
Model selection and multimodel inference
QERM 514 - Homework 5 Answer Key

1 May 2020

R Markdown file

You can find the R Markdown file used to create this answer key here.

Background

This week’s home work will require you to use all of the information you have learned so far in class.
Your task is to analyze some data on the concentration of nitrogen in the soil at 41 locations on the
island of Maui in the Hawaiian Archipelago. Along with the nitrogen measurements, there are 4
possible predictor variables that may help to explain the variation in soil nitrogen concentration.
The accompanying data file soil_nitrogen.csv has the following 5 columns of data:

• nitrogen: concentration of soil nitrogen (mg nitrogen kg−1 soil)

• temp: average air temperature (◦C)

• precip: average precipitation (cm)

• slope: slope of the hillside (degrees)

• aspect: aspect of the hillside (N, S)

As you work through the following problems, be sure to show all of the code necessary to produce
your answers.

Problems

a) Begin by building a global model that contains all four of the predictors plus an intercept.
Show the resulting ANOVA table, and report the multiple and adjusted R3 values. Also report
the estimate of the residual variance σ̂2.

## get data
soil_N <- read.csv("soil_nitrogen.csv")

## sample size (for later)
nn <- nrow(soil_N)

## fit full model
mod_full <- lm(nitrogen ~ temp + precip + slope + aspect, data = soil_N)
summary(mod_full)
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##
## Call:
## lm(formula = nitrogen ~ temp + precip + slope + aspect, data = soil_N)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0914 -1.0880 -0.2175 1.0337 3.7394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.63347 2.47280 19.263 < 2e-16 ***
## temp 0.03736 0.09292 0.402 0.6900
## precip 0.11302 0.01054 10.726 9.23e-13 ***
## slope -0.78304 0.06029 -12.987 3.76e-15 ***
## aspectS 1.25273 0.52804 2.372 0.0231 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.664 on 36 degrees of freedom
## Multiple R-squared: 0.9075, Adjusted R-squared: 0.8972
## F-statistic: 88.28 on 4 and 36 DF, p-value: < 2.2e-16

The multiple R2 = 0.907 and the adjusted R2 = 0.897. The estimated residual variance (σ̂2) is 2.77.
(Note that the Residual standard error: 1.664 listed in the table is σ̂ rather than σ̂2.

b) Check the residuals from your full model for possible violations of the assumption that the
ei ∼ N(0, σ2).

There are a number of checks we can make, but the most obvious are a plot of the residuals against
the fitted values (ŷ) and a Q-Q plot. As there is no indication that the data are from a time series,
or that they were collected at locations very close to one another, there is no reason (or way) to
check for autocorrelation.

## get residuals
ee <- residuals(mod_full)

par(mfrow = c(1, 2),
mai = c(0.9, 0.9, 0.6, 0.1),
omi = c(0, 0, 0, 0))

## residuals vs fitted
plot(fitted(mod_full), ee, las = 1, pch = 16,

ylab = "Residuals", xlab = "Fitted values")
## Q-Q plot
qqnorm(ee, las = 1, pch = 16)
qqline(ee)
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Both of these plots look good. I do not see any abnormal patterns in the residuals as a function
of the fitted values (ie, they look homoscedastic), nor do I see any egregious deviations from the
assumption of normality.

c) Does this seem like a reasonable model for these data? Why or why not?

Yes, this model seems to be okay. The overall fit looks rather promising and there is no indication
that our assumptions about the model errors have been violated. However, there is also some
question as to whether we should include temp as a predictor based on its p-value.

d) Now fit various models using all possible combinations of the 4 predictors, including an
intercept-only model (ie, there should be a total of 16 models). Compute the AIC, AICc, and
BIC for each of your models and compare the relative rankings of the different models.

