303 3.7363
##
## Random effects:
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## Groups Name Variance Std.Dev.
## pop_n (Intercept) 0.11093 0.3331
## pop_n.1 spawners 0.02088 0.1445
## Residual 1.12927 1.0627
## Number of obs: 420, groups: pop_n, 21
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.82360 0.10948 7.523
## spawners -0.23983 0.06569 -3.651
##
## Correlation of Fixed Effects:
## (Intr)
## spawners -0.459

The estimate of α is 0.82 and β is -0.24. The estimates of the δi and ηi are

REs <- round(ranef(mod_re_popn_both)$pop_n, 3)
colnames(REs) <- c("delta", "eta")
REs

## delta eta
## 1 -0.083 -0.019
## 2 -0.264 -0.106
## 3 -0.284 -0.046
## 4 0.151 0.164
## 5 -0.161 -0.055
## 6 0.104 -0.055
## 7 0.185 0.050
## 8 0.096 -0.064
## 9 -0.012 -0.020
## 10 0.289 0.052
## 11 0.270 0.017
## 12 -0.497 -0.064
## 13 -0.181 -0.027
## 14 -0.251 -0.012
## 15 -0.020 -0.017
## 16 0.198 0.103
## 17 0.427 0.023
## 18 -0.273 -0.046
## 19 -0.200 -0.021
## 20 0.312 0.191
## 21 0.191 -0.049

## get Var(epsilon) & Var(delta)
(var_re_site <- as.data.frame(VarCorr(mod_re_popn_both)))
## variance of random effects
sigma2_delta <- var_re_site$vcov[1]
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sigma2_eta <- var_re_site$vcov[2]
## variance of residuals
sigma2_epsilon <- var_re_site$vcov[3]

## grp var1 var2 vcov sdcor
## 1 pop_n (Intercept) <NA> 0.11093034 0.3330621
## 2 pop_n.1 spawners <NA> 0.02088231 0.1445071
## 3 Residual <NA> <NA> 1.12927263 1.0626724

The estimate of σ2
ε is 1.13, the estimate of σ2

δ is 0.11, and the estimate of σ2
η is 0.02

## R^2
SSE <- sum(residuals(mod_re_popn_both)^2)
(R2 <- 1 - SSE / SSTO)

## [1] 0.1282285

The R2 value for this model is only ~0.128, which is slightly worse than that for (c).

f) Based on the 3 models you fit in parts (c - e), test whether or not there is data support for
including a random effect for population-level intercepts. Also test whether or not there is
data support for including a random effect for population-level slopes. Make sure to specify
your null hypothesis for both of the tests.

To compare our models with a single random effect, we need to compare them against a full model
with both random effects. To do so, we need 3 different models:

1) model with single RE of interest to be tested (model_A)

2) full model with 2+ RE’s (model_AB)

3) full model minus the RE in model (1) (model_B)

To conduct the test we use extractRLRT(model_A, model_AB, model_B).

## load RLRsim package
library(RLRsim)

## test RE for intercept
exactRLRT(mod_re_popn_alpha, mod_re_popn_both, mod_re_popn_beta)

##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 7.3102, p-value = 0.003

We can reject H0 : σ2
δ = 0 and conclude that there is support for inclusion of a population-level

offset to the intercept.

Here is the test for the population-level offset to the slope.
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## test RE for slope
exactRLRT(mod_re_popn_beta, mod_re_popn_both, mod_re_popn_alpha)

##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 4.6473, p-value = 0.0089

Here, too, we can reject H0 : σ2
η = 0 and conclude that there is support for inclusion of the year

random effect.

g) Now fit the following model and report your estimates for α, each of the δi, β, each of the ηi,
and each of the γt. Also report your estimate of σ2

ε , σ2
δ , σ2

γ , and σ2
η. Based on the R2 value,

how does this model compare to that from part (d)?

log(Ri,t/Si,t) = (α+ δi + γt)− (β + ηi)Si,t + εi,t

δi ∼ N(0, σ2
δ )

γt ∼ N(0, σ2
γ)

ηi ∼ N(0, σ2
η)

εi,t ∼ N(0, σ2
ε )

Here you want uncorrelated random effects for both the intercept and slope, plus a random effect
for year, which means you need to specify the random effects as (1 + spawners || pop_n) + (1
| year).

## RE for beta
mod_re_popn_3 <- lmer(logRS ~ 1 + spawners + (1 + spawners || pop_n) + (1 | year), data = psc)
summary(mod_re_popn_3)

## Linear mixed model fit by REML ['lmerMod']
## Formula: logRS ~ 1 + spawners + ((1 | pop_n) + (0 + spawners | pop_n)) +
## (1 | year)
## Data: psc
##
## REML criterion at convergence: 1264
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.8465 -0.3849 0.0678 0.5017 3.8513
##
## Random effects:
## Groups Name Variance Std.Dev.
## pop_n (Intercept) 0.10359 0.3219
## pop_n.1 spawners 0.01488 0.1220
## year (Intercept) 0.10720 0.3274
## Residual 1.03112 1.0154
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## Number of obs: 420, groups: pop_n, 21; year, 20
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 0.79085 0.12855 6.152
## spawners -0.20182 0.06002 -3.363
##
## Correlation of Fixed Effects:
## (Intr)
## spawners -0.392

The estimate of α is 0.82 and β is -0.24. The estimates of the δi (pop_n$(Intercept)), ηi
(pop_n$spawners), and γt (year$(Intercept)) are