## data frame specifying predictors to include
df <- as.data.frame(matrix(c(FALSE, TRUE), 2, 4))
## add col names
cov_names <- colnames(df) <- colnames(soil_N)[-1]

## create set of all possible combinations
model_set <- as.matrix(expand.grid(df))

## number of models in our set
n_mods <- nrow(model_set)
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## empty matrix for storing results
mod_res <- matrix(NA, n_mods, 3)
colnames(mod_res) <- c("AIC", "AICc", "BIC")

## fit models & store IC
for(i in 1:n_mods) {

## create model formula
if(i == 1) {

fmla <- "nitrogen ~ 1"
} else {

fmla <- paste("nitrogen ~", paste(cov_names[model_set[i,]], collapse = " + "))
}
## fit model
mod_fit <- lm(as.formula(fmla), data = soil_N)
## get AIC
mod_res[i,"AIC"] <- AIC(mod_fit)
## get AICc
## number of parameters in the model
k <- 1 + length(coef(mod_fit))
## calculate penalty term
pterm <- (2 * k * (k + 1)) / (nn - k - 1)
## get AICc
mod_res[i,"AICc"] <- AIC(mod_fit) + pterm
## get BIC
mod_res[i,"BIC"] <- BIC(mod_fit)

}

## find top-ranked model(s) (ie, those with lowest IC)
(best_mod <- apply(mod_res, 2, which.min))

## AIC AICc BIC
## 15 15 15

## scale IC to delta-values & round them
min_IC <- apply(mod_res, 2, min)
(delta_IC <- round(t(t(mod_res) - min_IC), 1))

## AIC AICc BIC
## [1,] 91.4 90.0 86.3
## [2,] 93.4 92.3 90.0
## [3,] 69.5 68.4 66.0
## [4,] 71.3 70.7 69.6
## [5,] 58.1 57.1 54.7
## [6,] 59.4 58.8 57.7
## [7,] 3.9 3.3 2.1
## [8,] 5.8 5.8 5.8
## [9,] 91.1 90.1 87.7
## [10,] 93.1 92.5 91.4
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## [11,] 69.2 68.6 67.5
## [12,] 71.1 71.1 71.1
## [13,] 57.5 56.9 55.8
## [14,] 58.6 58.6 58.6
## [15,] 0.0 0.0 0.0
## [16,] 1.8 2.6 3.5

All three of the information criteria point to model 15 as the “best” of the bunch, which has
3 predictors: precip, slope, aspect. However, AIC also indicates that model 16 containing all 4
predictors is also pretty close (ie, it’s within 2 units).

e) Conduct a leave-one-out cross-validation for all of the models in part (d), using the root mean
squared prediction error (RMSPE) as your scale-dependent measure of fit. Report your results
alongside your results from part (d). Do all of the methods agree on which of these models is
the best?

## empty vector for predictions
loo_res <- rep(NA, nn)
## empty vector for MSPE
rmspe <- rep(NA, n_mods)

## loop over all possible model combinations
for(i in 1:n_mods) {

## create model formula
if(i == 1) {

fmla <- "nitrogen ~ 1"
} else {

fmla <- paste("nitrogen ~", paste(cov_names[model_set[i,]], collapse = " + "))
}
## loop over number of observations
for(j in 1:nn) {

## drop one observation and fit the model
fm <- lm(as.formula(fmla), soil_N[-j,])
## predict the missing value
loo_res[j] <- predict(fm, newdata = data.frame(soil_N[j,]))

}
## calculate RMSPE for the predictions
rmspe[i] <- sqrt(sum((soil_N$nitrogen - loo_res)^2) / nn)

}

## add RMSPE values to above table for IC
(tbl_results <- cbind(delta_IC, RMSPE = round(rmspe, 2)))

## AIC AICc BIC RMSPE
## [1,] 91.4 90.0 86.3 5.25
## [2,] 93.4 92.3 90.0 5.36
## [3,] 69.5 68.4 66.0 4.02
## [4,] 71.3 70.7 69.6 4.11
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## [5,] 58.1 57.1 54.7 3.49
## [6,] 59.4 58.8 57.7 3.58
## [7,] 3.9 3.3 2.1 1.80
## [8,] 5.8 5.8 5.8 1.86
## [9,] 91.1 90.1 87.7 5.24
## [10,] 93.1 92.5 91.4 5.36
## [11,] 69.2 68.6 67.5 4.01
## [12,] 71.1 71.1 71.1 4.12
## [13,] 57.5 56.9 55.8 3.48
## [14,] 58.6 58.6 58.6 3.55
## [15,] 0.0 0.0 0.0 1.72
## [16,] 1.8 2.6 3.5 1.78

The estimated RMSPE values generally agree with the IC results, although there is not as clear a
separation among the models.

f) Given some uncertainty that one of these models is the true data-generating model, compute
the weights of evidence for each of the models in your set. Which model has the greatest
support from the data? What are the odds against the intercept-only model compared to the
best model?

The weights of evidence should be based upon the AIC values obtained in part (d).

## numerator
num <- exp(-0.5 * tbl_results[,"AIC"])
## denominator
dem <- sum(num)
## Akaike weights
wts <- num / dem
## evidence ratios
ER <- exp(0.5 * tbl_results[,"AIC"])
## data frame with our results
aic_wts <- data.frame(model = seq(n_mods),

weights = round(wts, 3),
ER = floor(ER))

aic_wts

## model weights ER
## 1 1 0.000 7.034898e+19
## 2 2 0.000 1.912284e+20
## 3 3 0.000 1.235189e+15
## 4 4 0.000 3.038074e+15
## 5 5 0.000 4.132898e+12
## 6 6 0.000 7.916735e+12
## 7 7 0.089 7.000000e+00
## 8 8 0.034 1.800000e+01
## 9 9 0.000 6.054993e+19
## 10 10 0.000 1.645918e+20
## 11 11 0.000 1.063137e+15
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## 12 12 0.000 2.748963e+15
## 13 13 0.000 3.061726e+12
## 14 14 0.000 5.306746e+12
## 15 15 0.623 1.000000e+00
## 16 16 0.253 2.000000e+00

The results also indicate the model 15 is the “best” of our model set because it has ~60% of the
total weights. Model 16, which includes all of the predictors has ~25% of the total weights. The
evidence against the intercept-only model being better than model 15 is ~7.03 × 1019, which are
overwhelming odds against it.

g) Calculate the model-averaged parameters across all models in your set. Use these parameters
to predict what the soil nitrogen concentration would be on the nearby island of Moloka’i if
the average precipitation was 150 cm, the average temperature was 22 ◦C, and the hillside
faced south with a slope of 11 degrees.

The trick here is to recognize that aspect is coded as a 0 for N and a 1 for S. To see this, inspect
model.matrix(fitted_model) where fitted_model is the lm object from part (a) and compare it
to the data frame.

## empty matrix for storing coefficients
## we'll fill it with 0's and replace them with the param estimates
mod_coef <- matrix(0, n_mods, 1 + ncol(df))
colnames(mod_coef) <- c("Intercept", colnames(df))

## fit models & store AIC & BIC
for(i in 1:n_mods) {

if(i == 1) {
fmla <- "nitrogen ~ 1"

} else {
fmla <- paste("nitrogen ~", paste(cov_names[model_set[i,]], collapse = " + "))

}
mod_fit <- lm(as.formula(fmla), data = soil_N)
mod_coef[i, c(TRUE, model_set[i,])] <- coef(mod_fit)

}

## calculate weighted parameters
wtd_coef <- mod_coef * wts
(avg_coef <- colSums(wtd_coef))

## Intercept temp precip slope aspect
## 48.1928509 0.0103904 0.1136534 -0.7829092 1.0923140

## compute model-averaged prediction
X <- matrix(c(Intercept = 1, temp = 22, precip = 150, slope = 11, aspect = 1),

nrow = 1)
(y_hat_avg <- X %*% as.matrix(avg_coef, ncol = 1))

## [,1]
## [1,] 57.94976
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h) Compare your prediction from part (g) to a prediction from the model identified as the best
in part (e), using the same inputs. How much do they differ from one another?

Because our top model does not have a term for temp, we can ignore that value in our prediction
from the top model (or alternatively you could just set βtemp = 0.

## get coefficients from best model w/o `temp`
beta_best <- matrix(coef(lm(nitrogen ~ precip + slope + aspect, data = soil_N)),

ncol = 1)
## compute prediction from best model w/o `temp`
(y_hat_best <- X[-2] %*% beta_best)

## [,1]
## [1,] 57.99948
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