# round(ranef(mod_re_popn_3), 3)
lapply(ranef(mod_re_popn_3), round, 3)

## $pop_n
## (Intercept) spawners
## 1 -0.070 -0.010
## 2 -0.268 -0.079
## 3 -0.275 -0.026
## 4 0.177 0.126
## 5 -0.156 -0.074
## 6 0.100 -0.036
## 7 0.178 0.033
## 8 0.072 -0.053
## 9 -0.015 -0.019
## 10 0.288 0.046
## 11 0.254 0.009
## 12 -0.489 -0.048
## 13 -0.169 -0.017
## 14 -0.238 -0.011
## 15 -0.035 -0.020
## 16 0.203 0.073
## 17 0.414 0.022
## 18 -0.268 -0.035
## 19 -0.192 -0.018
## 20 0.308 0.158
## 21 0.181 -0.021
##
## $year
## (Intercept)
## 1986 0.207
## 1987 0.090
## 1988 0.328
## 1989 -0.013
## 1990 -0.226
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## 1991 -0.123
## 1992 0.031
## 1993 -0.026
## 1994 0.095
## 1995 -0.168
## 1996 0.165
## 1997 0.490
## 1998 0.214
## 1999 0.041
## 2000 0.258
## 2001 -0.617
## 2002 0.036
## 2003 -0.357
## 2004 0.060
## 2005 -0.484

## get Var(epsilon) & Var(delta)
(var_re_site <- as.data.frame(VarCorr(mod_re_popn_3)))
## variance of random effects
sigma2_delta <- var_re_site$vcov[1]
sigma2_eta <- var_re_site$vcov[2]
sigma2_gamma <- var_re_site$vcov[3]
## variance of residuals
sigma2_epsilon <- var_re_site$vcov[4]

## grp var1 var2 vcov sdcor
## 1 pop_n (Intercept) <NA> 0.10358789 0.3218507
## 2 pop_n.1 spawners <NA> 0.01488145 0.1219895
## 3 year (Intercept) <NA> 0.10720197 0.3274171
## 4 Residual <NA> <NA> 1.03112332 1.0154424

The estimate of σ2
ε is 1.03, the estimate of σ2

δ is 0.1, the estimate of σ2
η is 0.015, and the estimate of

σ2
γ is 0.11.

## R^2
SSE <- sum(residuals(mod_re_popn_3)^2)
(R2 <- 1 - SSE / SSTO)

## [1] 0.2290055

The R2 value for this model is ~0.229, which is our best yet.

h) Conduct a diagnostic check of the model you fit in (g) to evaluate the adequacy of the model
assumptions. Do you see any cause for concern?

We should be checking a Q-Q plot, a plot of the residuals versus the fitted values, and the degree of
autocorrelation in the residuals for each population.
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Q-Q plots

## set plot area
par(mai = c(0.9, 0.9, 0.6, 0.1),

omi = c(0, 0, 0, 0),
mfrow = c(1,2), cex.lab = 1.2)

## qq resids
qqnorm(residuals(mod_re_popn_3), main = "QQ plot (residuals)", las = 1, pch = 16)
qqline(residuals(mod_re_popn_3))

## qq RE's
qqnorm(unlist(ranef(mod_re_popn_3)), main = "QQ plot (RE's)", las = 1, pch = 16)
qqline(unlist(ranef(mod_re_popn_3)))
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These plots indicate some leptokurtosis (heavy tails) in the residuals, suggesting our model assump-
tions are somewhat questionable.

Residuals versus fitted

We can also plot the model residuals against the fitted values to look for evidence of heteroscedasticity
or non-linearity in the residuals.

## resids vs fitted
plot(fitted(mod_re_popn_3), residuals(mod_re_popn_3), las = 1, pch = 16,

xlab = "Fitted", ylab = "Residuals",
main = "Residuals vs fitted")

abline(h=0, lty = "dashed")
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This residual plot looks pretty good with the exception of one outlier in the lower right.

Autocorrelation

Because these data were collected over time, we should be aware of possible autocorrelation among
the residuals. It would be a bit messy to create plots for all 9 of the time series, so we’ll just get a
table of the results from acf() and see whether any of them exceed the critical value given by

0±
zα/2√
n

where zα/2 is the 1− α/2 quantile of the standard normal distribution. For example, if α = 0.05,
then zα/2 = 1.96. Here we’ll only examine correlations out to a lag of 5 years because it’s unlikely
that counts in this year would be related to counts 6 or more years in the past (and hopefully not
at any years in the past).

## Type-I error
alpha_crit <- 0.05

## threshold value for rho (correlation)
(rho_crit <- qnorm(1 - alpha_crit/2) / sqrt(n_yrs))

## [1] 0.4382613

## rearrange residuals into matrix
rr <- matrix(residuals(mod_re_popn_3), n_yrs, n_pops)
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## get ACF
ACF <- apply(rr, 2, acf, lag.max = 5, plot = FALSE)
ACF <- lapply(ACF, function(x) x$acf)
## convert list to matrix; don't need row 1 b/c rho_0 = 1
ACF <- do.call(cbind, ACF)[-1,]

## check if any values > rho_crit by popn
bad_rho <- apply(ACF, 2, function(x) abs(x) > rho_crit)
apply(bad_rho, 2, any)

## [1] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
## [12] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

It looks like the random effect for year γt did not do an adequate job of accounting for all of the
autocorrelation in the data. However, there are a lot of null hypothesis tests here, so some of the
correlations should exceed the critical value by chance alone.
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